Supporting Information

Chlorine-Substituted Germabenzene: Generation and Application as a Precursor for Aryl-Substituted Germabenzenes

Canon Kaiya, Katsunori Suzuki,* and Makoto Yamashita*
Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
E-mail: katsuno_suzu@oec.chembio.nagoya-u.ac.jp; makoto@oec.chembio.nagoya-u.ac.jp
(submitted to Organometallics)

Contents

1. Experimental procedures S2
2. X-ray crystallographic analysis S10
3. UV-vis absorption spectra S15
4. Theoretical calculations S17
5. References S22

1. Experimental Procedures

General methods

All manipulations of air- and/or moisture-sensitive compounds were performed in a MIWA-MFG glove box under argon atmosphere. Anhydrous hexane, toluene, $\mathrm{Et}_{2} \mathrm{O}$, THF , and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by passage through a GrassContour solvent purification system. Deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ was distilled from CaH_{2} prior to use. Deuterated benzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ was distilled from sodium/benzophenone prior to use. Aluminacyclohexadiene 1, ${ }^{\text {S1 }} \mathrm{MesLi}$ (2,4,6-trimethylphenyl), ${ }^{\mathrm{S} 2}$ and Mes*Li (2,4,6-tri(tert-butyl)phenyllithium) ${ }^{53}$ were prepared according to the literature procedures. Other chemicals were used as received.

The nuclear magnetic resonance (NMR) measurements were measured on a JEOL ECS-400 spectrometer (399 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts (δ) are given by definition as dimensionless numbers and relative to ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR chemical shifts of the residual CDCl_{3} for ${ }^{1} \mathrm{H}$ ($\delta=7.26$), CDCl_{3} itself for ${ }^{13} \mathrm{C}(\delta=77.0)$, or the residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ for ${ }^{1} \mathrm{H}(\delta=7.16), \mathrm{C}_{6} \mathrm{D}_{6}$ itself for ${ }^{13} \mathrm{C}(\delta=128.0)$. The absolute values of the coupling constants are given in Hertz (Hz). Multiplicities are abbreviated as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). High-resolution mass spectra were measured on a Bruker micrOTOF II mass spectrometer with an atmospheric pressure chemical ionization (APCI) probe. UV-vis spectra were recorded on a Shimadzu UV-3600 spectrometer. Melting points (m.p.) were determined with a MPA100 OptiMelt (Tokyo Instruments, Inc.) and are uncorrected.

Synthesis of germacyclohexadiene 5

To a toluene suspension $(5.0 \mathrm{~mL})$ of GeCl_{2}-dioxane $(1.190 \mathrm{~g}, 5.15 \mathrm{mmol})$, toluene solution (30.0 $\mathrm{mL})$ of $2(1.226 \mathrm{~g}, 2.06 \mathrm{mmol})$ was added under argon atmosphere. After stirring for 24 h at $100{ }^{\circ} \mathrm{C}$, a reaction mixture was concentrated under vacuum and exposed to air, then quenched with hexane/deionized water. The organic layer was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then filtered. The resulting solution was concentrated and recrystallized from hexane to give $\mathbf{5}$ as colorless crystals ($494.5 \mathrm{mg}, 0.947 \mathrm{mmol}, 46 \%$).: mp (in a sealed tube) $110-113{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 399 \mathrm{MHz}\right) \delta: 1.18(\mathrm{~d}, J=7 \mathrm{~Hz}, 38 \mathrm{H}), 1.36-1.47(\mathrm{~m}, 6 \mathrm{H}), 2.62(\mathrm{t}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=4$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right) \delta: 11.9(\mathrm{CH}), 19.1\left(\mathrm{CH}_{3}\right), 34.7\left(\mathrm{CH}_{2}\right), 137.7\left(4^{\circ}\right), 157.7(\mathrm{CH}$, vinyl); HRMS (APCI, positive) Calc. for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{ClGeSi}_{2}$ [$\left.\mathrm{M}^{+}-\mathrm{Cl}\right]$: 487.2033. Found: 487.2048. Purity of 5 was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum shown in Figure S1.

Generation of chlorogermabenzene 3 using Mes*Li

To a benzene solution $(0.3 \mathrm{~mL})$ of $5(10.0 \mathrm{mg}, 19.1 \mu \mathrm{~mol})$, benzene suspension $(0.3 \mathrm{~mL})$ of Mes*Li ${ }^{\text {S3 }}(6.3 \mathrm{mg}, 25 \mu \mathrm{~mol})$ was added under argon atmosphere. The generation of $\mathbf{3}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (yield was determined to be 83%), and further reaction was performed without any purification: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 399 \mathrm{MHz}\right) \delta: 1.13(\mathrm{~d}, J=8 \mathrm{~Hz}), 1.45-1.56(\mathrm{~m}), 6.60(\mathrm{t}, J=$ $8 \mathrm{~Hz}), 8.14(\mathrm{~d}, J=8 \mathrm{~Hz})$; HRMS (APCI, positive) Calc. for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{ClGeSi}_{2}\left[\mathrm{M}^{+}\right]: 487.2038$. Found: 487.2040.

Generation of chlorogermabenzene 3 using KHMDS

To a benzene solution (0.3 mL) of $\mathbf{5}(10.0 \mathrm{mg}, 19.1 \mu \mathrm{~mol})$, benzene solution $(0.3 \mathrm{~mL})$ of KHMDS ($3.8 \mathrm{mg}, 19 \mu \mathrm{~mol}$) was added under argon atmosphere. The generation of $\mathbf{3}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in comparison with 3 generated in the reaction using Mes*Li (yield was determined to be 75%), and further reaction was performed without any purification.

Synthesis of Mes-substituted germabenzene 4-Mes

To a toluene solution (3.0 mL) of $5(200.5 \mathrm{mg}, 0.383 \mathrm{mmol})$, toluene suspension (3.0 mL) of KHMDS $(76.4 \mathrm{mg}, 0.383 \mathrm{mmol})$ was added under argon atmosphere to generate $\mathbf{3}$. After stirred for 5 \min, a toluene suspension (6.0 mL) of $\mathrm{MesLi}^{\mathrm{S} 2}(50.0 \mathrm{mg}, 0.396 \mathrm{mmol})$ was add to the reaction mixture. The suspension was stirred for 11 h . After removal of volatiles, the residue was filtered through a pad of Celite ${ }^{\circledR}$ with hexane. The resulting solution was concentrated and recrystallized from hexane to give pure 4-Mes as colorless crystals ($26.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 26 \%$): mp (in a sealed tube) $128-130{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 399 \mathrm{MHz}\right) \delta: 1.09(\mathrm{~d}, J=7 \mathrm{~Hz}, 37 \mathrm{H}), 1.19-1.28(\mathrm{~m}, 6 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 6 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right) \delta: 12.8(\mathrm{CH}), 19.4\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right.$, Mes-4-C), $27.5\left(\mathrm{CH}_{3}\right.$, Mes-2-C), $115.0(\mathrm{CH}$,

3-C of germabenzene ring), 128.0 (CH-Mes) 138.0 (4°, Mes), 138.2 ($4^{\circ}, 2-\mathrm{C}$ of germabenzene ring), $140.2\left(4^{\circ}\right.$, Mes), $142.4\left(4^{\circ}\right.$, Mes), $148.0(\mathrm{CH}, 4-\mathrm{C}$ of germabenzene ring); HRMS (APCI, positive) Calc. for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{GeSi}_{2}\left[\mathrm{M}^{+}\right]$: 570.3133. Found: 570.3152. Purity of 4-Mes was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum shown in Figure S3.

Estimation of the yield of 4-Mes using KHMDS by ${ }^{1} \mathrm{H}$ NMR spectroscopy

To a toluene solution (0.5 mL) of $\mathbf{5}(20.0 \mathrm{mg}, 38.3 \mu \mathrm{~mol})$, toluene solution $(0.5 \mathrm{~mL})$ of KHMDS (7.6 $\mathrm{mg}, 38 \mu \mathrm{~mol}$) was added under argon atmosphere to generate 3. After stirred for 5 min , a toluene suspension $(1.0 \mathrm{~mL})$ of $\operatorname{MesLi}(4.8 \mathrm{mg}, 38 \mu \mathrm{~mol})$ was add to the reaction mixture. The suspension was stirred for 6 h . After removal of volatiles, phananthrene $(6.8 \mathrm{mg}, 38 \mu \mathrm{~mol})$ as an internal standard was added. The residue was filtered through a pad of Celite ${ }^{\circledR}$ with hexane. The yield of 4-Mes was estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy (72\%).

Synthesis of acridyl-substituted germabenzene 4-Acr using Mes*Li

To a diethyl ether solution (2.2 mL) of $5(100 \mathrm{mg}, 0.191 \mathrm{mmol})$, Mes*Li ($53.0 \mathrm{mg}, 0.210 \mathrm{mmol}$) was added under argon atmosphere to generate 3. To a mixture, diethylether solution of acridyllithium prepared from 9-bromoacridine ($49.3 \mathrm{mg}, 0.191 \mathrm{mmol}$) and ${ }^{n} \mathrm{BuLi} /$ hexane $(74.0 \mu \mathrm{~L}$, $2.76 \mathrm{M}, 0.191 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.2 \mathrm{~mL})$ was added at $-35^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 h at $-35^{\circ} \mathrm{C}$, then removal of volatiles, the residue was filtered through a pad of Celite ${ }^{\circledR}$ with hexane. The resulting solution was concentrated and recrystallized from hexane to give pure 4-Acr as greenish yellow crystals ($34.9 \mathrm{mg}, 55.6 \mu \mathrm{~mol}, 29 \%$): mp (in a sealed tube) $168-170{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 399 \mathrm{MHz}\right) \delta: 0.50-0.91(\mathrm{~m}, 42 \mathrm{H}), 7.02-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.24$ (ddd, $\left.J=1,7,9 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $8.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.39(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right) \delta: 12.5(\mathrm{CH}), 19.1\left(\mathrm{CH}_{3}\right)$, $115.8(\mathrm{CH}, 4-\mathrm{C}$ of germabenzene), $126.0(\mathrm{CH}$, Acr-H), $130.2(\mathrm{CH}$, Acr-H), $131.3(\mathrm{CH}$, Acr-H), 132.0 (CH, Acr-H), 142.1 ($4^{\circ}, 2-\mathrm{C}$ of germabenzene ring), $148.4(\mathrm{CH}, 3-\mathrm{C}$ of germabenzene ring), 149.1 (4°, Acr) 151.5 (4°, Acr) ; HRMS (APCI, positive) Calc. for $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{GeNSi}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 630.3009$, Found: 630.2993. Purity of 4-Acr was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum shown in Figure S 4 .

Estimation of the yield of 4-Acr using Mes*Li by ${ }^{1} \mathrm{H}$ NMR spectroscopy

To a diethyl ether solution $(0.5 \mathrm{~mL})$ of $5(20.0 \mathrm{mg}, 38.3 \mu \mathrm{~mol})$, $\mathrm{Mes} * \mathrm{Li}(10.6 \mathrm{mg}, 42.1 \mu \mathrm{~mol})$ was added under argon atmosphere to generate 3. To a mixture, diethyl ether solution of acridyllithium prepared from 9-bromoacridine $(9.9 \mathrm{mg}, 38.3 \mu \mathrm{~mol})$ and ${ }^{n} \mathrm{BuLi} /$ hexane $(14.0 \mu \mathrm{~L}, 2.76 \mathrm{M}, 38.3$ $\mu \mathrm{mol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added at $-35^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at $-35^{\circ} \mathrm{C}$, then removal of volatiles, adamantane ($2.4 \mathrm{mg}, 19 \mu \mathrm{~mol}$) as an internal standard was added. The residue was filtered through a pad of Celite ${ }^{\circledR}$ with hexane. The yield of 4-Acr was estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy (73\%).

Synthesis of acridyl-substituted germabenzene 4-Acr using KHMDS

To a diethyl ether solution $(3.0 \mathrm{~mL})$ of $5(200 \mathrm{mg}, 0.382 \mathrm{mmol})$, diethyl ether solution (3.0 mL) of KHMDS ($76.4 \mathrm{mg}, 0.382 \mathrm{mmol}$) was added under argon atmosphere to generate 3. To a mixture, diethylether solution of acridyllithium prepared from 9-bromoacridine ($98.8 \mathrm{mg}, 0.382 \mathrm{mmol}$) and ${ }^{n} \mathrm{BuLi} /$ hexane $(140 \mu \mathrm{~L}, 2.76 \mathrm{M}, 0.382 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ was added at $-35{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 h at $-35^{\circ} \mathrm{C}$, then removal of volatiles, the residue was filtered through a pad of Celite ${ }^{\circledR}$ with hexane. The resulting solution was concentrated and recrystallized from hexane to give pure 4-Acr as greenish yellow crystals ($34.6 \mathrm{mg}, 55.0 \mu \mathrm{~mol}, 14 \%$).

Synthesis of Mes-substituted germabenzene 4-Mes by using 2 equiv. of MesLi

To a toluene solution $(0.5 \mathrm{~mL})$ of $5(20.0 \mathrm{mg}, 38.3 \mu \mathrm{~mol})$ and $\mathrm{MesLi}(10.1 \mathrm{mg}, 80.4 \mu \mathrm{~mol})$ was added under argon atmosphere. After stirring for 11 h , a reaction mixture was concentrated under vacuum and phananthrene $(6.8 \mathrm{mg}, 38 \mu \mathrm{~mol})$ as an internal standard was added. The residue was filtered through a pad of Celite ${ }^{\circledR}$ with hexane. The yield of 4-Mes was estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy (81\%).

Figure S1. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 5 in $\mathrm{C}_{6} \mathrm{D}_{6} \cdot{ }^{\bullet}$:residual solvent signal.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of in-situ generated $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ using Mes*Li (top) and KHMDS (bottom). •:residual solvent signal, *: tri(tert-butyl)benzene, ${ }^{\circ}$: hexamethyldisilazane, x: phenanthrene as an internal standard.

Figure S3. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 4-Mes $\mathrm{inC}_{6} \mathrm{D}_{6}$). ${ }^{\bullet}$:residual solvent signal.

Figure S4. ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 4-Acr in $\mathrm{C}_{6} \mathrm{D}_{6} \cdot \bullet$:residual solvent signal.

2. X-ray Crystallographic Analysis

Crystallographic data for 2, 4-Mes, and 4-Acr are summarized in table S1. The crystals were coated with immersion oil and put on a MicroMount ${ }^{\mathrm{TM}}$ (MiTeGen, LLC), and then mounted on diffractometer. Diffraction data were collected on a Rigaku Saturn CCD or a Bruker Photon detectors using MoK α radiation. The Bragg spots were integrated using CrysAlis ${ }^{\text {Pro }}$ program package. ${ }^{\text {S4 }}$ Absorption corrections were applied. All the following procedure for analysis, Yadokari-XG 2009 was used as a graphical interface. ${ }^{\text {S5 }}$ The structure was solved by a direct method with programs of SIR2014 ${ }^{\mathrm{S} 6}$ or SHELEXT ${ }^{\mathrm{S} 7}$ and refined by a full-matrix least squares method with the program of SHELXL-2014 or SHELXL-2018. ${ }^{\text {S7 }}$ Anisotropic temperature factors were applied to all non-hydrogen atoms. The hydrogen atoms were put at calculated positions, and refined applying riding models. The detailed crystallographic data have been deposited with the Cambridge Crystallographic Data Centre: Deposition code CCDC 1886739 (2), CCDC 1886740 (4-Mes), and CCDC 1886741 (4-Acr). A copy of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/products/csd/request.

Table S1. Crystallographic data for 2, 4-Mes, and 4-Acr.

	2	4-Mes	4-Acr
Formula	$\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{GeSi}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{GeSi}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{GeNSi}_{2}$
M	522.27	569.53	628.56
T / K	93	113	123
color	colorless	colorless	yellow
size / mm	$0.30 \times 0.14 \times 0.10$	$0.80 \times 0.02 \times 0.02$	$0.40 \times 0.38 \times 0.36$
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	$P 2{ }_{1} / m$	$P 2_{1} / n$	$P 2_{1}$
a / \AA	7.742(2)	15.4609(14)	9.3730 (2)
b / \AA	25.402(6)	9.2117(9)	$29.3546(9)$
c / \AA	7.893(2)	23.847(3)	$12.7365(3)$
$\alpha 1^{\circ}$	90	90	90
$\beta{ }^{\circ}$	114.755(3)	100.048(9)	93.073(2)
$\gamma 1^{\circ}$	90	90	90
V / \AA^{3}	1409.6(6)	3344.2(6)	3499.29(15)
Z	2	4	4
$D_{x} / \mathrm{g} \mathrm{cm}^{-3}$	1.230	1.131	1.193
$\mu / \mathrm{mm}-1$	1.369	1.005	0.968
$F(000)$	556	1232	1344
θ range ${ }^{\circ}$	3.006 to 27.430	2.375 to 25.999	1.745 to 25.000
reflections collected	11373	24280	25635
unique reflections	3259	6402	11482
refined parameters	140	331	745
GOF on F^{2}	1.181	1.040	1.034
$R 1[I>2 \sigma(I)]^{\text {a }}$	0.0405	0.0597	0.0273
${ }_{\mathrm{w}} R 2[I>2 \sigma(I)]^{\mathrm{b}}$	0.1069	0.1223	0.0591
$R 1$ (all data) ${ }^{\text {a }}$	0.0467	0.1116	0.0294
$\mathrm{w} R 2$ (all data) ${ }^{\text {b }}$	0.1096	0.1481	0.0615
$\Delta \rho_{\text {min }}, \max / \mathrm{e} \AA^{-3}$	0.684, -0.669	0.802, -0.882	0.545, -0.493

Figure S5. Molecular structure of 2 (50% thermal ellipsoid probability). Hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 2: Ge1- $\mathrm{C} 1=1.918(3), \mathrm{Ge} 1-\mathrm{Cl} 1=$ $2.1779(12), \mathrm{Ge} 1-\mathrm{Cl} 2=2.1580(12), \mathrm{C} 1-\mathrm{C} 2=1.342(4), \mathrm{C} 1-\mathrm{Sil}=1.890(3), \mathrm{C} 2-\mathrm{C} 3=1.518(4), \mathrm{C} 1-$ $\mathrm{Ge} 1-\mathrm{C} 1 *=109.34(18), \mathrm{Ge} 1-\mathrm{C} 1-\mathrm{C} 2=110.0(2), \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=128.5(3), \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2 *=118.6(4)$.

Figure S6. A) Molecular structure of 4-Mes (50\% thermal ellipsoid probability). Hydrogen atoms are omitted for clarity. B) Side view of germabenzene ring. Hydrogen atoms and isopropyl groups are omitted for clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 4-Mes: Ge1-C1 $=1.867(4)$, $\mathrm{Ge} 1-\mathrm{C} 5=1.861(4), \mathrm{Ge} 1-\mathrm{C} 6=1.951(4), \mathrm{C} 1-\mathrm{C} 2=1.414(5), \mathrm{C} 1-\mathrm{Si} 1=1.886(4), \mathrm{C} 2-\mathrm{C} 3=1.395(5)$, $\mathrm{C} 3-\mathrm{C} 4=1.387(5), \mathrm{C} 4-\mathrm{C} 5=1.423(5), \mathrm{C} 5-\mathrm{Si} 2=1.880(4), \mathrm{C} 1-\mathrm{Ge} 1-\mathrm{C} 5=111.26(17), \mathrm{Ge} 1-\mathrm{C} 1-\mathrm{C} 2=$ $112.4(3), \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=128.6(4), \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=126.6(4), \mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=128.8(4), \mathrm{C} 4-\mathrm{C} 5-\mathrm{Ge} 1=$ 112.2(3), $\mathrm{C} 1-\mathrm{Ge} 1-\mathrm{C} 6=123.05(16), \mathrm{C} 5-\mathrm{Ge} 1-\mathrm{C} 6=125.54(17)$.

Figure S7. Molecular structure of 4-Acr (50% thermal ellipsoid probability). There are two crystallographically independent molecules in asymmetric unit. Hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 4-Acr: Ge1-C1 $=1.861(4), \mathrm{Ge} 1-\mathrm{C} 5=$ $1.854(4), \mathrm{Ge} 1-\mathrm{C} 6=1.954(3), \mathrm{C} 1-\mathrm{C} 2=1.406(5), \mathrm{C} 2-\mathrm{C} 3=1.394(5), \mathrm{C} 3-\mathrm{C} 4=1.381(6), \mathrm{C} 4-\mathrm{C} 5=$ $1.405(5), \mathrm{C} 1-\mathrm{Ge} 1-\mathrm{C} 5=111.91(16), \mathrm{Ge} 1-\mathrm{C} 1-\mathrm{C} 2=111.9(3), \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=128.2(4), \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=$ 127.3(3), C3-C4-C5 = 128.7(3), C4-C5-Ge1 = 111.9(3), C1-Ge1-C6 = 122.13(16), C5-Ge1-C6 = $125.90(16), \mathrm{Ge} 2-\mathrm{C} 37=1.857(4), \mathrm{Ge} 2-\mathrm{C} 41=1.866(4), \mathrm{Ge} 2-\mathrm{C} 42=1.963(3), \mathrm{C} 37-\mathrm{C} 38=1.399(5)$, $\mathrm{C} 38-\mathrm{C} 39=1.397(5), \mathrm{C} 39-\mathrm{C} 40=1.386(6), \mathrm{C} 40-\mathrm{C} 41=1.407(5), \mathrm{C} 37-\mathrm{Ge} 2-\mathrm{C} 41=111.88(16)$, $\mathrm{Ge} 2-\mathrm{C} 37-\mathrm{C} 38=112.2(3), \mathrm{C} 37-\mathrm{C} 38-\mathrm{C} 39=128.6(4), \mathrm{C} 38-\mathrm{C} 39-\mathrm{C} 40=126.7(3), \mathrm{C} 39-\mathrm{C} 40-\mathrm{C} 41=$ 129.3(3), C40-C41-Ge2 = 111.3(3), C37-Ge2-C42 = 120.16(16), C41-Ge2-C42 = 127.74(16).

3. UV-vis Absorption Spectra

UV-vis absorption spectra were recorded on a Shimadzu UV-3600 spectrometer using a 10 mm square quartz cell. Dry hexane was used for the sample solution. UV-vis spectra of 4-Mes, 4-Acr and acridine are shown in Figure S8-10.

Figure S8. UV-vis absorption spectra of 4-Mes (yellow line) and 4-Acr (red line) at room temperature in hexane. $\lambda_{\text {max }}$ of 4-Mes (ε): 346 nm (5500), $\lambda_{\text {max }}$ of 4-Acr $(\varepsilon): 386 \mathrm{~nm}(5700), 364 \mathrm{~nm}$ (9900), 346 nm (12000).

Figure S9. Normalized UV-vis absorption spectra of 4-Acr (red line) and acridine (blue line) at room temperature in hexane. $\lambda_{\text {max }}$ of 4-Acr: $386 \mathrm{~nm}, 364 \mathrm{~nm}, 346 \mathrm{~nm}$; $\lambda_{\text {max }}$ of acridine: $371 \mathrm{~nm}, 355$ $\mathrm{nm}, 339 \mathrm{~nm}$.

Figure S10. UV-vis absorption spectra of 4-Acr in hexane (red line) and THF (yellow line) at room temperature in hexane. $\lambda_{\max }$ of 4-Acr in hexane (ε): 386 nm (5700), 364 nm (9900), 346 nm (12000); $\lambda_{\text {max }}$ of 4-Acr in THF (ε): 389 nm (5700), 365 nm (9700), 346 nm (12000).

4. Theoretical Calculations

Theoretical calculations were carried out by using Gaussian 16 program package. ${ }^{\mathrm{S} 8}$ The geometry optimizations of 4-Mes, and 4-Acr were performed at the B3LYP/6-31G(d) ${ }^{\text {S9-11 }}$ level of theory. The optimized structures and selected structural parameters of 4-Mes, and 4-Acr are shown in Figures S11 and S12. The HOMO and LUMO of optimized structures of 4-Mes, and 4-Acr are shown in Figures S13 and S14. The calculated excitation energies of 4-Acr at the B3LYP/6-311+G(2d,p) were summarized in Table S2.

Figure S11. Optimized structure of 4-Mes at the B3LYP/6-31G(d) level of theory. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 4-Mes: Ge1-C1 $=1.853$, Ge1-C5 $=1.853, \mathrm{Ge} 1-\mathrm{C} 6=1.943, \mathrm{C} 1-\mathrm{C} 2$ $=1.408, \mathrm{C} 1-\mathrm{Si} 1=1.889, \mathrm{C} 2-\mathrm{C} 3=1.399, \mathrm{C} 3-\mathrm{C} 4=1.399, \mathrm{C} 4-\mathrm{C} 5=1.408, \mathrm{C} 5-\mathrm{Si} 2=1.889, \mathrm{C} 1-$ $\mathrm{Ge} 1-\mathrm{C} 5=110.61, \mathrm{Ge} 1-\mathrm{C} 1-\mathrm{C} 2=113.28, \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=128.48, \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=125.82, \mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=$ $128.48, \mathrm{C} 4-\mathrm{C} 5-\mathrm{Ge} 1=113.28, \mathrm{C} 1-\mathrm{Ge} 1-\mathrm{C} 6=124.57, \mathrm{C} 5-\mathrm{Ge} 1-\mathrm{C} 6=125.57$.

Figure S12. Optimized structure of 4-Acr at the B3LYP/6-31G(d) level of theory. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 4-Acr: Ge1-C1 $=1.848, \mathrm{Ge} 1-\mathrm{C} 4=1.957, \mathrm{C} 1-\mathrm{C} 2=1.406, \mathrm{C} 1-\mathrm{Si} 1$ $=1.894, \mathrm{C} 2-\mathrm{C} 3=1.401, \mathrm{C} 1-\mathrm{Ge} 1-\mathrm{C} 1 *=111.84, \mathrm{Ge} 1-\mathrm{C} 1-\mathrm{C} 2=112.57, \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=128.31, \mathrm{C} 2-$ $\mathrm{C} 3-\mathrm{C} 2 *=126.37, \mathrm{C} 1-\mathrm{Ge} 1-\mathrm{C} 4=124.08$.

Figure S13. Selected MOs of 4-Mes calculated at the B3LYP/6-31G(d) level of theory.
A

B

C

D

F

Figure S14. Selected MOs of 4-Acr calculated at the B3LYP/6-31G(d) level.

Table S2. Calculated electronic transitions of 4-Acr by TD-DFT method (number of states: 8) at the B3LYP/6-311+G(2d,p) level (168th orbital and 169th orbitals are the HOMO and LUMO).

excited state	transition energy / eV	wavelength / nm	oscillator strength	orbital number
1	2.5063	494.69	0.0002	168 -> 169 (0.70612)
2	3.0992	400.05	0.0853	167 -> 169 (0.69988)
3	3.5852	345.82	0.0004	160 -> 169 (0.57316)
				161 -> 169 (-0.25907)
				163 -> 169 (0.26248)
				164 -> 169 (0.15130)
4	3.6539	339.32	0.0035	166 -> 169 (0.69510)
5	3.7823	327.80	0.0019	165 -> 169 (0.68991)
6	3.7884	327.27	0.0380	163 -> 169 (-0.20203)
				164 -> 169 (0.53613)
				167 -> 171 (0.34970)
				167 -> 172 (0.14192)
7	4.0093	309.25	0.0016	160 -> 169 (-0.30640)
				162 -> 169 (-0.16978)
				163 -> 169 (0.52957)
				164 -> 169 (0.26238)
				168 -> $171(-0.11074)$
8	4.0386	307.00	0.0712	163 -> 169 (0.11310)
				166 -> 170 (-0.16832)
				168 -> 171 (0.63838)
				166 -> 170 (-0.18252)
				105 -> 110 (-0.17989)
				106 -> 113 (0.33767)

5.

References

(S1) Nakamura, T.; Suzuki, K.; Yamashita, M. J. Am. Chem. Soc. 2014, 136, 9276-9279.
(S2) Hubner, A.; Bernert, T.; Sanger, I.; Alig, E.; Bolte, M.; Fink, L.; Wagner, M.; Lerner, H.-W. Dalton Trans. 2010, 39, 7528-7533.
(S3) Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem., Int. Ed. 2014, 53, 12836-12839.
(S4) CrysAlis ${ }^{\text {PRO }}$: Agilent Technologies Ltd, Yarnton, Oxfordshire, England (2014).
(S5) Kabuto, C.; Akine, S.; Kwon, E. J. Cryst. Soc. Jpn. 2009, 51, 218-224.
(S6) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Caro, L. D.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Cryst. 2005, 38, 381-388.
(S7) (a) G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
(S8) Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
(S9) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(S10) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206.
(S11) (a) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys.1988, 89, 2193. (b) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.

