Supporting Information

Palladium-catalyzed, enantioselective annulation of benzyltriflimides with allenes: Straight access to enantioenriched isoquinolines

Xandro Vidal, José L. Mascareñas,* Moisés Gulías*

e-mail: moises.gulias@usc.es; joseluis.mascarenas@usc.es

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

1. GENERAL EXPERIMENTAL PROCEDURES S3 2. EXPERIMENTAL DATA
2. EXPERIMENTAL DATA
— General procedure for the synthesis of trifyl benzylamines and trifyl allylamines S4
— General procedure for the synthesis of trifyl alkenylamines S6
— General procedure for the Pd-catalyzed annulation of benzylamines/allylamines allenes S9
- Procedure for the synthesis of azepine 3ea S12
- Procedure for the Pd-catalyzed desymmetrization of benzylamines with allenes S13
- Procedure for the kinetic resolution of benzylamines with allenes S27
- Pd-catalyzed annulation of a triflamide 1m (with two different aryl rings) with allene 2a S28

3. NMR SPECTRA

S29

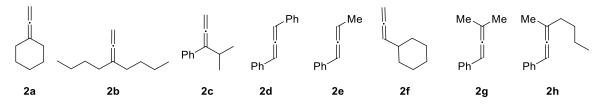
General experimental procedures

Reactions were conducted in dry solvents under argon atmosphere unless otherwise stated. Dry solvents were obtained from Aldrich and used without further purification. Toluene HPLC grade used for catalysis was obtained from Fisher Chemical. Pd(OAc)₂ (98%) [3375-31-3] was obtained from Strem. All other chemicals were purchased in Aldrich and used without further purification.

The abbreviation "rt" refers to reactions carried out at a temperature between 21-25 °C. Reaction mixtures were stirred using Teflon-coated magnetic stir bars. High reaction temperatures were maintained using Thermowatch-controlled heating blocks. Thin-layer chromatography (TLC) was performed on silica gel plates and components were visualized by observation under UV light, and/or by treating the plates with *p*-anisaldehyde, ninhydrin, phospomolybdic or potassium permanganate solutions, followed by heating. Flash chromatography was carried out on silica gel. Dryings were performed with anhydrous Na₂SO₄.

Concentration refers to the removal of volatile solvents via distillation using a Büchi rotary evaporator followed by high vacuum.

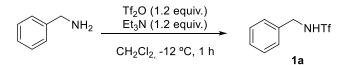
All palladium-catalyzed reactions were carried out without particular precautions to extrude moisture or oxygen.


¹H-NMR spectra were recorded at room temperature on a Varian 300 MHz or 500 MHz spectrometer in CDCl₃ [using CDCl₃ (for ¹H, δ = 7.26) as internal standard]. ¹⁹F-NMR (282 MHz) spectra were recorded at room temperature on a Varian 300 MHz spectrometer in CDCl₃. ¹³C NMR spectra were recorded at room temperature on a Varian spectrometer in CDCl₃ (for ¹³C, δ = 77.160) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Carbon types and structure assignments were determined from DEPT-NMR and two dimensional experiments (HSQC and HMBC, COSY and NOESY). NMR spectra were analyzed using MestReNova[®] NMR data processing software (www.mestrelab.com). Mass spectra were acquired using electrospray ionization (ESI, ion polarity positive) or atmospheric pressure chemical ionization (APCI) and were recorded at the CACTUS facility of the University of Santiago de Compostela on Bruker micrOTOF. Melting points were measured on a Büchi Melting Point B-560 apparatus.

Enantiomeric ratios (er) were determined on an Agilent HPLC 1100 Series or on a Jasco SFC 4000 series using commercially available chiral colums. All racemic products were prepared under the same procedure than the chiral products but with the employment of a racemic amino acid.

X-ray crystallographic analysis of **3ga** and **3ba** was performed at the CACTUS facility of the University of Santiago de Compostela.

Amounts of isolated products are indicated independently of the scale used.


Allene **2a** (vinylidenecyclohexane) and allene **2f** (propa-1,2-dien-1-ylcyclohexane) were purchased from Aldrich. Allene **2b** (5-vinylidenenonane), allene **2c** ((4-methylpenta-1,2-dien-3-yl)benzene), allene **2d** (1,3-diphenylpropa-1,2-diene), allene **2e** (buta-1,2-dien-1-ylbenzene), allene **2g** ((3-methylbuta-1,2-dien-1-yl)benzene) and allene **2h** ((3-methylbeta-1,2-dien-1-yl)benzene) were prepared according procedures reported in the literature¹.

General procedure for the synthesis of benzylamines:

Benzylamine, 1-phenylpropan-1-amine, diphenylmethanamine, bis(4-methoxyphenyl)methanamine, bis(3-methoxyphenyl)methanamine and 2-(cyclohex-1-en-1-yl)ethan-1-amine were commercially available. All noncommercial benzylamines were synthesized with a method previously reported in literature.² All spectral data recorded for known compounds were in agreement with those in the corresponding literature³.

General procedure for the synthesis of the trifyl benzylamines (1a-1b, 1f-1m) and triflyl allylamines (1e and 1l), from the precursor amines, exemplified for 1a

To a solution of benzylamine (2 mL, 18.31 mmol) in dichloromethane (36.6 mL) under argon atmosphere was added triethylamine (2.55 mL, 18.31 mmol) at -12°C. After the solution was stirred 5 minutes at that temperature, trifluoromethanesulfonic anhydride (3.23 mL, 19.22 mmol) was added dropwise. The reaction was stirred for 1 h at that temperature before being guenched with water. The organic layer was separated and the aqueous layer extracted with dichloromethane. The combined organic phase was washed with brine and then dried over Na₂SO₄. Evaporation and (hexanes:diethylether; column chromatography on silica gel 80:20) afforded N-benzyl-1,1,1trifluoromethanesulfonamide (1a) as a white solid (3.97g, 91%). Mp: 43-44 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.18 (m, 5H), 5.10 (brs, 1H), 4.33 (d, J = 5.8 Hz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.64. ¹³C NMR (75 MHz, CDCl₃) δ 135.3 (C), 129.2 (CH), 128.8 (CH), 128.0 (CH), 119.8 (q, J = 320.9 Hz, C), 48.3 (CH₂). HRMS [APCI]: m/z calculated for C₈H₇F₃NO₂S [M+H]⁺: 238.0144, found 238.0145.

1,1,1-trifluoro-*N*-(1-phenylpropyl)methanesulfonamide (1b)

¹ Allene **2b**: Kippo, T.; Fukuyama, T.; Ryu, I. *Org. Lett.* **2011**, *13*, 3864–3867. Allene **2c** and **2d**: Zhao, Z.; Racicot, L.; Murphy, G. K. *Angew. Chemie - Int. Ed.* **2017**, *56*, 11620–11623. Allene **2e**: Zhao, Z.; Racicot, L.; Murphy, G. K. *Angew. Chemie - Int. Ed.* **2017**, *56*, 11620–11623. Allene **2g** and **2h**: Ting, C.-H.; Hsu, Y.-L.; Liu, R.-S., *Chem. Commun.* **2012**, *48*, 6577-6579.

² Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429–5432.

³ For di-o-tolylmethanamine and di-p-tolylmethanamine: Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. **2008**, *10*, 5429–5432. For bis(4-chlorophenyl)methanamine: Huang, H.; Chen, W.; Xu, Y.; Li, J. Green Chem. **2015**, *17*, 4715-4719.

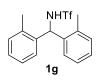
(836 mg, 84% yield), obtained as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.19 (m, 3H), 7.19 – 7.12 (m, 2H), 5.50 (d, J = 8.8 Hz, 1H), 4.40 (q, J = 7.7 Hz, 1H), 1.91 – 1.70 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -78.03. ¹³C NMR (75 MHz, CDCl₃) δ 140.2 (C), 129.1 (CH), 128.4 (CH), 126.3 (CH), 120.0 (d, J = 320.9 Hz, C), 61.6 (CH), 31.0 (CH₂), 10.6 (CH₃). HRMS [ESI]: m/z calculated for C₁₀H₁₂F₃NNaO₂S [M+Na]⁺: 290.0433, found 290.0433. Data in agreement with those reported in literature.⁴

N-(2-(cyclohex-1-en-1-yl)ethyl)-1,1,1-trifluoromethanesulfonamide (1e)

1e

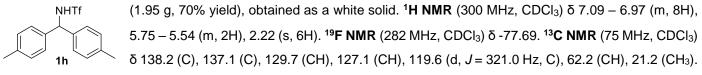
NHTf (433 mg, 84% yield), obtained as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 5.46 (brs, 1H), 5.03 (brs, 1H), 3.28 (q, J = 6.3 Hz, 2H), 2.14 (t, J = 13.5 Hz, 2H), 2.06 – 1.97 (m, 2H), 1.93 – 1.83 (m, 2H), 1.70 - 1.49 (m, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ -78.00. ¹³C NMR (75 MHz, CDCl₃) δ 132.8 (C), 125.7 (CH), 119.8 (q, J = 321.2 Hz, C), 42.1 (CH₂), 38.2 (CH₂), 27.7 (CH₂), 25.2 (CH₂), 22.7 (CH₂), 22.2 (CH₂). HRMS [ESI]:

m/*z* calculated for C₉H₁₅F₃NO₂S [M+H]⁺: 258.0770, found 258.0769.

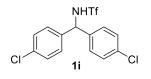

N-benzhydryl-1,1,1-trifluoromethanesulfonamide (1f)

(1.62 g, 63% yield), obtained as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.11 (m, 10H), 5.77 (d, J = 8.9 Hz, 1H), 5.68 (d, J = 9.0 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.31. ¹³C NMR (75 MHz, CDCl₃) δ 139.7 (C), 129.1 (CH), 128.4 (CH), 127.3 (CH), 119.5 (q, J = 321.1 Hz, CF₃) 62.5 (CH). HRMS

[ESI]: m/z calculated for C₁₄H₁₂F₃NNaO₂S [M+Na]⁺: 338.0443, found 338.0440. Data in agreement with those reported in literature.5


N-(di-o-tolylmethyl)-1,1,1-trifluoromethanesulfonamide (1g)

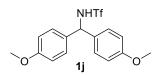
(2.60 g, 80% yield), obtained as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.17 – 7.02 (m, 8H), 6.09 (d, J = 8.2 Hz, 1H), 5.27 (d, J = 8.2 Hz, 1H), 2.21 (s, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.42. ¹³C NMR (75 MHz, CDCl₃) δ 137.2 (C), 136.0 (C), 131.2 (CH), 128.5 (CH), 127.0 (CH), 126.5 (CH, 119.4 (q, J = 321.2 Hz, C), 56.7 (CH), 19.1 (CH₃). HRMS [ESI]: m/z calculated for C₁₆H₁₆F₃NNaO₂S [M+Na]⁺:


366.0746, found 336.0749. Data in agreement with those reported in literature.⁵

N-(di-*p*-tolylmethyl)-1,1,1-trifluoromethanesulfonamide (1h)

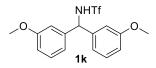
HRMS [ESI]: m/z calculated for C₁₆H₁₆F₃NNaO₂S [M+Na]⁺: 366.0746, found 336.0743. Data in agreement with those reported in literature.5

N-(bis(4-chlorophenyl)methyl)-1,1,1-trifluoromethanesulfonamide (1i)


(2.92 g, 74% yield), obtained as a white solid. Mp: 105-107 °C. ¹H NMR (300 MHz, CDCI₃) δ 7.31 – 7.24 (m, 4H), 7.12 – 7.04 (m, 4H), 5.73 (d, J = 8.8 Hz, 1H), 5.64 (d, J = 8.9 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.64. ¹³C NMR (75 MHz, CDCl₃) δ 137.7 (C), 134.8 (C), 129.5 (CH), 128.6 (CH), 119.5 (q, J = 321.0 Hz, C), 61.4 (CH). HRMS [ESI]: m/z calculated for

C₁₄H₁₀Cl₂F₃NNaO₂S [M+Na]⁺: 405.9654, found 405.9656.

⁴ Miyamoto, K.; Hoque, M. M.; Ogasa, S. J. Org. Chem. 2012, 77, 8317-8320.

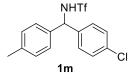

⁵ Chu, L.; Wang, X. C.; Moore, C. E.; Rheingold, A. L.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 16344–16347.

N-(bis(4-methoxyphenyl)methyl)-1,1,1-trifluoromethanesulfonamide (1j)

(302 mg, 24% yield), obtained as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.09 – 7.02 (m, 4H), 6.81 – 6.73 (m, 4H), 5.69 (s, 2H), 3.70 (s, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.90. ¹³C NMR (75 MHz, CDCl₃) δ 159.5 (C), 132.2 (C), 128.5 (CH), 119.6 (d, J = 321.1 Hz, C), 114.4 (C), 61.67 (C), 55.5 (CH₃). HRMS [ESI]: *m*/*z* calculated for C₁₆H₁₆F₃NNaO₄S [M+Na]⁺: 398.0644, found 398.0641. Data in agreement with those reported in literature.⁵

N-(bis(3-methoxyphenyl)methyl)-1,1,1-trifluoromethanesulfonamide (1k)

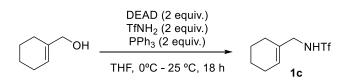
(325 mg, 84% yield), obtained as a white solid. Mp: 86-87 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.20 - 7.11 (m, 3H), 6.78 - 6.65 (m, 5H), 6.00 (d, J = 9.0 Hz, 1H), 5.68 (d, J = 8.8 Hz, 1H), 3.63 (s, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.82. ¹³C NMR (75 MHz, CDCl₃) δ 160.0 (C),


141.2 (C), 130.1 (CH), 119.6 (d, J = 321.1 Hz), 119.6 (CH), 113.6 (CH), 113.2 (CH), 62.3 (CH), 55.4 (CH₃). HRMS [ESI]: *m*/*z* calculated for C₁₆H₁₇F₃NO₄S [M+H]⁺: 376.0825, found 376.0825.

N-allyl-1,1,1-trifluoromethanesulfonamide (11)

 $^{\text{NHTf}}$ (1.35 g, 82% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 5.86 (ddt, *J* = 17.1, 10.2, 5.8 Hz, 1H), 5.38 – 5.25 (m, 2H), 5.04 (brs, 1H), 3.97 – 3.86 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -78.02 11 (d, J = 16.6 Hz). ¹³C NMR (75 MHz, CDCl₃) δ 132.16 (CH), 119.72 (q, J = 320.8 Hz, C), 118.87 (CH₂),

46.71 (CH₂).


N-((4-chlorophenyl)(p-tolyl)methyl)-1,1,1-trifluoromethanesulfonamide (1m)

(0.57 g, 72% yield), obtained as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.03 (m, 8H), 5.82 (d, J = 7.2 Hz, 1H), 5.36 (d, J = 8.3 Hz, 1H), 2.36 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ 77.67. ¹³C NMR (75 MHz, CDCl₃) δ 138.7 (C), 138.5 (C), 136.3 (C), 134.3 (C), 129.9 (CH), 129.2 (CH), 128.6 (CH), 127.1 (CH), 119.5 (d, J = 321.1 Hz, C), 61.8 (CH), 21.2 (CH₃).

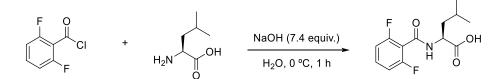
General procedure for the synthesis of the triflyl alken-amines 1c-1d from the corresponding alcohols, exemplified for 1c.

2-methylprop-2-en-1-ol was commercially available. Cyclohex-1-en-1-ylmethanol was synthesized with a method previously reported in literature.⁶ All spectral data recorded agreed with those in the corresponding literature⁷.

To a solution of cyclohex-1-en-1-ylmethanol (801.4 mg, 7.145 mmol), trifluoromethane sulfonamide (2.13 g, 2 equiv.), and triphenylphosphine (3.75 g, 2 equiv.) in THF (25 mL) at 0 °C was added DEAD (5.6 mL, 40% in toluene, 2 equiv.). The reaction mixture was stirred at room temperature overnight, and was quenched with water, then diluted with ethyl acetate. The combined organic phases were washed with brine and then dried over Na₂SO₄. Evaporation and column

⁵ Chu, L.; Wang, X. C.; Moore, C. E.; Rheingold, A. L.; Yu, J. Q. *J. Am. Chem. Soc.* **2013**, *135*, 16344–16347.

⁶ Karaki, F.; Ohgane, K.; Fukuda, H.; Nakamura, M.; Dodo, K.; Hashimoto, Y. *Bioorganic Med. Chem.* **2014**, *22*, 3587–3609.


⁷ Hanessian, S.; Szychowski, J.; Pablo Maianti, J. Org. Lett. 2009, 11, 429–432.

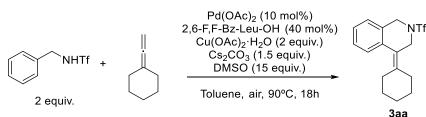
chromatography on silica gel (hexanes:diethylether; 90:10) afforded *N*-(cyclohex-1-en-1-ylmethyl)-1,1,1-trifluoromethanesulfonamide 1c as a yellow oil (0.80 g, 46%). ¹H NMR (300 MHz, CDCl₃) δ 5.65 (brs, 1H), 4.98 (brs, 1H), 3.67 (d, *J* = 5.9 Hz, 2H), 2.01 – 1.86 (m, 4H), 1.66 – 1.44 (m, 4H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.84. ¹³C NMR (75 MHz, CDCl₃) δ 132.2 (C), 126.9 (CH), 119.8 (q, *J* = 321.2 Hz, C), 50.8 (CH₂), 26.0 (CH₂), 25.1 (CH₂), 22.4 (CH₂), 22.1 (CH₂). HRMS [ESI]: *m/z* calculated for C₈H₁₂F₃NNaO₂S [M+Na]⁺: 266.0433, found 266.0432.

1,1,1-trifluoro-N-(2-methylallyl)methanesulfonamide (1d)

^{NHTf} (0.94 g, 33% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 5.01 (brs, 1H), 4.94 – 4.90 (m, 2H), 3.74 (d, J = 6.1 Hz, 2H), 1.72 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.83. ¹³C NMR (75 MHz, CDCl₃) δ 139.6 (C), 119.8 (d, J = 321.2 Hz, C), 113.9 (CH₂), 50.1 (CH₂), 19.8 (CH₃). HRMS [ESI]: *m/z* calculated C₅H₉F₃NO₂S [M+H]⁺: 204.0301, found 204.0300.

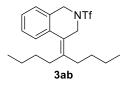
Procedure for the synthesis of N-(2,6-difluorobenzoyl)-L-leucine⁸

To a 25 mL round bottom flask with stir bar was added L-leucine (1.11 g, 8.496 mmol), sodium hydroxide (2.52 g, 7.4 equiv), and water (15.5 mL). The mixture was stirred at room temperature until homogeneous before cooling to 0 °C in an ice bath. Upon cooling, 2,6- difluorobenzoyl chloride (1.07 mL, 8.496 mmol) was added dropwise to the mixture. After 1 hour, the reaction mixture was allowed to warm to room temperature and pH adjusted to ~3.0 with hydrochloric acid (36% w/w). The precipitate was filtered and washed with cold water and then dried with a high-vacuum pump to give *N*-(2,6-difluorobenzoyl)-L-leucine as a white solid (2.10 g, 91 % yield). Spectral data recorded were in agreement with those in the corresponding literature.⁸ ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.63 (brs, 1H), 8.97 (d, *J* = 8.1 Hz, 1H), 7.74 – 7.38 (m, 1H), 7.38 – 7.02 (m, 2H), 4.52 – 4.27 (m, 1H), 1.92 – 1.41 (m, 3H), 0.89 (t, *J* = 6.0 Hz, 6H).


⁸ Plata, R. E.; Hill, D. E.; Haines, B. E.; Musaev, D. G.; Chu, L.; Hickey, D. P.; Sigman, M. S.; Yu, J. Q.; Blackmond, D. G. *J. Am. Chem. Soc.* **2017**, *139*, 9238–9245.

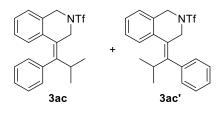
Optimization of the conditions for the annulation of 1a and 2a ^a

Entry R Solvent Base Temp Ligand L ^b Yield ^c 1 Tf t-AmyOH Cs ₂ CO ₃ (1.5 equiv) 80 °C - 15% 2 Tf Dioxane Cs ₂ CO ₃ (1.5 equiv) 80 °C - 23% 3 Tf DCE Cs ₂ CO ₃ (1.5 equiv) 80 °C - 9% 4 Tf CH ₃ CN Cs ₂ CO ₃ (1.5 equiv) 80 °C - 9% 5 Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90°C - 25% 6 ^d Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90°C - 28% 7 Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90°C - 35% 9 Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90 °C Boc-Ala-OH 68% 10 Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90°C Boc-Heu-NHOMe 37% 12 Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90°C 2,6-F,F-Bz-Leu-OH <th></th> <th>1a</th> <th>Cu(OA</th> <th>$2a$ $OAc)_2 10 mol\%$ $c)_2 H_2O 2 equiv$ air ent, <i>T</i>, ligand 3aa</th> <th>NR</th> <th>о ,, СО₂Н 2,6-F,F-Bz-Leu-OH (L)</th> <th></th>		1a	Cu(OA	$2a$ $OAc)_2 10 mol\%$ $c)_2 H_2O 2 equiv$ air ent, <i>T</i> , ligand 3aa	NR	о ,, СО ₂ Н 2,6-F,F-Bz-Leu-OH (L)	
2TfDioxane Cs_2CO_3 (1.5 equiv) $80 \ ^{\circ}C$ - 23% 3TfDCE Cs_2CO_3 (1.5 equiv) $80 \ ^{\circ}C$ - 24% 4TfCH_3CN Cs_2CO_3 (1.5 equiv) $80 \ ^{\circ}C$ - 9% 5TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ - 25% 6^d TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ - 28% 6^dTfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ - 28% 7TfToluene Et_3N (2 equiv.) $90^{\circ}C$ - 28% 8TfToluene Et_3N (2 equiv.) $90^{\circ}C$ Boc-Ala-OH 58% 9TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ Boc-Val-OH 69% 10TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ Boc-Leu-NHOMe 37% 11TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ Boc-Phe-NHOMe 31% 12TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ 2.6 -F,F-Bz-Leu-OH $86\%^{e,f}$ 13TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ 2.6 -F,F-Bz-Leu-OH $86\%^{e,f}$ 16^d AcToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ 2.6 -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ 2.6 -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$	Entry	R	Solvent	Base	Temp	Ligand L ^b	Yield ^c
3TfDCE Cs_2CO_3 (1.5 equiv)80 °C24%4TfCH_3CN Cs_2CO_3 (1.5 equiv)80 °C-9%5TfToluene Cs_2CO_3 (1.5 equiv)90°C-25%6dTfToluene Cs_2CO_3 (1.5 equiv)90°C-34%7TfToluene Cs_2CO_3 (1.5 equiv)90°C-28%8TfTolueneEt ₃ N (2 equiv.)90 °C-35%9TfTolueneCs_2CO_3 (1.5 equiv)90 °CBoc-Ala-OH58%10TfTolueneCs_2CO_3 (1.5 equiv)90 °CBoc-Leu-NHOMe37%11TfTolueneCs_2CO_3 (1.5 equiv)90°CBoc-Leu-NHOMe31%13TfTolueneCs_2CO_3 (1.5 equiv)90°C2,6-F,F-Bz-Leu-OH85%14d'TfTolueneCs_2CO_3 (1.5 equiv)90°C2,6-F,F-Bz-Leu-OH86%°f15d'TfTolueneCs_2CO_3 (1.5 equiv)90°C2,6-F,F-Bz-Leu-OH86%°f16d'AcTolueneCs_2CO_3 (1.5 equiv)90°C2,6-F,F-Bz-Leu-OHNo reaction17d'MeTolueneCs_2CO_3 (1.5 equiv)90°C2,6-F,F-Bz-Leu-OHNo reaction18d'TfTolueneCs_2CO_3 (1.5 equiv)90°C2,6-F,F-Bz-Leu-OHNo reaction18d'TfTolueneCs_2CO_3 (1.5 equiv)90°C2,6-F,F-Bz-Leu-OHNo reaction18d'TfTolueneCs_2CO_3 (1.5 equiv)9	1	Tf	t-AmyOH	Cs ₂ CO ₃ (1.5 equiv)	80 °C	-	15%
4Tf CH_3CN Cs_2CO_3 (1.5 equiv) $80 ^{\circ}C$ - 9% 5TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ - 25% 6^d TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ - 34% 7TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ - 28% 8TfTolueneEt ₃ N (2 equiv.) $90^{\circ}C$ - 28% 9TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ Boc-Ala-OH 58% 10TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ Boc-Ala-OH 69% 11TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ Boc-Ala-OH 37% 12TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OH 85% 13TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OH $85\%^{\circ f}$ 15^d TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OH $86\%^{\circ f}$ 15^d TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OH No reaction 16^d AcToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d Tf	2	Tf	Dioxane	Cs ₂ CO ₃ (1.5 equiv)	80 ⁰C	-	23%
5 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ 25% 6 ^d Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ 34% 7 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ 28% 8 Tf Toluene Et_3N (2 equiv.) $90^\circ C$ Cs_2N 35% 9 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ Boc-Ala-OH 58% 9 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ Boc-Ala-OH 69% 10 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ Boc-Ala-OH 69% 11 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ Boc-Leu-NHOMe 37% 12 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ $2(e-F,F-Bz-Leu-OH)$ 85% 13 Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ $2(e-F,F-Bz-Leu-OH)$ $86\%^{e^f}$ 15^d Tf Toluene Cs_2CO_3 (1.5 equiv) $90^\circ C$ $2(e-F,F-Bz-Leu-OH)$ No reaction 1	3	Tf	DCE	Cs ₂ CO ₃ (1.5 equiv)	80 °C		24%
6^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C- 34% 7TfToluene- 90° C- 28% 8TfTolueneEt ₃ N (2 equiv.) 90° C- 35% 9TfToluene Cs_2CO_3 (1.5 equiv) 90° CBoc-Ala-OH 58% 10TfToluene Cs_2CO_3 (1.5 equiv) 90° CBoc-Val-OH 69% 11TfToluene Cs_2CO_3 (1.5 equiv) 90° CBoc-Leu-NHOMe 37% 12TfToluene Cs_2CO_3 (1.5 equiv) 90° CBoc-Phe-NHOMe 31% 13TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH 85% 14^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $86\%^{e,f}$ 15^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 16^d AcToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction	4	Tf	CH₃CN	Cs ₂ CO ₃ (1.5 equiv)	80 °C	-	9%
7TfToluene- $90 {}^{\circ}$ C- 28% 8TfTolueneEt ₃ N (2 equiv.) $90 {}^{\circ}$ C- 35% 9TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ CBoc-Ala-OH 58% 10TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ CBoc-Val-OH 69% 11TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ CBoc-Leu-NHOMe 37% 12TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ CBoc-Phe-NHOMe 31% 13TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OH 85% 14 ^d TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OH $86\%^{e,f}$ 15 ^d TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OHNo reaction16 ^d AcTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OHNo reaction17 ^d MeTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OHNo reaction18 ^d TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OHNo reaction18 ^d TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OHNo reaction18 ^d TfTolueneCs ₂ CO ₃ (1.5 equiv) $90 {}^{\circ}$ C2,6-F,F-Bz-Leu-OHNo reaction	5	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	-	25%
8TfTolueneEt ₃ N (2 equiv.)90 °C- 35% 9TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Ala-OH 58% 10TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Val-OH 69% 11TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Leu-NHOMe 37% 12TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Phe-NHOMe 31% 13TfToluene Cs_2CO_3 (1.5 equiv)90 °C $2,6$ -F,F-Bz-Leu-OH 85% 14dTfToluene Cs_2CO_3 (1.5 equiv)90 °C $2,6$ -F,F-Bz-Leu-OH $86\%^{e,f}$ 15dTfToluene Cs_2CO_3 (1.5 equiv)90 °C $2,6$ -F,F-Bz-Leu-OH No reaction16dAcToluene Cs_2CO_3 (1.5 equiv)90 °C $2,6$ -F,F-Bz-Leu-OHNo reaction17dMeToluene Cs_2CO_3 (1.5 equiv)90 °C $2,6$ -F,F-Bz-Leu-OHNo reaction17dMeToluene Cs_2CO_3 (1.5 equiv)90 °C $2,6$ -F,F-Bz-Leu-OHNo reaction18dTfToluene Cs_2CO_3 (1.5 equiv)90 °C $2,6$ -F,F-Bz-Leu-OHNo reaction	6 ^{<i>d</i>}	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	-	34%
9TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Ala-OH58%10TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Val-OH69%11TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Leu-NHOMe37%12TfToluene Cs_2CO_3 (1.5 equiv)90 °CBoc-Phe-NHOMe31%13TfToluene Cs_2CO_3 (1.5 equiv)90 °C2,6-F,F-Bz-Leu-OH85%14dTfToluene Cs_2CO_3 (1.5 equiv)90 °C2,6-F,F-Bz-Leu-OH85%15dTfToluene Cs_2CO_3 (1.5 equiv)90 °C2,6-F,F-Bz-Leu-OH86% °.f16dAcToluene Cs_2CO_3 (1.5 equiv)90 °C2,6-F,F-Bz-Leu-OHNo reaction17dMeToluene Cs_2CO_3 (1.5 equiv)90 °C2,6-F,F-Bz-Leu-OHNo reaction18dTfToluene Cs_2CO_3 (1.5 equiv)90 °C2,6-F,F-Bz-Leu-OHNo reaction	7	Tf	Toluene	-	90 °C	-	28%
10TfToluene $Cs_2CO_3 (1.5 equiv)$ 90 °CBoc-Val-OH69%11TfToluene $Cs_2CO_3 (1.5 equiv)$ 90°CBoc-Leu-NHOMe37%12TfToluene $Cs_2CO_3 (1.5 equiv)$ 90°CBoc-Phe-NHOMe31%13TfToluene $Cs_2CO_3 (1.5 equiv)$ 90°C2,6-F,F-Bz-Leu-OH85%14dTfToluene $Cs_2CO_3 (1.5 equiv)$ 90°C2,6-F,F-Bz-Leu-OH95%e15dTfToluene $Cs_2CO_3 (1.5 equiv)$ 90°C2,6-F,F-Bz-Leu-OH86%e,f16dAcToluene $Cs_2CO_3 (1.5 equiv)$ 90°C2,6-F,F-Bz-Leu-OHNo reaction17dMeToluene $Cs_2CO_3 (1.5 equiv)$ 90°C2,6-F,F-Bz-Leu-OHNo reaction18dTfToluene $Cs_2CO_3 (1.5 equiv)$ 90°C2,6-F,F-Bz-Leu-OHNo reaction	8	Tf	Toluene	Et₃N (2 equiv.)	90 °C	-	35%
11TfToluene Cs_2CO_3 (1.5 equiv) 90° CBoc-Leu-NHOMe 37% 12TfToluene Cs_2CO_3 (1.5 equiv) 90° CBoc-Phe-NHOMe 31% 13TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH 85% 14 ^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $95\%^e$ 15^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $86\%^{e,f}$ 16^d AcToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction	9	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90 °C	Boc-Ala-OH	58%
12TfToluene Cs_2CO_3 (1.5 equiv) 90° CBoc-Phe-NHOMe 31% 13TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH 85% 14 ^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $95\%^e$ 15^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $86\%^{e,f}$ 16^d AcToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction	10	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90 °C	Boc-Val-OH	69%
13TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OH 85% 14 ^d TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OH $95\%^{e}$ 15^{d} TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OH $86\%^{e,f}$ 16^{d} AcToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 17^{d} MeToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 18^{d} TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 18^{d} TfToluene Cs_2CO_3 (1.5 equiv) $90^{\circ}C$ $2,6$ -F,F-Bz-Leu-OHNo reaction	11	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	Boc-Leu-NHOMe	37%
14^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $95\%^e$ 15^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $86\%^{e,f}$ 16^d AcToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction	12	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	Boc-Phe-NHOMe	31%
15^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OH $86\%^{e,f}$ 16^d AcToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) 90° C $2,6$ -F,F-Bz-Leu-OHNo reaction	13	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	2,6-F,F-Bz-Leu-OH	85%
16^d AcToluene Cs_2CO_3 (1.5 equiv) $90 ^\circ C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 17^d MeToluene Cs_2CO_3 (1.5 equiv) $90 ^\circ C$ $2,6$ -F,F-Bz-Leu-OHNo reaction 18^d TfToluene Cs_2CO_3 (1.5 equiv) $90 ^\circ C$ $2,6$ -F,F-Bz-Leu-OH $95\%^g$	14 ^d	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90ºC	2,6-F,F-Bz-Leu-OH	95% ^e
17^d MeTolueneCs ₂ CO ₃ (1.5 equiv)90 °C2,6-F,F-Bz-Leu-OHNo reaction 18^d TfTolueneCs ₂ CO ₃ (1.5 equiv)90°C2,6-F,F-Bz-Leu-OH95% ^g	15 ^d	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	2,6-F,F-Bz-Leu-OH	86% ^{<i>e</i>,<i>f</i>}
18 ^{<i>d</i>} Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90°C 2,6-F,F-Bz-Leu-OH 95% ^{<i>g</i>}	16 ^{<i>d</i>}	Ac	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90 °C	2,6-F,F-Bz-Leu-OH	No reaction
	17 ^d	Me	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90 °C	2,6-F,F-Bz-Leu-OH	No reaction
19 Tf Toluene Cs ₂ CO ₃ (1.5 equiv) 90°C 2,6-F,F-Bz-Leu-OH 31% ^g	18 ^d	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	2,6-F,F-Bz-Leu-OH	95% ^g
	19	Tf	Toluene	Cs ₂ CO ₃ (1.5 equiv)	90°C	2,6-F,F-Bz-Leu-OH	31% ^g

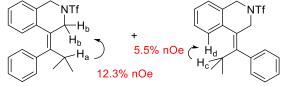

^a Conditions: 0.333 mmol **1a**, 0.167 mmol of allene **2a**, 2 mL of solvent, under air, 16h. ^b40% of ligand. ^c Yields calculated by using an internal standard. ^d15 equiv of DMSO added ^e Isolated yield based on **2a**. ^f 0.5 equiv. of Cu(OAc)₂·H₂O. ^g Reaction performed during 40 minutes.

General procedure for the Pd-catalyzed annulation of benzylamines, alkenyl and allylamines with allenes, exemplified for 3aa:

To a solution of Pd(OAc)₂ (3.7 mg, 10 mol%), 2,6-F,F-Bz-Leu-OH (18.1 mg, 40 mol%), Cu(OAc)₂•H₂O (66.7 mg, 2 equiv.), Cs₂CO₃ (81.6 mg, 1.5 equiv.) and **1a** (79.9 mg, 0.333 mmol, 2 equiv.) in toluene (2 mL), under air atmosphere, in a Schlenk tube was added the allene **2a** (18.0 mg, 0.167 mmol).The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 90 °C, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded **4-cyclohexylidene-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline** (**3aa**) as a white solid (54.8 mg, 95% yield) Mp: 66-67 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.28 – 7.04 (m, 4H), 4.44 (s, 2H), 4.22 (s, 2H), 2.45 – 2.34 (m, 2H), 2.32 – 2.24 (m, 2H), 1.66 – 1.49 (m, 6H).¹⁹F NMR (282 MHz, CDCl₃) δ -75.78. ¹³C NMR (75 MHz, CDCl₃) δ 141.7 (C), 135.9 (C), 133.3 (C), 129.0 (CH), 127.3 (CH), 126.1 (CH), 120.4 (C), 120.3 (d, *J* = 324.0 Hz, C), 48.2 (CH₂), 46.8 (CH₂), 32.1 (CH₂), 31.3 (CH₂), 28.6 (CH₂), 28.3 (CH₂), 26.7 (CH₂). **HRMS** [ESI]: *m/z* calculated for C₁₆H₁₉F₃NO₂S [M+H]⁺: 346.1083, found 346.1085.


4-(nonan-5-ylidene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ab)

(55.3 mg, 85% yield), obtained as a transparent oil. ¹**H NMR** (300 MHz, CDCl₃) δ 7.26 – 7.07 (m, 4H), 4.38 (s, 2H), 4.18 (s, 2H), 2.35 – 2.06 (m, 4H), 1.53 – 1.09 (m, 8H), 0.94 – 0.85 (m, 3H), 0.85 – 0.76 (m, 3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -75.22. ¹³**C NMR** (75 MHz, Chloroform*d*) δ 143.1 (C), 136.1 (C), 133.4 (C), 128.3 (CH), 127.5 (CH), 127.3 (CH), 126.1 (CH), 123.6 (C),


120.4 (d, J = 324.2 Hz, C), 48.2 (CH₂), 47.2 (CH₂), 33.1 (CH₂), 31.8 (CH₂), 31.6 (CH₂), 31.2 (CH₂), 23.1 (CH₂), 22.8 (CH₂), 14.1 (CH₃), 14.0 (CH₃). **HRMS** [ESI]: m/z calculated C₁₉H₂₇F₃NO₂S [M+H]⁺: 390.1709, found 390.1711.

4-(2-methyl-1-phenylpropylidene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ac and 3ac')

(3.3:1 E/Z ratio of **3ac** and **3ac**', inseparable mixture (56.8 mg, 86% yield, white solid. Mp: 79-81 °C)). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.6 Hz, 0.23H), 7.36 - 7.22 (m, 1.15H), 7.21 - 7.13 (m, 2.54H), 7.03 - 6.98 (m, 0.45H), 6.99 - 6.89 (m, 3.08H), 6.74 - 6.66 (m, 0.77H), 6.54 (d, *J* = 8.1 Hz, 0.77H), 4.55 (s, 1.54H), 4.42 (s, 2.00H), 3.75 (s, 0.46H), 3.35 (hept, *J* = 6.8 Hz, 0.23H), 3.16 (hept,

J = 6.9 Hz, 0.77H), 0.97 (d, *J* = 6.9 Hz, 4.62H), 0.92 (d, *J* = 6.8 Hz, 1.38H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -75.50, -75.72. ¹³**C NMR** (75 MHz, CDCl₃) δ 149.0 (C), 147.4 (C), 139.3 (C), 137.1 (C), 135.3 (C), 135.2 (C), 134.0 (C), 132.4 (C), 130.0 (CH), 129.9 (CH), 129.5 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 127.5 (CH), 127.1 (CH), 126.9 (CH), 126.6 (CH), 126.5 (CH), 125.5 (CH), 124.66 (C), 124.46 (C), 120.29 (d, *J* = 324.1 Hz, C), 48.80 (CH₂), 48.49

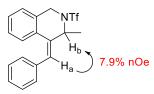
ppm, 12.3%) and between the H_c (3.35 ppm, 100%) with H_d (7.44 ppm, 5.5%).

(E)-4-benzylidene-3-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ad)

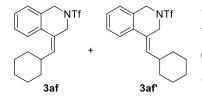
(57.9 mg, 80% yield), obtained as a white solid. Mp: 100-102 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.28 – 6.98 (m, 12H), 6.87 (d, J = 7.9 Hz, 2H), 6.75 (s, 1H), 5.74 (s, 1H), 4.85 (d, J = 17.3 Hz, 1H), 4.30 (d, J = 17.3 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.65. ¹³C NMR (75

3ad MHz, CDCl₃) δ 136.4 (C), 136.1 (C), 131.2 (C), 130.9 (CH), 130.7 (C), 130.5 (C), 129.8 (CH), 129.0 (CH), 128.9 (CH), 128.8 (CH), 128.4 (CH), 128.2 (CH), 127.9 (CH), 127.2 (CH), 126.7 (CH), 125.8 (CH), 120.2 (d, J = 323.5 Hz, C), 64.9 (CH), 45.8 (CH₂). **HRMS** [ESI]: m/z calculated for C₂₃H₁₈F₃NNaO₂S [M+Na]⁺: 452.0903, found 452.0901.

 H_{a}


Assignment of stereochemistry based on the observed nOe between the H_a (6.75 ppm, 100%) with H_b (5.74 ppm, 11.3%).

(E) - 4 - benzylidene - 3 - methyl - 2 - ((trifluoromethyl) sulfonyl) - 1, 2, 3, 4 - tetrahydro is oquinoline - 2, 4 - 1, 5 - 1,

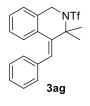


(46.2 mg, 74% yield), obtained as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 6.85 (m, 9H), 6.58 (s, 1H), 4.98 – 4.42 (m, 3H), 1.27 (d, J = 6.8 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.16. ¹³C NMR (75 MHz, CDCl₃) δ 136.4 (C), 133.7 (C), 131.0 (C), 130.2 (C), 130.0 (CH), 129.0 (CH), 128.6 (CH), 128.4 (CH), 127.7 (CH), 127.5 (CH), 126.8 (CH), 125.9 (CH), 120.2 (d, J = 6.6

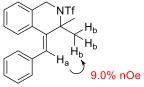
323.6 Hz, C), 58.8 (CH), 45.3 (CH₂), 19.7 (CH₃, brs identified by HSQC experiment). **HRMS** [ESI]: m/z calculated for C₁₈H₁₆F₃NNaO₂S [M+Na]⁺: 390.0746, found 390.0745. Assignment of stereochemistry based on the observed nOe between the H_a (6.58 ppm, 100%) with H_b (4.94 – 4.88 ppm, 7.9%).

4-(cyclohexylmethylene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3af and 3af')

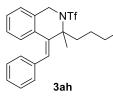
(1.1:1 E/Z r.r. of **3af** and **3af**', inseparable mixture (50.8 mg, 85% yield, transparent oil)) ¹H NMR (300 %MHz, CDCl₃) δ 7.58 – 7.47 (m, 0.47H), 7.36 – 7.06 (m, 3.06H), 7.05 – 6.95 (m, 0.47H), 5.95 (d, *J* = 9.6 Hz, 0.47H), 5.46 (d, *J* = 10.3 Hz, 0.53H), 4.65 – 4.50 (m, 2H), 4.33 (s, 0.94H), 4.05 (s, 1.06H), 2.60 – 2.44 (m, 0.47H), 2.35 – 2.16 (m, 0.53H), 1.74 – 1.55 (m, 5H), 1.32 – 0.99 (m, 5H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.81, -76.20.


¹³**C NMR** (75 MHz, CDCl₃) δ 138.1 (CH), 133.6 (C), 133.4 (CH), 133.1 (C), 132.2 (C), 130.3 (C), 128.0 (CH), 127.93 (CH), 127.87 (CH), 127.6 (CH), 126.12 (CH), 126.05 (CH), 125.8 (C), 125.4 (C), 124.0 (CH), 120.13 (d, J = 332.4 Hz, C), 120.12

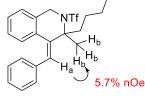
(d, J = 315.2 Hz, C), 52.9 (CH₂), 48.5 (CH₂), 48.3 (CH₂), 45.7 (CH₂), 37.4 (CH), 37.22 (CH), 33.15 (CH₂), 33.0 (CH₂), 26.0 (CH₂), 25.8 (CH₂), 25.6 (CH₂). **HRMS** [ESI]: m/z calculated C₁₇H₂₁F₃NO₂S [M+H]⁺:


360.1240, found 360.1238. Assignment of stereochemistry based on the observed nOe between the H_a (5.46 ppm, 100%) with H_b (4.05 ppm, 6.5%) and between the H_c (5.95 ppm, 100%) with H_d (7.58 – 7.47, 8.3%).

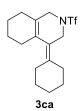
(E)-4-benzylidene-3,3-dimethyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ag)


(50.7 mg, 80% yield), obtained as a white solid. Mp: 91-92 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.22 – 6.87 (m, 9H), 6.74 (s, 1H), 4.45 (s, 2H), 1.69 (s, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -76.10. ¹³C NMR (75 MHz, CDCl₃) δ 141.8 (C), 136.3 (C), 135.0 (C), 134.8 (C), 129.5 (CH), 129.4 (CH), 128.29 (CH), 128.26 (CH), 128.0 (CH), 127.5 (CH), 125.7 (CH), 125.5 (CH), $I_{25.5}$ (CH), $I_{25.5}$

119.7 (d, *J* = 324.4 Hz, C), 67.6 (C), 49.4 (CH₂), 27.9 (CH₃, brs). **HRMS** [ESI]:


m/z calculated for C₁₉H₁₉F₃NO₂S [M+H]⁺: 382.1083, found 382.1085. Assignment of stereochemistry based on the observed nOe between the H_a (6.74 ppm 100%) with H_b (1.69 ppm, 9.0%).

(E)-4-benzylidene-3-butyl-3-methyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ah)

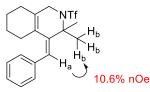


(63.8 mg, 90% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 7.23 – 6.83 (m, 9H), 6.67 (s, 1H), 4.46 (s, 2H), 2.15 – 1.97 (m, 1H), 1.70 (s, 3H), 1.36 – 1.07 (m, 4H), 0.77 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.93. ¹³C NMR (75 MHz, CDCl₃) δ 138.9 (C), 136.4 (C), 135.2 (C), 134.6 (C), 129.5 (CH), 129.2 (CH), 128.7 (CH), 128.3

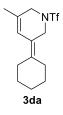
(CH), 128.0 (CH), 127.5 (CH), 127.3 (CH), 125.4 (CH), 119.8 (d, J = 324.9 Hz, C), 71.2 (C), 50.2 (CH₂), 26.8 (CH₂), 25.0 (CH₃, brs), 22.8 (CH₂), 14.0 (CH₃). **HRMS** [ESI]: m/z calculated for C₂₂H₂₅F₃NO₂S [M+H]⁺: 424.1553, found 424.1553. Assignment of stereochemistry based on the observed nOe between the H_a (6.67 ppm, 100%) with H_b (0.77 ppm, 5.7%).

4-cyclohexylidene-2-((trifluoromethyl)sulfonyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline (3ca)

Reaction performed at 105 °C. (41.5 mg, 71% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 4.03 (s, 2H), 3.84 (s, 2H), 2.36 – 2.17 (m, 6H), 2.09 – 1.97 (m, 2H), 1.78 – 1.65 (m, 2H), 1.65 – 1.51 (m, 8H). ¹⁹F NMR (282 MHz, CDCl₃) δ -76.01. ¹³C NMR (75 MHz, CDCl₃) δ 139.6 (C), 132.0 (C), 128.4 (C), 123.0 (C), 120.3 (d, *J* = 324.0 Hz, C), 49.3 (CH₂), 46.4 (CH₂), 33.4 (CH₂), 32.1 (CH₂), 31.4 (CH₂), 28.33 (CH₂), 28.28 (CH₂), 27.8 (CH₂), 26.7 (CH₂), 23.7 (CH₂), 22.4 (CH₂). HRMS [ESI]: *m/z* Creteres NO₂S [M+H]⁺⁺: 350 1396 found 350 1399

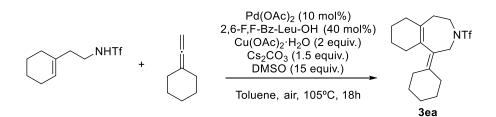

calculated for C₁₆H₂₃F₃NO₂S [M+H]⁺: 350.1396, found 350.1399.

(E)-4-benzylidene-3,3-dimethyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline (3cg)

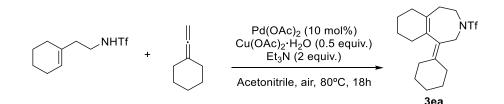


(58.2 mg, 90% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 7.27 – 7.10 (m, 5H), 6.48 (s, 1H), 3.84 (s, 2H), 2.12 – 2.02 (m, 2H), 1.73 – 1.65 (m, 2H), 1.64 (s, 6H), 1.62 – 1.52 (m, 2H), 1.46 – 1.35 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.94. ¹³C NMR (75 MHz, CDCl₃) δ 142.6 (C), 137.7 (C), 132.7 (C), 132.5 (C), 129.0 (CH), 128.2 (CH), 127.4 (CH), 123.2 (CH),

3cg 120.0 (d, J = 325.1 Hz, C), 65.8 (C), 49.9 (CH₂), 28.0 (CH₂), 27.6 (CH₂), 27.3 (brs, CH₃), 22.8 (CH₂), 22.4 (CH₂). **HRMS** [APCI]: m/z calculated for C₁₉H₂₂F₃NO₂S [M+H]⁺: 386.1396, found 386.1395. Assignment of stereochemistry based on the observed nOe between the H_a (6.48 ppm, 100%) with H_b (1.64 ppm).

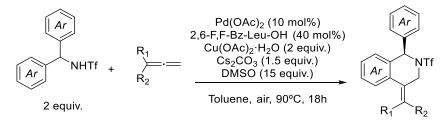

3-cyclohexylidene-5-methyl-1-((trifluoromethyl)sulfonyl)-1,2,3,6-tetrahydropyridine (3da)

(45.7 mg, 88% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 6.33 – 6.28 (m, 1H), 4.10 (s, 2H), 3.88 (s, 2H), 2.32 – 2.08 (m, 4H), 1.74 (s, 3H), 1.55 – 1.43 (m, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ - 76.34. ¹³C NMR (75 MHz, CDCl₃) δ 137.4 (C), 129.3 (C), 120.6 (CH), 120.2 (d, *J* = 324.0 Hz, C), 118.6 (C), 49.1 (CH₂), 44.9 (CH₂), 30.7 (CH₂), 29.7 (CH₂), 28.11 (CH₂), 28.08 (CH₂), 26.8 (CH₂), 20.8 (CH₂). HRMS [APCI]: *m/z* calculated for C₁₃H₁₉F₃NO₂S [M+H]⁺: 310.1083, found 310.1083.

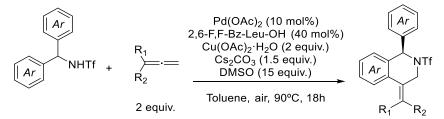

Procedure for the synthesis of 1-cyclohexylidene-3-((trifluoromethyl)sulfonyl)-2,3,4,5,6,7,8,9-octahydro-1*H*-benzo[*d*]azepine 3ea

Method A

To a solution of Pd(OAc)₂ (3.7 mg, 10 mol%), 2,6-F,F-Bz-Leu-OH (18.1 mg, 40 mol%), Cu(OAc)₂•H₂O (66.7 mg, 2 equiv.), Cs₂CO₃ (81.6 mg, 1.5 equiv.) and triflimide **1e** (43.0 mg, 0.167 mmol, 1 equiv.) in toluene (2 mL) under air atmosphere in a Schlenk tube was added the allene **2a** (18.0 mg, 0.167 mmol).The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 105 °C, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded **1-cyclohexylidene-3-((trifluoromethyl)sulfonyl)-2,3,4,5,6,7,8,9-octahydro-1***H***-benzo**[*d*]**azepine 3ea** as a yellow oil (50.4 mg, 83% yield). NMR characterization performed at 110 °C due to the presence of conformers. ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.68 (s, 2H), 3.09 (t, *J* = 6.2 Hz, 2H), 1.87 – 1.76 (m, 4H), 1.69 (t, *J* = 6.3 Hz, 2H), 1.66 – 1.55 (m, 4H), 1.24 – 1.09 (m, 10H). ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -76.03. ¹³C NMR (126 MHz, DMSO-*d*₆) δ 139.6 (C), 132.5 (C), 130.2 (C), 125.8 (C), 119.4 (q, *J* = 324.7 Hz, C), 48.2 (CH₂), 44.4 (CH₂), 33.6 (CH₂), 31.4 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 28.7 (CH₂), 27.1 (CH₂), 26.6 (CH₂), 25.3 (CH₂), 21.9 (CH₂), 21.8 (CH₂). **HRMS** [ESI]: *m/z* calculated for C₁₇H₂₅F₃NO₂S [M+H]⁺: 364.1553, found 364.1549.

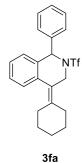

Method B

To a solution of Pd(OAc)₂ (3.7 mg, 10 mol%), Cu(OAc)₂•H₂O (16.7 mg, 0.5 equiv.), Et₃N (46 µL, 2 equiv.) and **1e** (43.0 mg, 0.167 mmol, 1 equiv.) in acetonitrile (2 mL) under air atmosphere in a Schlenk tube was added the allene **2a** (18.0 mg, 0.167 mmol). The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 80 °C, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded **1-cyclohexylidene-3-**((trifluoromethyl)sulfonyl)-2,3,4,5,6,7,8,9-octahydro-1*H*-benzo[*d*]azepine 3ea as a yellow oil (37.8 mg, 62% yield).


Procedure for the Pd-catalyzed desymmetrization of benzylamides with allenes 2

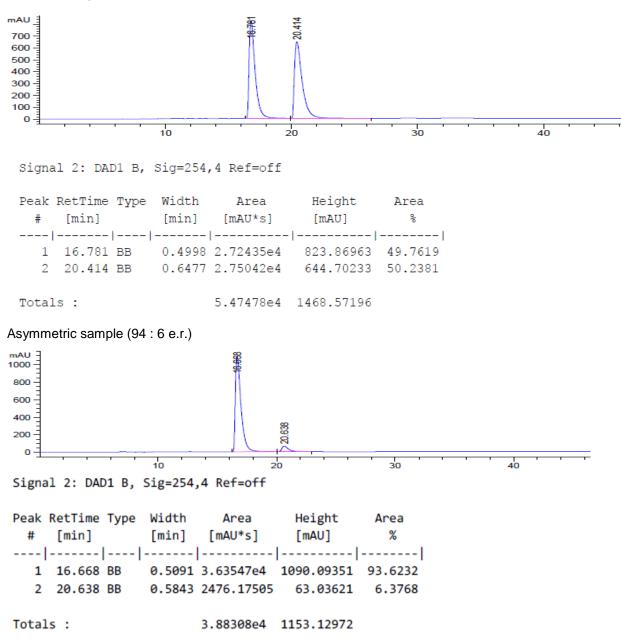
Method A (using excess of amide)

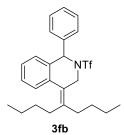
To a solution of $Pd(OAc)_2$ (3.7 mg, 10 mol%), 2,6-F,F-Bz-Leu-OH (18.1 mg, 40 mol%), $Cu(OAc)_2 \cdot H_2O$ (66.7 mg, 2 equiv.), Cs_2CO_3 (81.6 mg, 1.5 equiv.) and triflimides **1** (0.333 mmol, 2 equiv.) in toluene (2 mL) under air atmosphere in a Schlenk tube was added the allene **2** (0.167 mmol). The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 90 °C, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded adducts **3**.


Method B (using excess of allene)

To a solution of Pd(OAc)₂ (3.7 mg, 10 mol%), 2,6-F,F-Bz-Leu-OH (18.1 mg, 40 mol%), Cu(OAc)₂•H₂O (66.7 mg, 2 equiv.), Cs₂CO₃ (81.6 mg, 1.5 equiv.) and **1** (0.167 mmol, 2 equiv.) in toluene (2 mL) under air atmosphere in a Schlenk tube was added the allene **2** (0.333 mmol).The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 90 °C, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded compounds **3**.

Racemic products were obtained using the racemic 2,6-F,F-Bz-Leu-OH

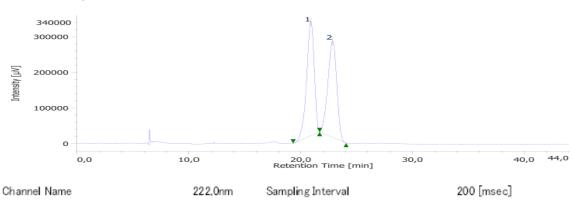

4-cyclohexylidene-1-phenyl-2-((trifluoromethyl) sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3fa)


Method A: (60.1 mg, 85% yield), obtained as a white solid. Mp: 97-99 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.05 (m, 9H), 5.92 (s, 1H), 4.40 (d, *J* = 13.6 Hz, 1H), 4.10 (d, *J* = 13.4 Hz, 1H), 2.38 – 2.25 (m, 1H), 2.18 – 2.02 (m, 2H), 1.96 – 1.79 (m, 1H), 1.50 – 1.28 (m, 4H), 1.00 – 0.75 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.18. ¹³C NMR (75 MHz, CDCl₃) δ 140.9 (C), 138.5 (C), 137.3(C), 135.2(C), 129.8 (CH), 128.4 (CH), 127.9 (CH), 127.7 (CH), 127.31 (CH), 127.26 (CH), 127.2 (CH), 120.1 (q, *J* = 324.4 Hz, C), 119.7 (C), 62.4 (CH), 46.5 (CH₂), 31.9 (CH₂), 30.6 (CH₂), 27.8 (CH₂), 27.2 (CH₂), 26.4 (CH₂). HRMS [ESI]: *m/z* calculated for C₂₂H₂₃F₃NO₂S [M+H]⁺: 422.1396, found 422.1386.

Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IB at rt (Hexane, 0.5 mL/min).

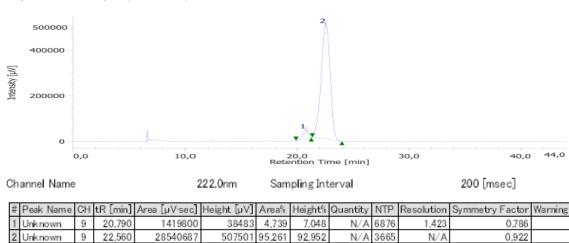
Racemic sample

4-(nonan-5-ylidene)-1-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3fb)

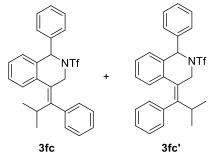


Method A: (73.2 mg, 94% yield), obtained as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.02 (m, 10H), 5.90 (s, 1H), 4.29 (d, *J* = 13.8 Hz, 1H), 4.11 (d, *J* = 13.9 Hz, 1H), 2.16 – 1.99 (m, 1H), 1.92 – 1.75 (m, 3H), 1.25 – 0.82 (m, 8H), 0.80 – 0.68 (m, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.62. ¹³C NMR (75 MHz, CDCl₃) δ 141.9 (C), 138.2 (C), 136.8 (C), 135.3 (C), 129.1 (CH), 128.4 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 127.3 (CH), 127.2 (CH), 122.5 (C), 120.1 (d, *J* = 324.4 Hz, C), 62.3 (CH), 46.7 (CH₂), 32.9 (CH₂), 31.2 (CH₂), 31.0 (CH₂), 29.7 (CH₂), 23.03 (CH₂), 22.97

(CH₂), 14.13 (CH₃), 14.07 (CH₃). **HRMS** [ESI]: m/z calculated for C₂₅H₃₁F₃NO₂S [M+H]⁺: 466.2022, found 466.2015.

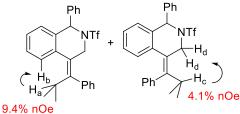

Enantioselectivity was determined by chiral SFC analysis on Phenomenex i-Cellulose-5 at 40 °C (CO_2 : MeOH = 98:02, 0.5 mL/min).

Racemic sample

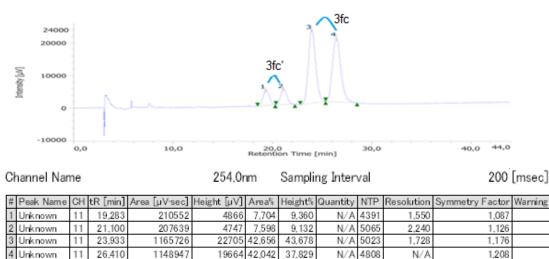


#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	20,887	15244033	319865	50,484	54,195	N/A	4537	1,436	0,826	
2	Unknown	9	22,833	14951856	270352	49,516	45,805	N/A	3821	N/A	0,909	

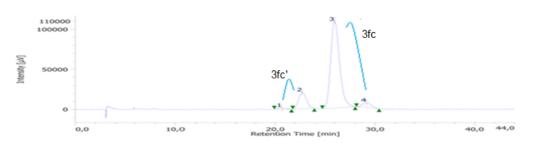
Asymmetric sample (95 : 5 e.r.)


4-(2-methyl-1-phenylpropylidene)-1-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline

Method A performed at 70 °C over 72h: (1:4.9 E/Z r.r. of **3fc** and **3fc'**, inseparable mixture (51.8 mg, 66% yield, white solid, Mp: 143-145 °C)). ¹H NMR (300 MHz, CDCl₃) δ 7.46 – 6.57 (m, 14H), 5.98 – 5.86 (m, 2H), 4.58 – 4.32 (m, 0.34 H), 3.76 (s, 1.66H), 3.09 (hept, J = 6.8 Hz, 0.83H), 2.81 (hept, J = 7.0 Hz, 0.17H), 0.93 (d, J = 6.9 Hz, 3H), 0.41 (d, J = 6.8 Hz, 0.51H), 0.30 (d, J = 6.7 Hz, 2.49H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.34. ¹³C NMR (75 MHz, CDCl₃) δ 147.5 (C), 138.5 (C), 137.0 (C), 134.6 (C), 130.6 (C), 129.8 (C), 129.2 (CH), 128.64 (CH), 128.55 (CH),


128.4 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 127.4 (CH), 127.3 (CH), 123.8 (C), 120.1 (d, J = 324.3 Hz, C), 62.4 (CH), 62.2 (CH), 48.3 (CH₂), 45.7 (CH₂), 30.5 (CH), 22.3 (CH₃), 21.5 (CH₃), 20.1 (CH₃), 19.9 (CH₃). **HRMS** [ESI]: m/z calculated for C₂₆H₂₅F₃NO₂S [M+H]⁺: 472.1555, Ph Ph Output 472.1549.

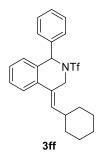
Assignment of stereochemistry based on the observed nOe between the H_a (3.09 ppm, 100%) with H_b (7.45 – 7.28 ppm, 9.4%) and the H_c (2.81 ppm, 100%) with the H_d (4.58 – 4.32 ppm, 4.1%).



Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-2 at 40 °C (CO₂ : MeOH = 98:02, 1 mL/min).

Racemic sample

Asymmetric sample (3fc, 95 : 5 e.r., 3fc', 94 : 6 e.r.)


Channel Name

254,0nm Sampling Interval

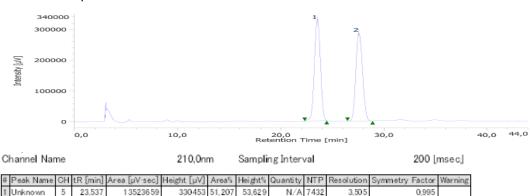
200 [msec]

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	11	20,670	70695	1474	0,846	1,081	N/A	3968	1,455	1,069	
2	Unknown	11	22,703	1117247	20266	13,362	14,862	N/A	3715	2,079	1,107	
3	Unknown	11	25,937	6805087	108729	81,388	79,732	N/A	4059	1,910	1,266	
4	Unknown	11	29,137	368302	5898	4,405	4,325	N/A	4529	N/A	1,108	

(Z)-4-(cyclohexylmethylene)-1-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ff)

Method A: (58.9 mg, 81% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 1H), 7.29 – 7.09 (m, 7H), 6.98 (d, J = 7.1 Hz, 1H), 6.07 (s, 1H), 5.97 (d, J = 9.6 Hz, 1H), 4.60 (d, J = 16.6 Hz, 1H), 3.80 (d, J = 16.6 Hz, 1H), 2.23 – 2.01 (m, 1H), 1.76 – 0.89 (m, 10H). ¹⁹F NMR (282 MHz, CDCl₃) δ -76.64. ¹³C NMR (75 MHz, CDCl₃) δ 138.3 (C), 133.2 (C), 132.9 (CH), 128.83 (CH), 128.76 (CH), 128.6 (CH), 128.4 (CH), 128.0 (CH), 127.4 (CH), 125.0 (C), 123.9 (CH), 119.8 (q, J = 323.2 Hz, C), 61.2 (CH), 42.3 (CH₂), 37.1 (CH), 32.7 (CH₂), 32.6 (CH₂), 26.0 (CH₂), 25.8 (CH₂), 25.8 (CH₂). HRMS [ESI]:

1.115


m/*z* calculated for C₂₃H₂₅F₃NO₂S [M+H]⁺: 436.1553, found 436.1550.

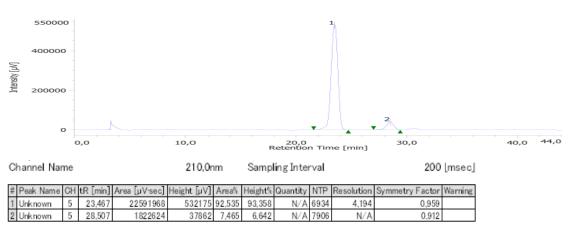
Assignment of stereochemistry based on the observed nOe between the H_a (5.97 ppm, 100%) with H_b (7.65 ppm, 11.8%).

Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at 40 °C (CO_2 : MeOH = 98:02, 1 mL/min).

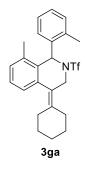
Racemic sample

2 Unknown

N/A 8227


N/A

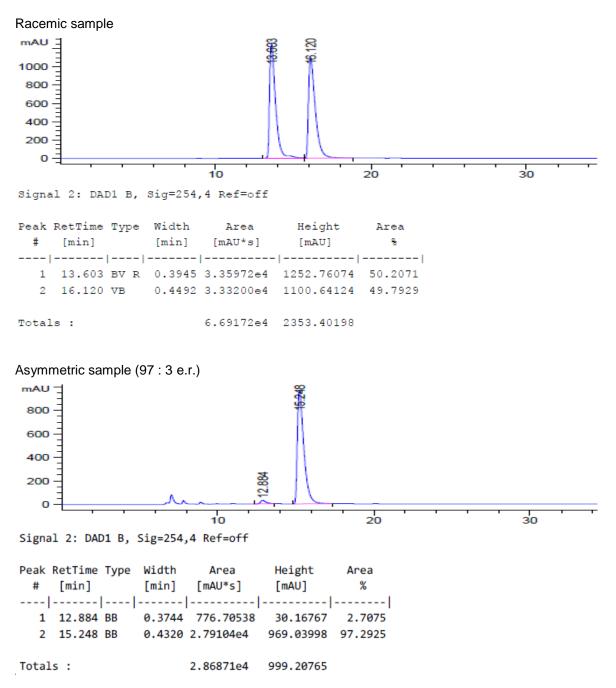
285726 48,793 46,371


Asymmetric sample (93:7 e.r.)

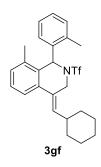
12886049

5 27,570

4-cyclohexylidene-8-methyl-1-(o-tolyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ga)


Method B: (44.9 mg, 66% yield), obtained as a white solid. Mp: 145-147 °C. ¹H NMR (300 MHz, CDCI₃) δ 7.20 – 7.08 (m, 4H), 7.03 (d, J = 6.9 Hz, 1H), 6.88 (t, J = 7.0 Hz, 1H), 6.74 (d, J = 7.8 Hz, 1H), 6.29 (s, 1H), 4.41 (d, J = 16.4 Hz, 1H), 3.84 (d, J = 16.4 Hz, 1H), 2.55 (s, 3H), 2.28 (t, J = 11.7 Hz, 1H), 2.15 (s, 3H), 2.04 - 1.75 (m, 2H), 1.65 - 1.26 (m, 7H). ¹⁹F NMR (282 MHz, CDCl₃) δ-75.78. ¹³C NMR (75 MHz, CDCl₃) δ 138.7 (C), 136.5 (C), 134.4 (C), 134.1 (C), 131.9 (C), 131.5 (CH), 130.0 (CH), 128.9 (CH), 128.5 (CH), 128.2 (CH), 127.3 (CH), 125.6 (CH), 121.0 (C), 119.6 (d, J = 325.2 Hz, C), 57.9 (CH), 46.2

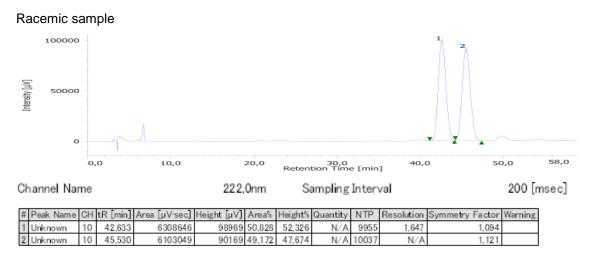
(CH₂), 32.4 (CH₂), 30.8 (CH₂), 28.1 (CH₂), 26.9 (CH₂), 26.6 (CH₂), 20.5 (CH₃), 18.6 (CH₃). HRMS [ESI]: *m/z* calculated for C₂₄H₂₇F₃NO₂S [M+H]⁺: 450.1709, found 450.1715.

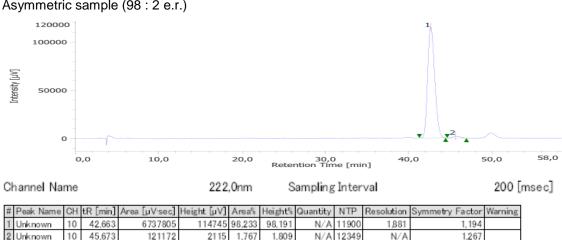


The structure of this compound (3ga) was confirmed by X-Ray diffraction analysis (CCDC: 1877409).

Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IB at rt (Hexane, 0.5 mL/min).

(Z)-4-(cyclohexylmethylene)-8-methyl-1-(o-tolyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3gf)


Method B: (73.5 mg, 95% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 1H), 7.22 – 7.07 (m, 3H), 7.03 – 6.83 (m, 2H), 6.65 (d, J = 7.8 Hz, 1H), 6.30 (s, 1H), 5.97 (d, J = 9.7 Hz, 1H), 4.61 (d, J = 17.6 Hz, 1H), 3.88 (d, J = 17.6 Hz, 1H), 2.57 (s, 3H), 2.05 (m, 1H), 1.98 (s, 3H), 1.77 – 1.53 (m, 4H), 1.49 – 1.38 (m, 1H), 1.24 – 1.01 (m, 5H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.74. ¹³C NMR (75 MHz, CDCl₃) δ 138.4 (C), 134.3 (C), 133.6 (C), 133.4 (C), 132.9 (C), 132.6 (CH), 131.7 (CH), 129.7 (CH), 129.3 (CH), 129.0 (CH), 128.1 (CH), 125.9 (C), 125.8 (CH), 121.5 (CH), 119.7 (d, J = 324.8 Hz, C), 56.5 (CH), 42.9 (CH₂),

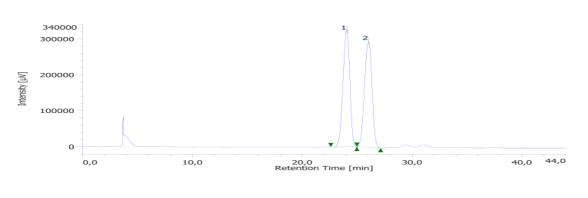

37.2 (CH), 32.6 (CH₂), 32.3 (CH₂), 26.0 (CH₂), 25.9 (CH₂), 25.8 (CH₂), 20.0 (CH₃), 18.7 (CH₃). HRMS [ESI]: *m/z* calculated for C₂₅H₂₉F₃NO₂S [M+H]⁺: 464.1866, found 464.1862.

NTf 13.1% nOe

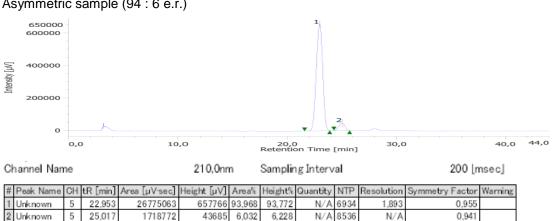
Assignment of stereochemistry based on the observed nOe between the Ha (5.97 ppm, 100%) with H_b (7.52 ppm, 13.1%).

Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at 40 $^{\circ}$ C (CO₂ : MeOH = 99:01, 1 mL/min).

Asymmetric sample (98 : 2 e.r.)

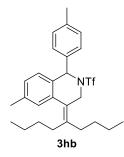

4-cyclohexylidene-6-methyl-1-(p-tolyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ha)

NTf 3ha


Method A: (71.2 mg, 95% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 7.22 -6.87 (m, 7H), 5.85 (s, 1H), 4.35 (d, J = 13.5 Hz, 1H), 4.08 (d, J = 14.0 Hz, 1H), 2.31 (s, 4H), 2.24 (s, 3H), 2.12 (d, J = 13.0 Hz, 2H), 1.90 (t, J = 11.6 Hz, 1H), 1.53 – 1.28 (m, 4H), 0.96 (brs, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.16. ¹³C NMR (75 MHz, CDCl₃) δ 140.4 (C), 137.4 (C), 137.4 (C), 135.9 (C), 134.9 (C), 134.5 (C), 130.3 (CH), 129.0 (CH), 127.8 (CH), 127.4 (CH), 127.1 (CH), 120.2 (d, J = 324.2 Hz, C), 120.0 (C), 62.1 (CH), 46.3 (CH₂), 32.0 (CH₂), 30.7 (CH₂), 27.9 (CH₂), 27.3 (CH₂), 26.5 (CH₂), 21.6 (CH₃), 21.1 (CH₃). HRMS [ESI]: m/z calculated for C₂₄H₂₇F₃NO₂S [M+H]⁺: 450.1709, found 450.1707.

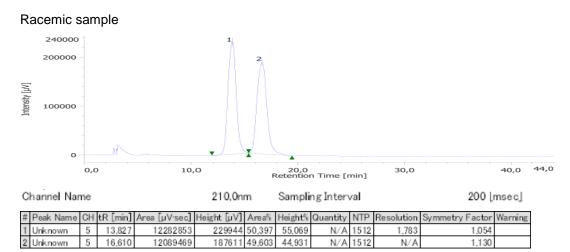
Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at 40 °C (CO₂ : MeOH = 98:02, 1 mL/min).

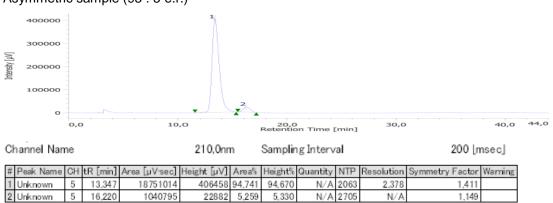
Racemic sample



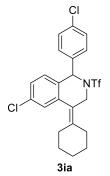
С	hannel Nar	ne			210,0n	210,0nm Sampling Interval					200 [msec]			
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning		
1	Unknown	5	24,047	14221311	326263	50,358	52,512	N/A	6651	1,611	0,913			
2	Unknown	5	26,030	14019082	295054	49,642	47,488	N/A	6526	N/A	0,935			

Asymmetric sample (94 : 6 e.r.)

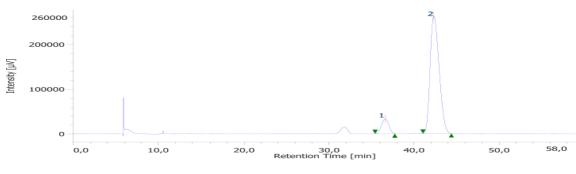

6-methyl-4-(nonan-5-ylidene)-1-(p-tolyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3hb)


Method A: (76.2 mg, 92% yield), obtained as a white solid. Mp: 56-58 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.20 – 6.89 (m, 7H), 5.84 (s, 1H), 4.25 (d, *J* = 13.8 Hz, 1H), 4.08 (d, *J* = 14.0 Hz, 1H), 2.32 (s, 3H), 2.20 (s, 3H), 1.91 – 1.76 (m, 3H), 1.31 – 1.11 (m, 7H), 1.11 – 0.97 (m, 2H), 0.80 (t, *J* = 6.9 Hz, 3H), 0.71 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.52. ¹³C NMR (75 MHz, CDCl₃) δ 141.4 (C), 137.50 (C), 137.46 (C), 135.4 (C), 135.0 (C), 134.1 (C) 129.7 (CH), 129.0 (CH), 127.7 (CH), 127.4 (CH), 127.0 (CH), 122.7 (C), 120.1 (d, *J* = 324.4 Hz, C), 62.0 (CH), 46.6 (CH₂), 32.9 (CH₂), 31.2 (CH₂), 31.1 (CH₂), 29.7 (CH₂), 23.00 (CH₂), 22.97 (CH₂), 21.6 (CH₃), 21.1

(CH₃), 14.2 (CH₃), 14.1 (CH₃). HRMS [ESI]: calculated for C₂₇H₃₅F₃NO₂S [M+H]⁺: 494.2335, found 494.2337.


Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-2 at 40 °C (CO_2 : MeOH = 98:02, 1 mL/min).

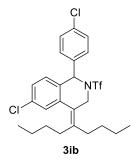
6-chloro-1-(4-chlorophenyl)-4-cyclohexylidene-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline


Method A: (75.9 mg, 93% yield), obtained as a white solid. Mp: 47-49 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.27 – 6.97 (m, 7H), 5.86 (s, 1H), 4.36 (d, *J* = 13.5 Hz, 1H), 4.07 (d, *J* = 13.8 Hz, 1H), 2.39 – 2.22 (m, 1H), 2.22 – 2.03 (m, 2H), 2.03 – 1.84 (m, 1H), 1.56 – 1.30 (m, 4H), 1.08 – 0.84 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.38. ¹³C NMR (75 MHz, CDCl₃) δ 142.7 (C), 136.8 (C), 135.2 (C), 134.1 (C), 134.0 (C), 129.8 (CH), 128.70 (CH), 128.65 (CH), 128.5 (CH), 127.4 (CH), 120.0 (q, *J* = 324.0 Hz, C), 118.7 (C), 77.4 (CH), 61.2 (CH₂), 46.1 (CH₂), 31.9 (CH₂), 30.7 (CH₂), 27.9 (CH₂), 27.3 (CH₂), 26.2 (CH₂). HRMS [ESI]: *m/z* calculated for C₂₂H₂₁Cl₂F₃NO₂S [M+H]⁺: 490.0617, found 490.0616.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex i-Cellulose-5 at 40 $^{\circ}$ C (CO₂ : MeOH = 97:03, 0.5 mL/min).

Racemic sample

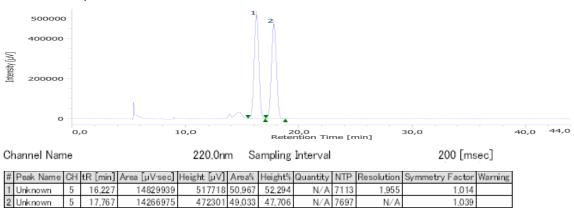
Channel Name 254,0nm Sampling Interval 200 [msec] # Peak Name CH tR [min] Area [µV:sec] Height [µV] Area% Height% Quantity NTP Resolution Symmetry Factor Warning Unknown 36,737 1718634 27961 50,611 53,843 N/A 7956 3,486 1,000 11 2 Unknown 23970 49,389 46.157 1.024 11 42.853 1677171 N/A 8392 N/A


Asymmetric sample (91 : 9 e.r.)

Channel Name 254,0nm Sampling Interval 200 [msec]

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	11	36,557	2014371	33391	9,462	11,308	N/A	7997	3,192	1,018	
2	Unknown	11	42,313	19274230	261900	90,538	88,692	N/A	7299	N/A	1,258	

6-chloro-1-(4-chlorophenyl)-4-(nonan-5-ylidene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ib)



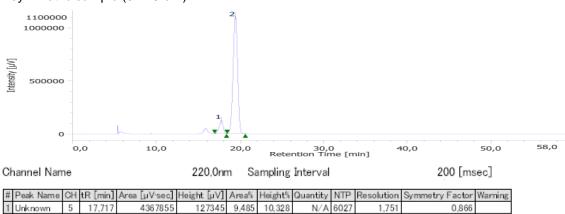
Method A: (76.8 mg, 86% yield), obtained as a transparent oil. ¹H NMR (300 MHz, CDCl₃) δ 7.29 – 7.10 (m, 5H), 7.01 – 6.94 (m, 2H), 5.84 (s, 1H), 4.26 (d, *J* = 14.0 Hz, 1H), 4.08 (d, *J* = 14.0 Hz, 1H), 2.17 – 2.00 (m, 1H), 1.93 – 1.78 (m, 3H), 1.26 – 0.87 (m, 8H), 0.86 – 0.69 (m, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.39. ¹³C NMR (75 MHz, CDCl₃) δ 143.9 (C), 136.9 (C), 136.4 (C), 134.8 (C), 134.2 (C), 134.1 (C), 129.3 (CH), 128.7 (CH), 128.7 (CH), 128.4 (CH), 127.4 (CH), 121.4 (C), 120.1 (d, *J* = 324.4 Hz, C), 61.2 (CH), 46.3 (CH₂), 32.9 (CH₂), 31.4 (CH₂), 30.1 (CH₂), 29.8 (CH₂), 22.95 (CH₂), 22.92 (CH₂), 14.1 (CH₃), 14.0 (CH₃). HRMS [ESI]:

m/z calculated for C₂₅H₂₉Cl₂F₃NO₂S [M+H]⁺: 534.1243, found 534.1237.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex i-Cellulose-5 at 40 °C (CO₂ : MeOH = 96:04, 0.5 mL/min).

Racemic sample

Asymmetric sample (91 : 9 e.r.)

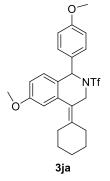

2 Unknown

5

19.387

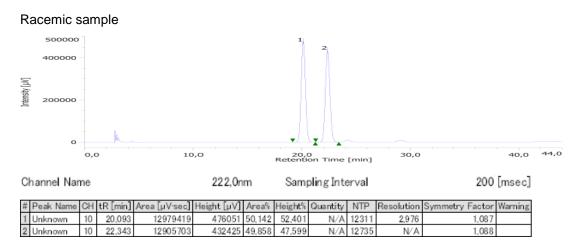
41683416

1105637 90.515

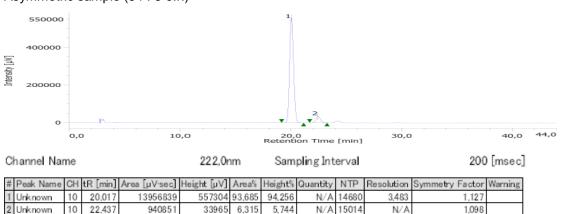

89 672

N/A 6021

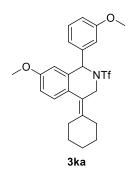
N/A


0.959

4-cyclohexylidene-6-methoxy-1-(4-methoxyphenyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ja)

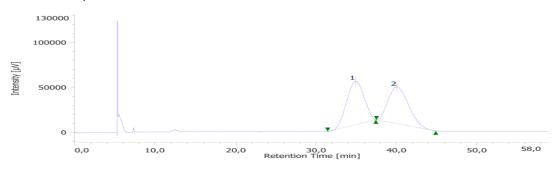


Method A: (74.8 mg, 93% yield), obtained as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.13 – 7.06 (m, 1H), 7.03 – 6.98 (m, 2H), 6.78 – 6.68 (m, 4H), 5.85 (s, 1H), 4.30 (d, *J* = 13.7 Hz, 1H), 4.10 (d, *J* = 13.8 Hz, 1H), 3.76 (s, 3H), 3.69 (s, 3H), 2.53 – 1.78 (m, 4H), 1.56 – 1.31 (m, 4H), 1.13 – 0.95 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.59. ¹³C NMR (75 MHz, CDCl₃) δ 159.2 (C), 158.9 (C), 140.8 (C), 136.2 (C), 131.0 (C), 129.8 (C), 128.8 (CH), 128.2 (CH), 120.1 (d, *J* = 324.0 Hz, C), 120.0 (C), 115.6 (CH), 113.7 (CH), 112.1 (CH), 61.5 (CH), 55.5 (CH₃), 55.4 (CH₃), 46.0 (CH₂), 32.0 (CH₂), 30.8 (CH₂), 27.9 (CH₂), 27.4 (CH₂), 26.4 (CH₂). HRMS [ESI]: *m*/*z* calculated for C₂₄H₂₇F₃NO₄S [M+H]⁺: 482.1607, found 482.1612.


Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at 40 °C (CO₂ : MeOH = 95:05, 1 mL/min).

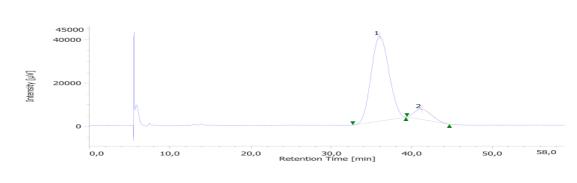
Asymmetric sample (94 : 6 e.r.)

4-cyclohexylidene-7-methoxy-1-(3-methoxyphenyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ka)



Method A: (72.4 mg, 90% yield), obtained as a white solid. Mp: 125-127 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.13 (d, J = 8.4 Hz, 1H), 7.11 – 7.08 (m, 1H), 6.82 (dd, J = 8.4, 2.7 Hz, 1H), 6.75 (d, J = 2.7 Hz, 1H), 6.72 – 6.70 (m, 1H), 6.70 – 6.68 (m, 1H), 6.68 – 6.65 (m, 1H), 5.83 (s, 1H), 4.34 (d, J = 13.6 Hz, 1H), 4.11 (d, J = 12.7 Hz, 1H), 3.75 (s, 3H), 3.66 (s, 3H), 2.43 – 2.22 (m, 1H), 2.18 – 2.01 (m, 2H), 2.01 – 1.77 (m, 1H), 1.52 – 1.28 (m, 4H), 1.05 – 0.85 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -75.58. ¹³C NMR (76 MHz, CDCl₃) δ 159.8 (C), 158.6 (C), 139.9 (C), 139.4 (C), 138.3 (C), 131.0 (CH), 129.5 (CH), 127.4 (C), 120.1 (d, J = 323.9 Hz, C), 119.9 (CH), 119.2 (C), 113.7 (CH), 113.4 (CH), 112.8 (CH), 112.6 (CH), 62.3 (CH), 55.5 (CH₃), 55.4 (CH₃), 46.6 (CH₂),

32.0 (CH₂), 30.6 (CH₂), 27.8 (CH₂), 27.3 (CH₂), 26.5 (CH₂). **HRMS** [ESI]: m/z calculated for C₂₄H₂₇F₃NO₄S [M+H]⁺: 482.1607, found 482.1619.


Enantioselectivity was determined by chiral SFC analysis on Phenomenex Amylose-2 at 40 °C (CO_2 : MeOH = 96:04, 0.5 mL/min).

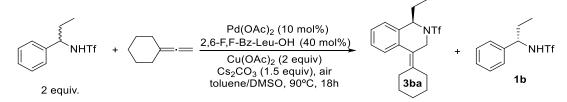
Racemic sample

Channel Name 254,0nm Sampling Interval 200 [msec]

Ŧ	‡ Peak Name	CH	tR [min]	Area [µV•sec]	Height (µV)	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	5	34,880	7340802	48615	50,471	54,400	N/A	1114	1,148	0,986	
2	Unknown	5	40,047	7203868	40750	49,529	45,600	N/A	1094	N/A	1,233	

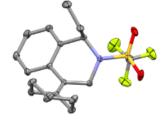
Asymmetric sample (90 :10 e.r.)

Channel Name

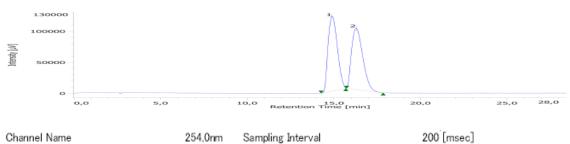

								0				
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	5	36,020	6055247	39232	89,702	89,352	N/A	1185	1,251	1,061	
2	Unknown	5	41,210	695179	4675	10,298	10,648	N/A	1589	N/A	1,321	

254.0nm

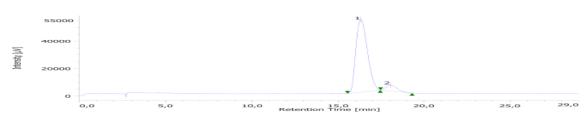
Sampling Interval


200 [msec]

Procedure for the kinetic resolution of benzylamides with allenes


To a solution of Pd(OAc)₂ (3.7 mg, 10 mol%), 2,6-F,F-Bz-Leu-OH (18.1 mg, 40 mol%), Cu(OAc)₂•H₂O (66.7 mg, 2 equiv.), Cs₂CO₃ (81.6 mg, 1.5 equiv.) and **1b** (89.3 mg, 0.333 mmol, 2 equiv.) in toluene (2 mL) under air atmosphere in a Schlenk tube was added the allene **2a** (18.0 mg, 0.167 mmol). The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 90 °C, stirred during 22 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded **4-cyclohexylidene-1-ethyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline** (**3ba**) as a white solid (56.6 mg, 91% yield, Mp: 88-90 °C) and remaining **1b** as a white solid (39.0 mg, 40% yield based on the starting benzylamide, 80% recovered based on reaction yield). ¹H NMR (300 MHz, CDCl₃) δ 7.28 – 7.10 (m, 3H), 7.03 (d, J = 7.3 Hz, 1H), 4.62 – 4.44 (m, 2H), 4.07 (d, J = 13.4 Hz, 1H), 2.45 – 2.34 (m, 2H), 2.34 – 2.11 (m, 2H), 1.92 – 1.37

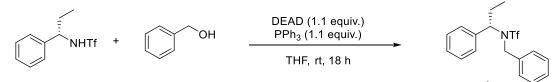
(m, 9H), 0.84 (t, J = 7.4 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.54. ¹³C NMR (75 MHz, CDCl₃) δ 140.5 (C), 137.8 (C), 133.9 (C), 129.5 (CH), 127.4 (CH), 127.0 (CH), 126.6 (CH), 120.2 (d, J = 324.4 Hz, C), 119.8 (C), 62.3 (CH), 46.3 (CH₂), 32.2 (CH₂), 31.0 (CH₂), 28.5 (CH₂), 28.0 (CH₂), 26.7 (CH₂), 11.2 (CH). HRMS [ESI]: m/z calculated for C₁₈H₂₃F₃NO₂S [M+H]⁺: 374.1396, found 374.1398. The structure of **3ba** was confirmed by X-Ray diffraction analysis (CCDC: 1880116, hydrogens omitted for clarity).


Enantioselectivity was determined by chiral SFC analysis on Chiralpak IF-3 at 40 °C (CO₂, 2 mL/min).

Racemic sample

_												
Ŧ	Peak Name	CH	tR [min]	Area [µV-sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	5	14,907	4535366	120606	50,574	54,988	N/A	3234	1,214	1,259	
2	Unknown	5	16,287	4432385	98727	49,426	45,012	N/A	2804	N/A	1,445	

Asymmetric sample (93 :7 e.r.)


Channel Name

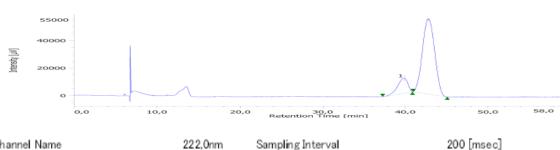
254,0nm Sampling Interval

200[[][msec]

Ŧ	Peak Name	CH	tR [min]	Area [µV-sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	16,320	2467749	52800	93,060	92,707	N/A	2635	1,376	1,288	
2	Unknown	9	18,030	184031	4154	6,940	7,293	N/A	3487	N/A	1,353	

Procedure for the derivatization⁹ of recovered triflimide 1b to measure the enantiomeric ratio

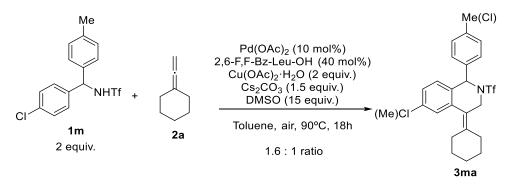
To a solution of recovered 1,1,1-trifluoro-N-(1-phenylpropyl)methanesulfonamide (1b, 39.0 mg, 0.146 mmol), benzyl alcohol (15.8 mg, 1 equiv.), and triphenylphosphine (42.1 mg, 1.1 equiv.) in THF (0.15 mL) was added DEAD (63 µL, 40% in toluene, 1.1 equiv.). The reaction mixture was stirred at room temperature overnight. Evaporation of the solvent and column chromatography on silica gel (hexanes:diethylether; 90:10) afforded N-benzyl-1,1,1-trifluoro-N-(1-phenylpropyl)methanesulfonamide (4) as a transparent oil (22.8 mg, 44%). ¹H NMR (300 MHz, Chloroform-d) δ 7.36 – 6.99 (m, 10H), 4.87 (t, J = 7.9 Hz, 1H), 4.46 (d, J = 16.1 Hz, 1H), 3.92 (brs, 1H), 1.77 (d, J = 10.4 Hz, 2H), 0.69 (t, J = 7.3 Hz, 3H). **HRMS** [ESI]: m/z calculated for C₁₇H₁₈F₃NO₂S [M+H]⁺: 357.1005, found 357.1001.


Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at 40 °C (CO₂ : MeOH = 99:01, 0.5 mL/min).

Racemic sample

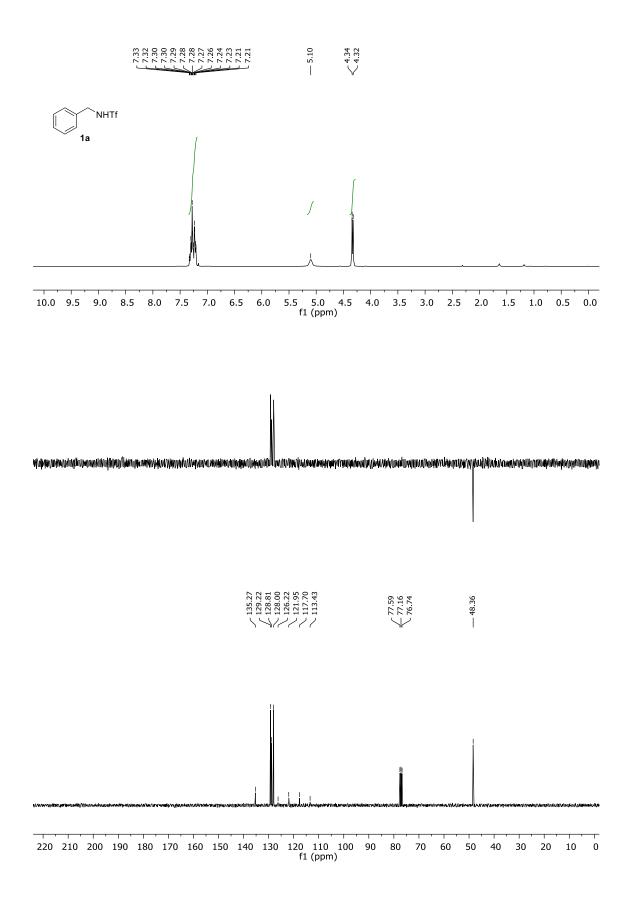
Ŧ	Peak Name	CH	tR [min]	Area [µV-sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	10	40,423	3235516	32453	50,331	51,475	N/A	3633	1,208	0,818	
2	Unknown	10	43,773	3192986	30593	49,669	48,525	N/A	3705	N/A	1,010	

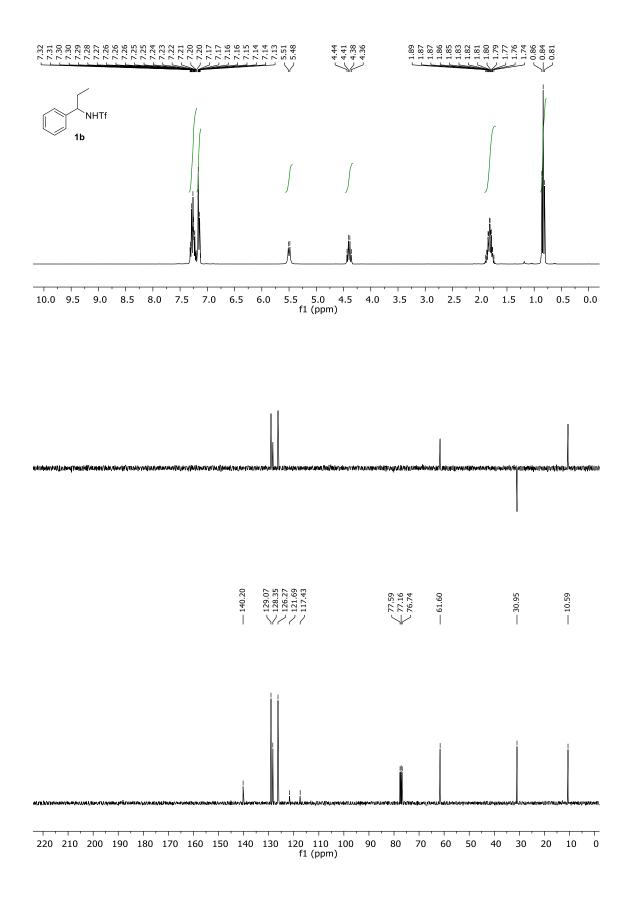
Asymmetric sample (86 :14 e.r.)

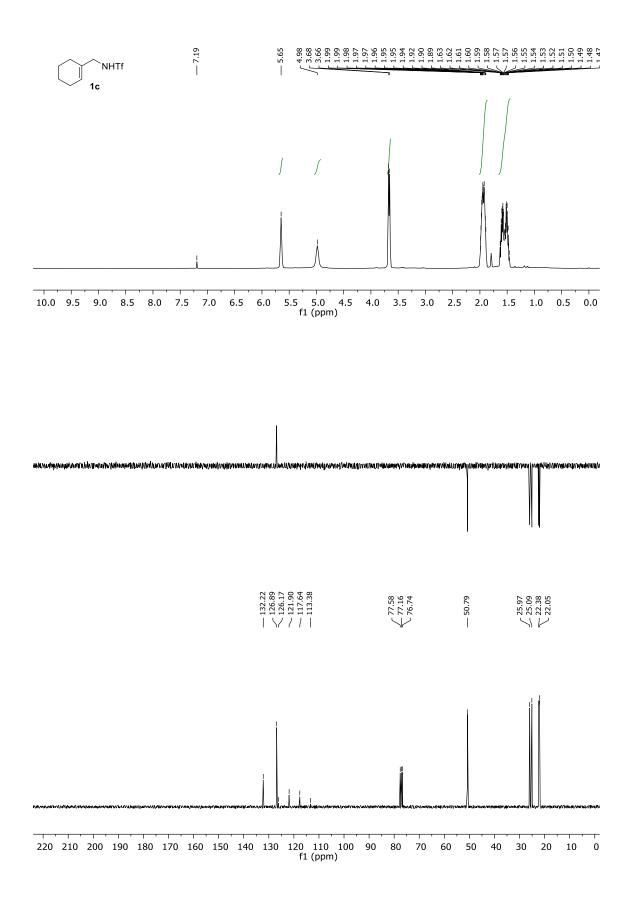

Channel Name

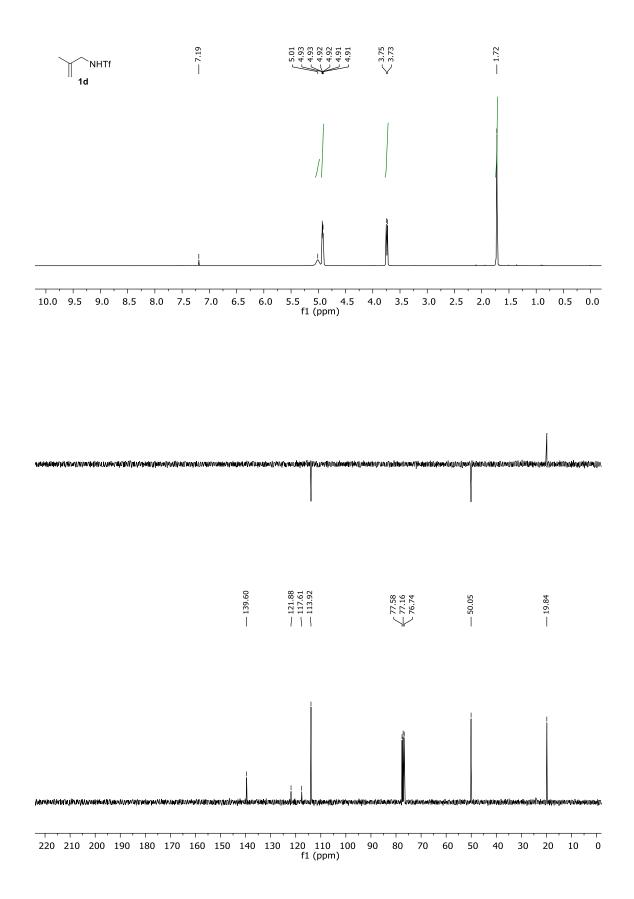
222,0nm Sampling Interval

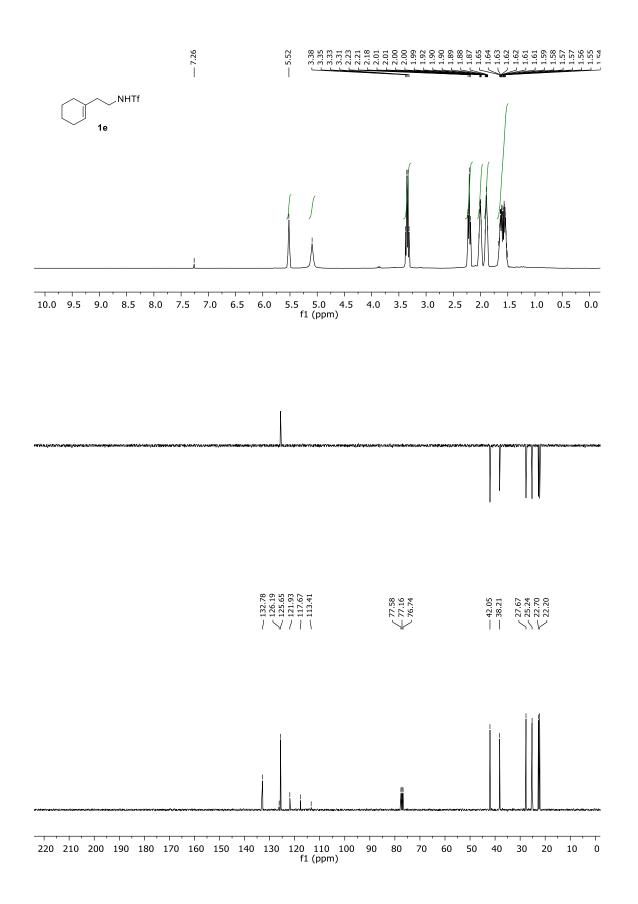
Ŧ	Peak Name	CH	tR [min]	Area [µV-sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	10	39,810	938742	10978	14,309	16,707	N/A	4680	1,175	0,767	
2	Unknown	10	42,817	5621613	54731	85,691	83,293	N/A	3734	N/A	0,998	

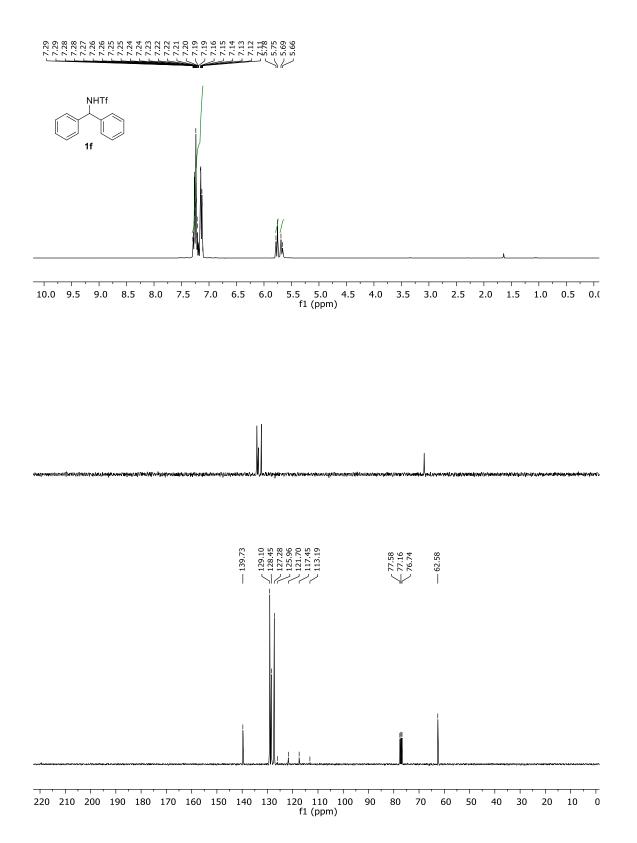

⁹ Bell, E.; Knight, D. W.; Uk, N. G. Z. R. D.; Gravestock, B. Org. Lett. **1995**, *36*, 8681–8684.

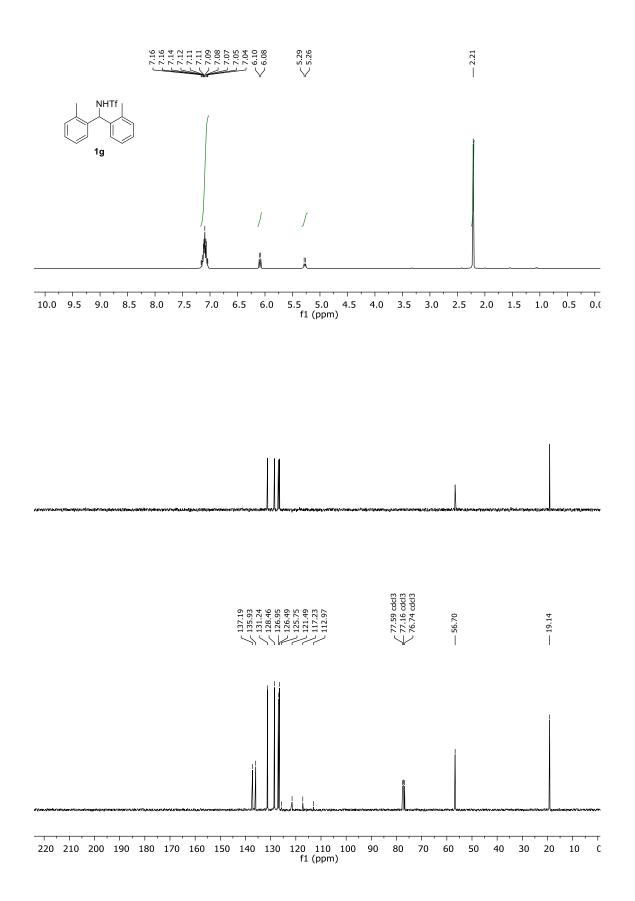

Pd-catalyzed annulation of a triflamide 1m (with two different aryl rings) with allene 2a

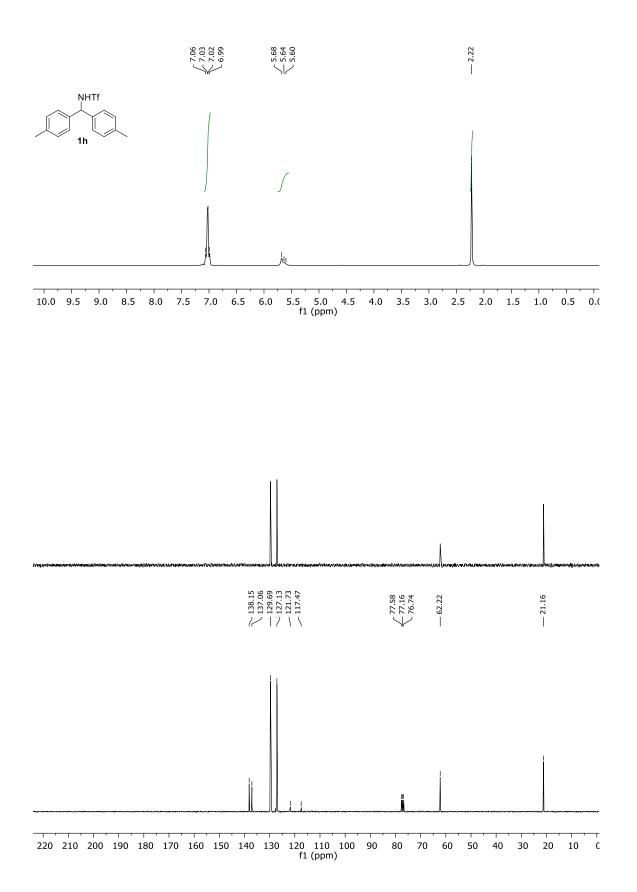


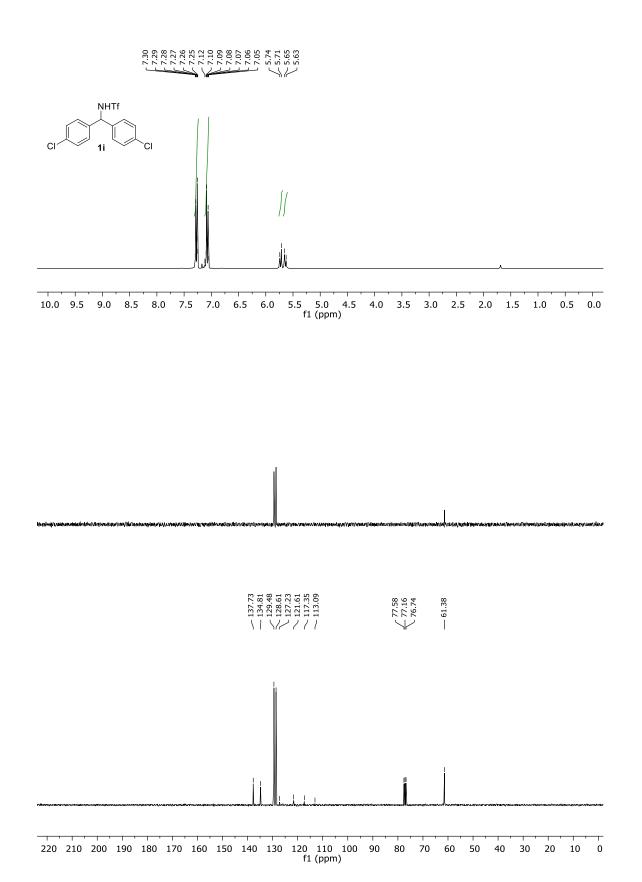

To a solution of Pd(OAc)₂ (3.7 mg, 10 mol%), 2,6-F,F-Bz-Leu-OH (18.1 mg, 40 mol%), Cu(OAc)₂·H₂O (66.7 mg, 2 equiv.), Cs₂CO₃ (81.6 mg, 1.5 equiv.) and **1m** (121.5 mg, 0.333 mmol, 2 equiv.) in toluene (2 mL), under air atmosphere, in a Schlenk tube was added the allene **2a** (18.0 mg, 0.167 mmol).The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 90 °C, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1). Obtained as a 1.6:1 inseparable mixture (70.4 mg, 90% yield, white solid). ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 6.87 (m, 7H), 5.88 (s, 0.39H), 5.83 (s, 0.61H), 4.52 – 3.88 (m, 2H), 2.41 – 2.03 (m, 6H), 1.98 – 1.82 (m, 1H), 1.54 – 1.25 (m, 4H), 1.10 – 0.69 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -75.42. ¹³C NMR (75 MHz, CDCl₃) δ 141.0 (C), 140.6 (C), 137.9 (C), 137.8 (C), 137.7 (C), 135.0 (C), 133.8 (C), 133.7 (C), 133.5 (C), 130.4 (CH) 129.8 (C), 129.7 (CH), 129.2 (CH), 129.1 (CH), 128.7 (CH), 128.5 (CH), 128.4 (CH), 128.0 (C), 127.8 (C), 127.6 (C), 127.4 (CH), 127.38 (CH), 127.11 (CH), 127.06 (CH), 118.76 (d, *J* = 125.7 Hz, C), 61.7 (CH), 61.6 (CH), 46.5 (CH₂), 46.0 (CH₂), 31.94 (CH₂), 31.89 (CH₂), 30.8 (CH₂), 30.6 (CH₂), 27.9 (CH₂), 27.4 (CH₂), 27.2 (CH₂), 26.4 (CH₂), 26.3 (CH₂), 21.6 (CH₃), 21.1 (CH₃).

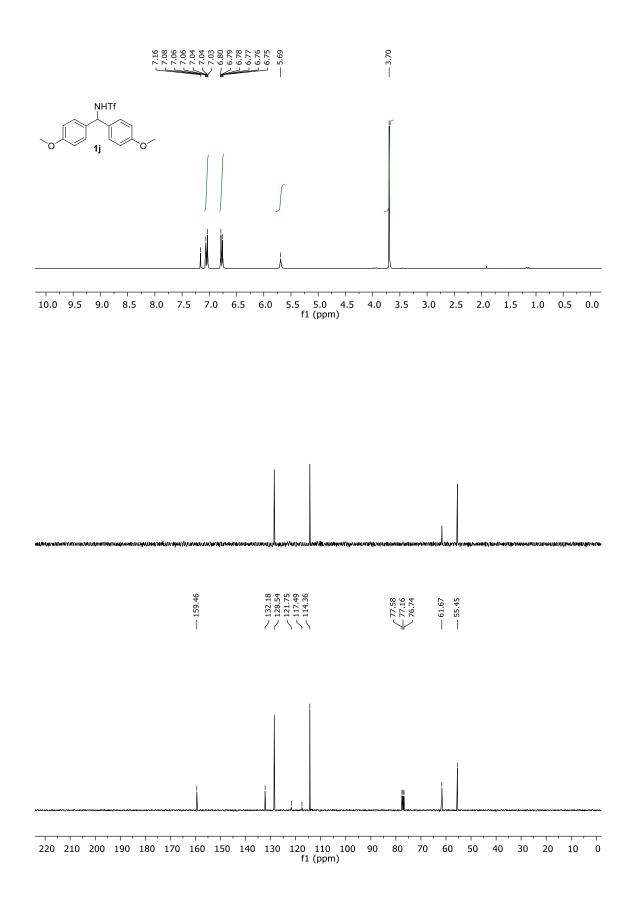

NMR SPECTRA

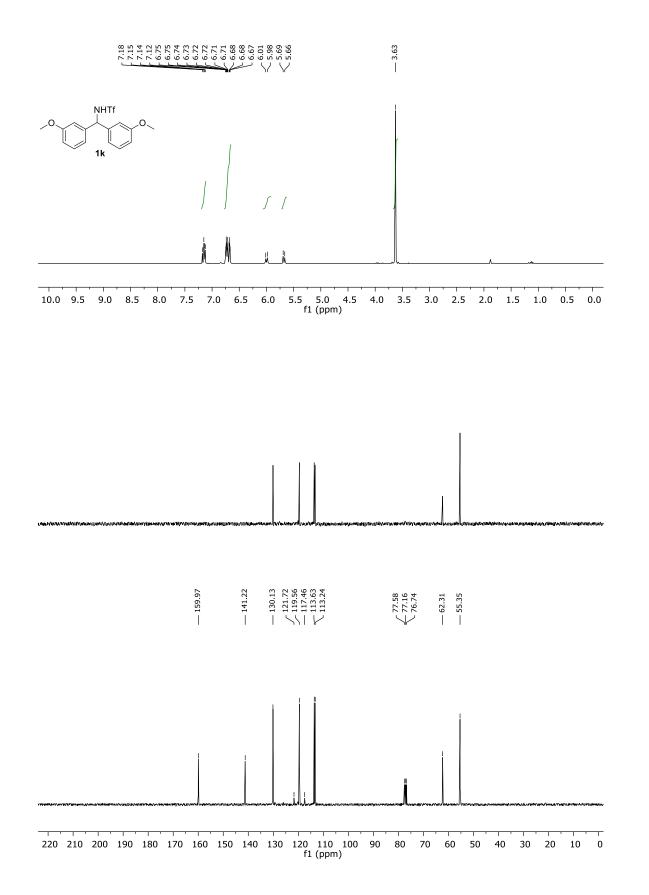


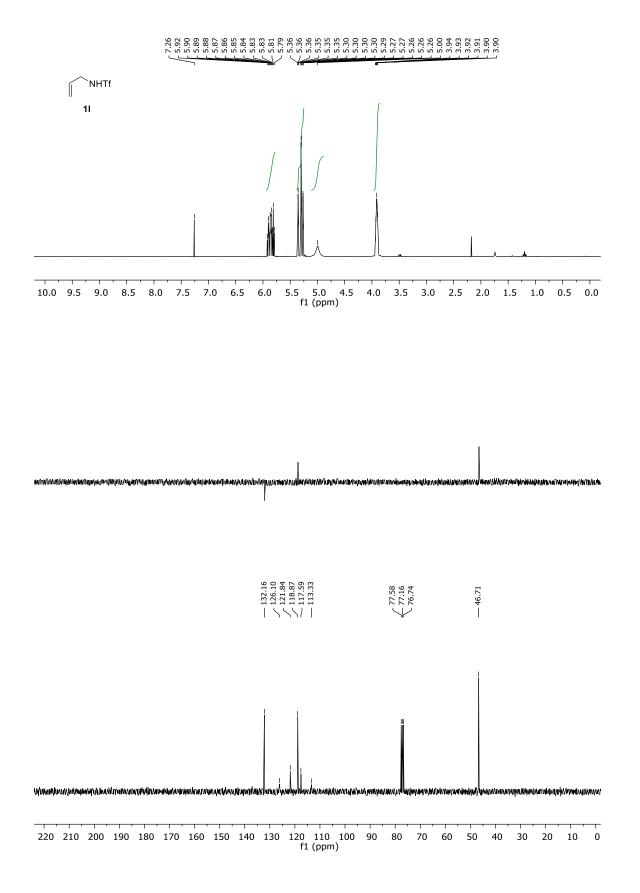


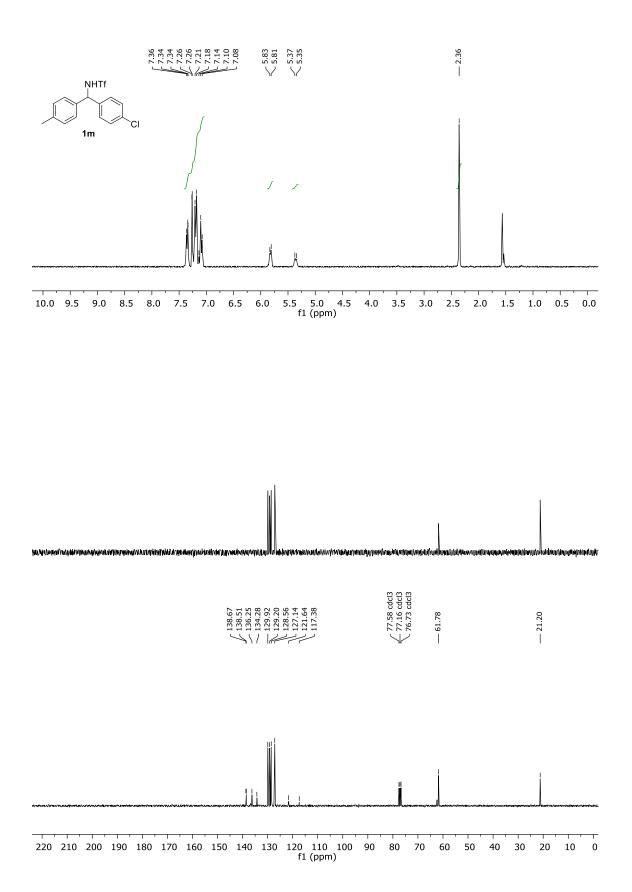


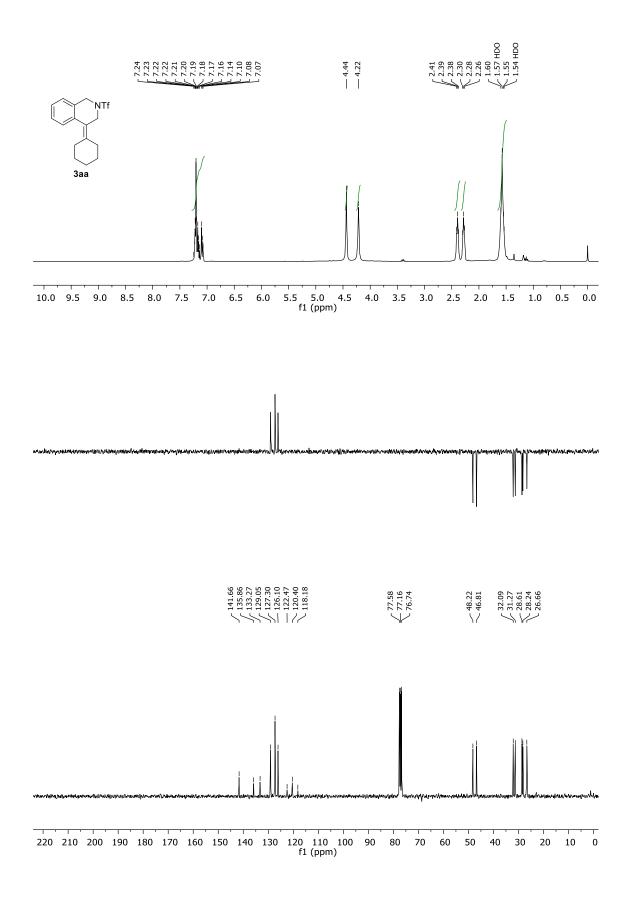


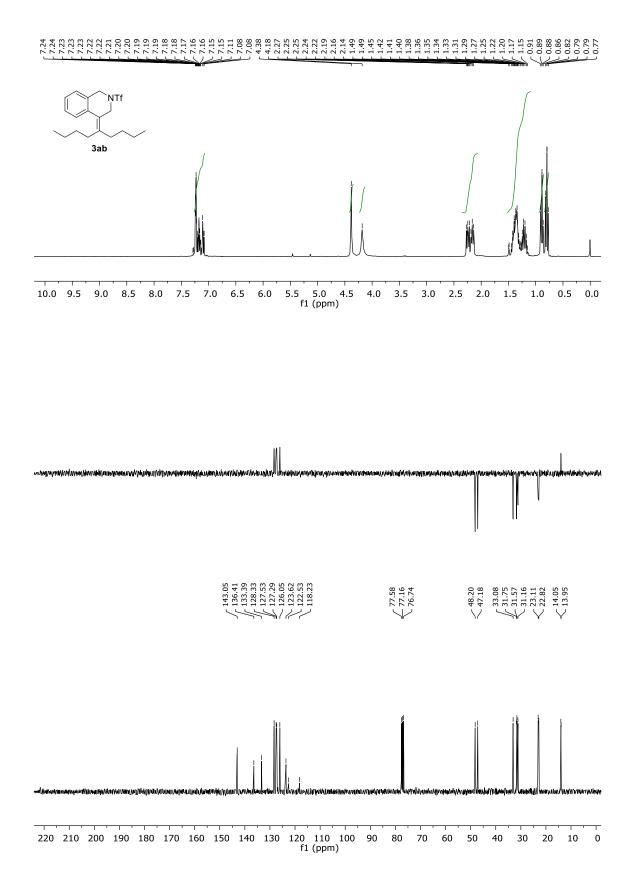


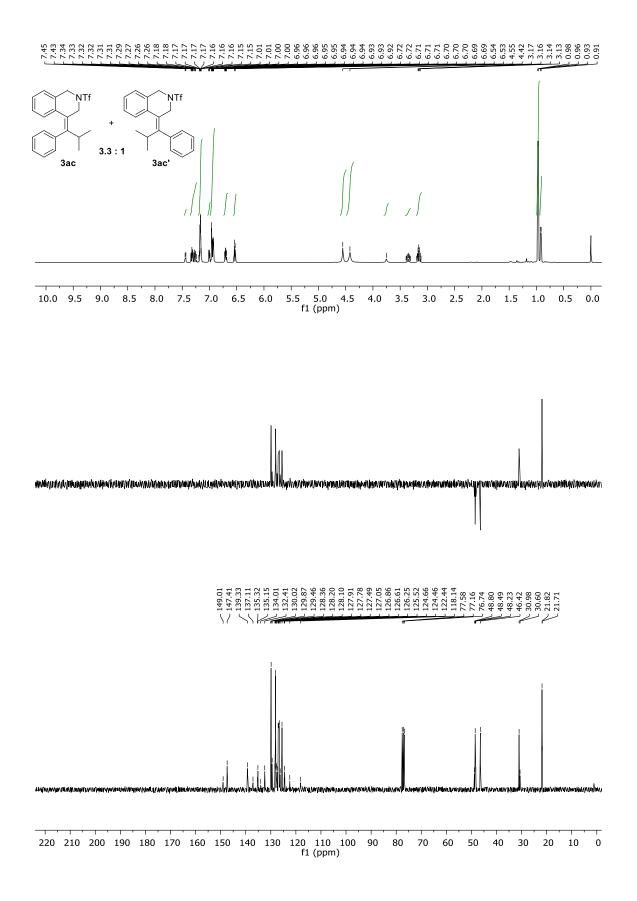


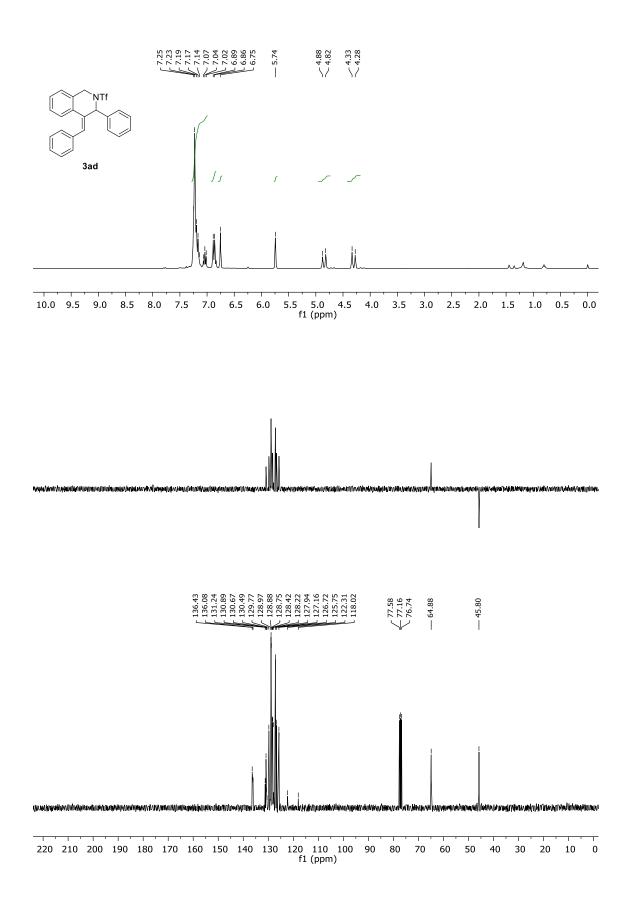


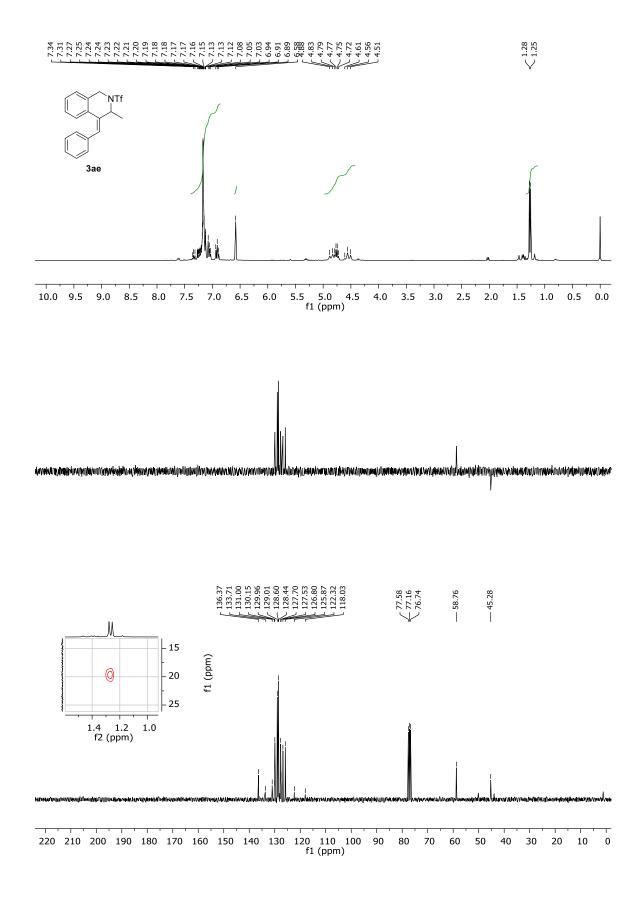


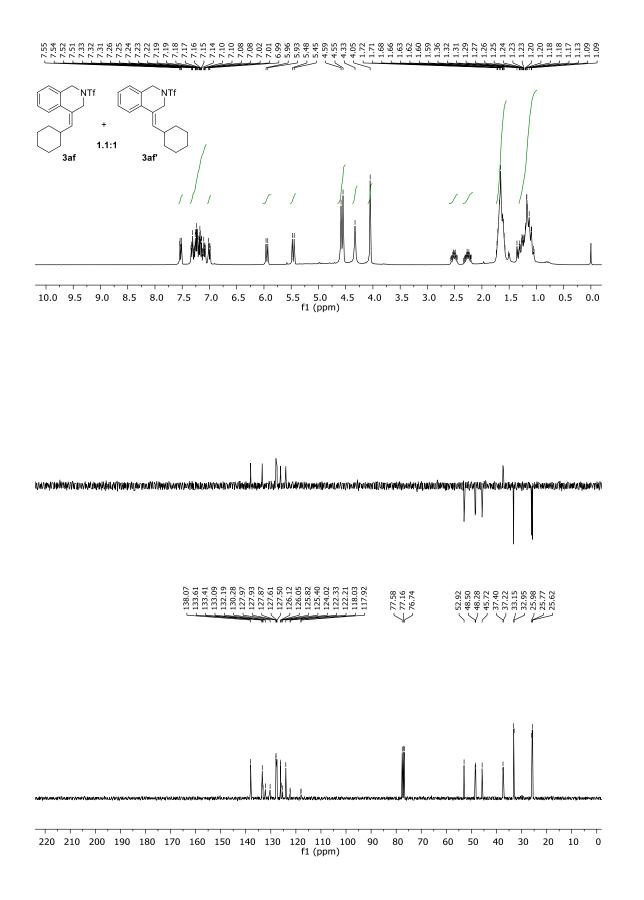


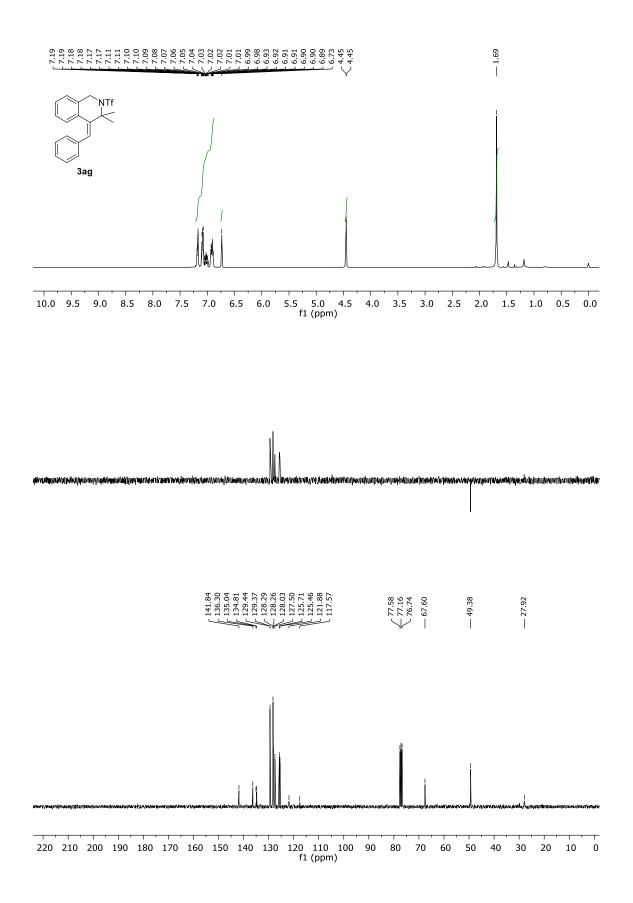


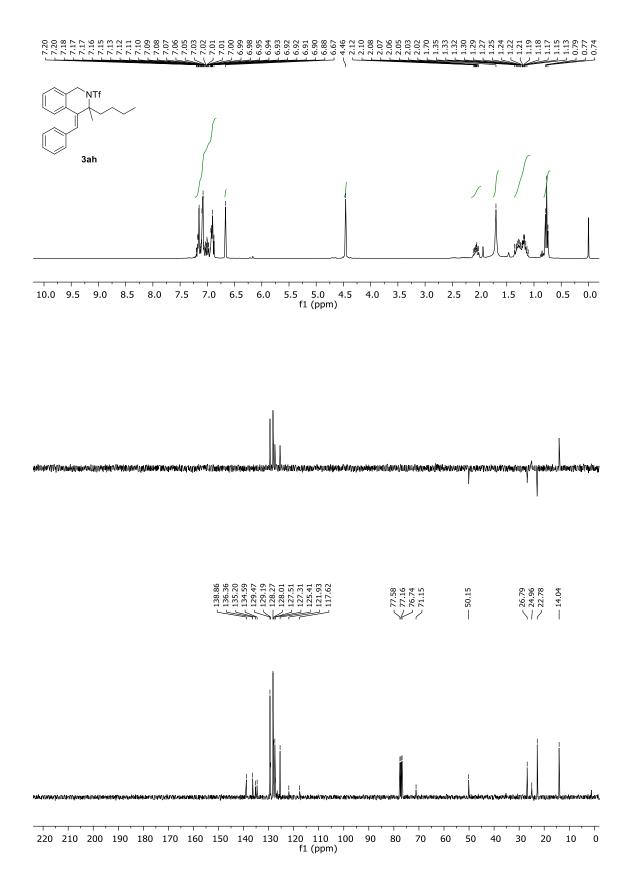


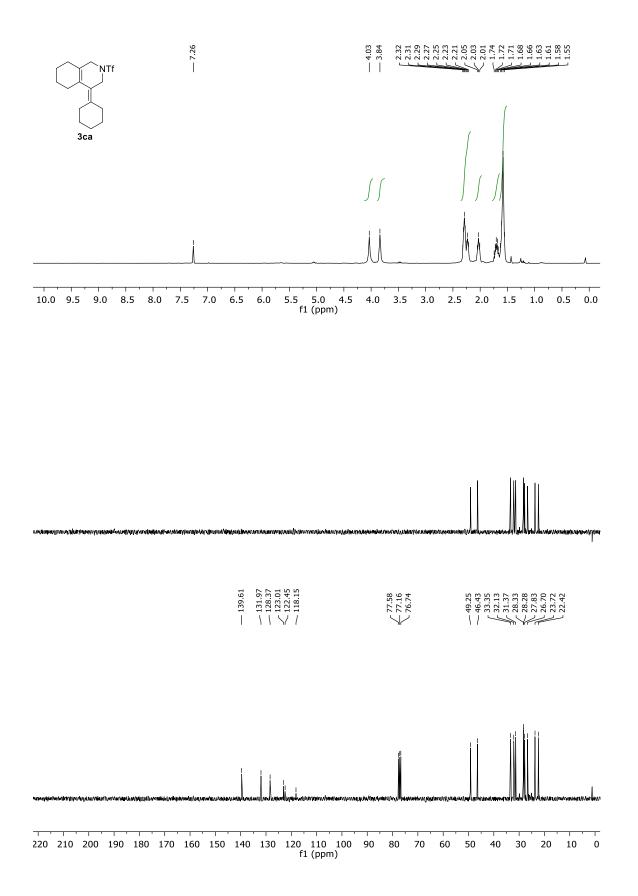


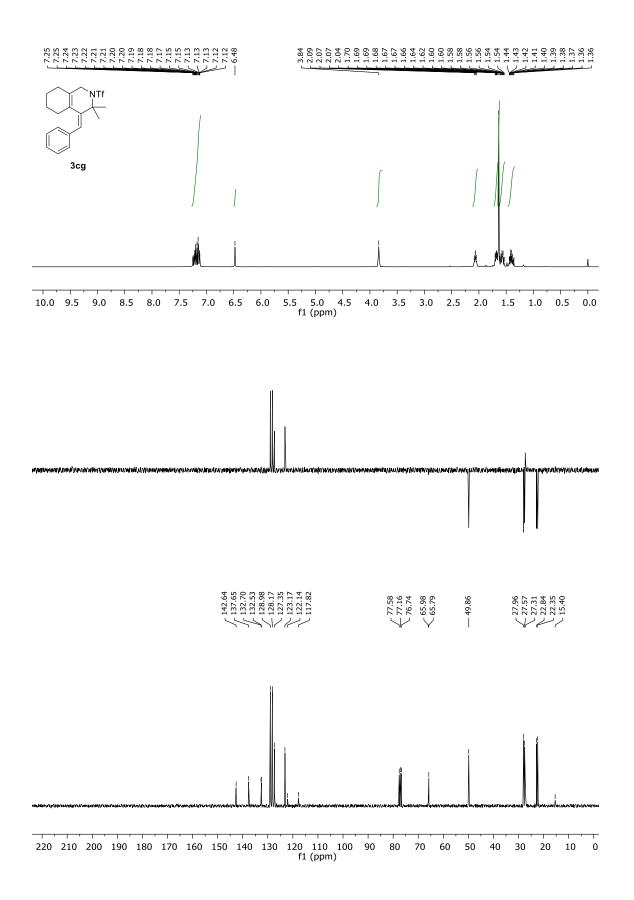


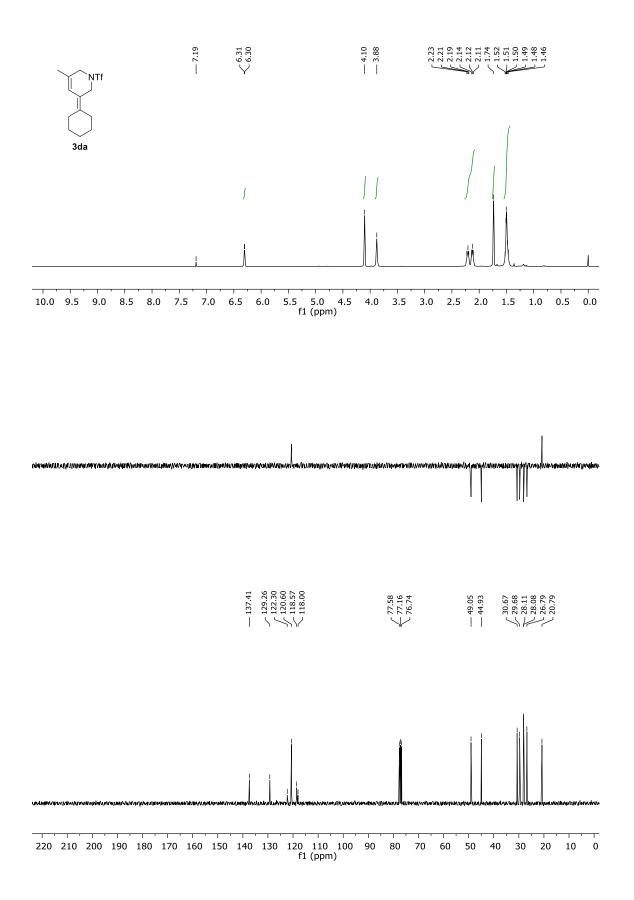


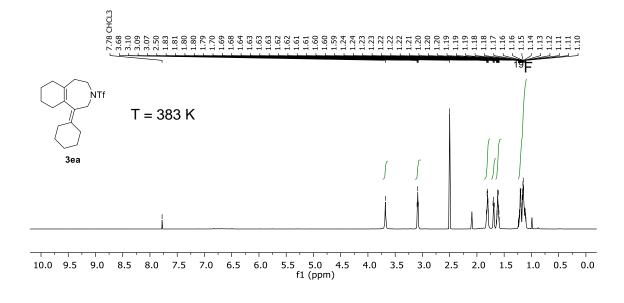


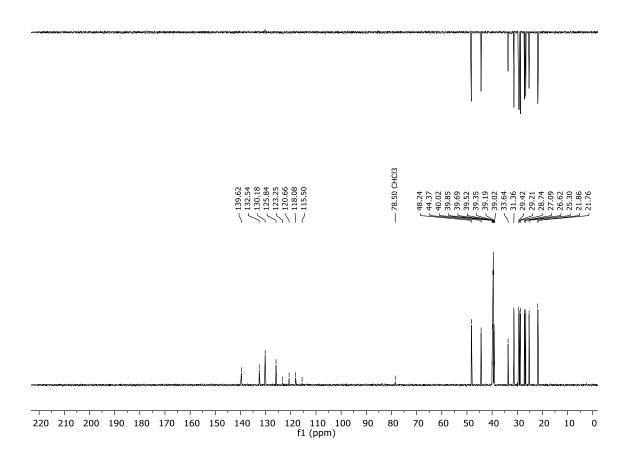


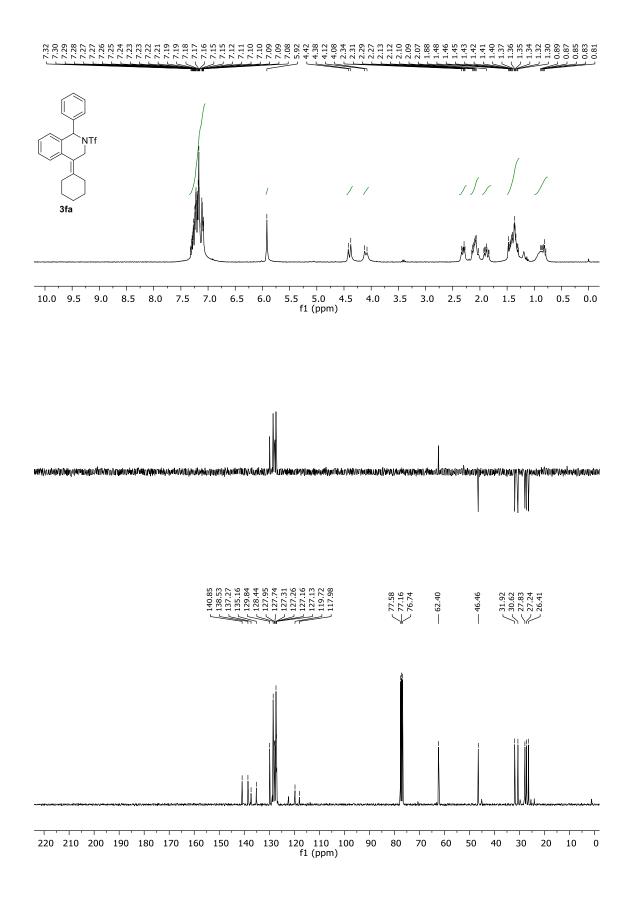


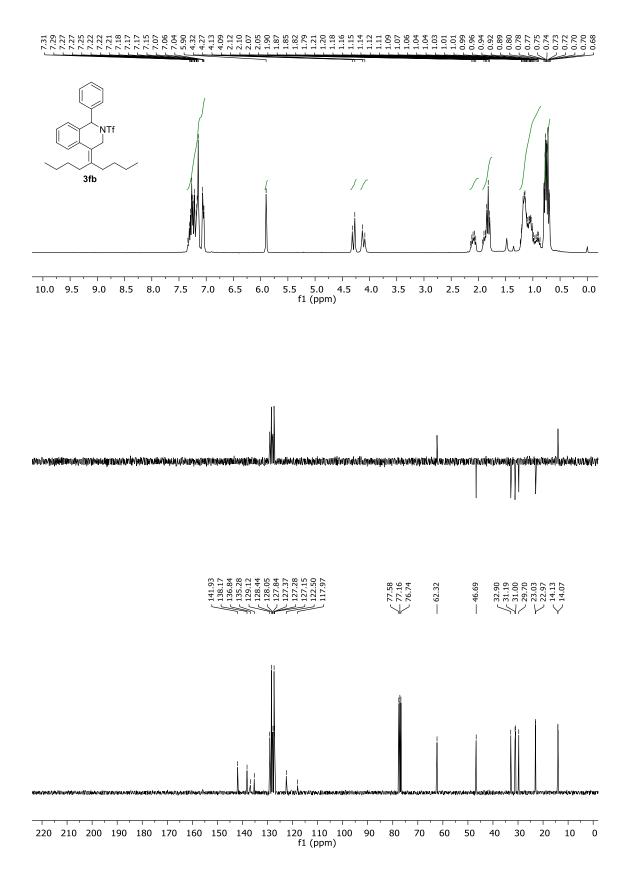


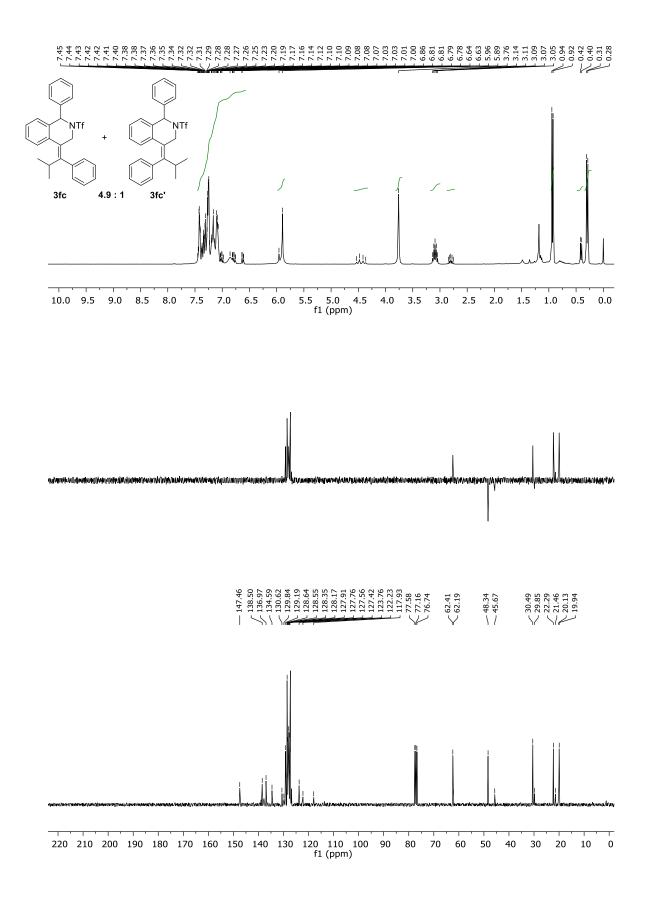


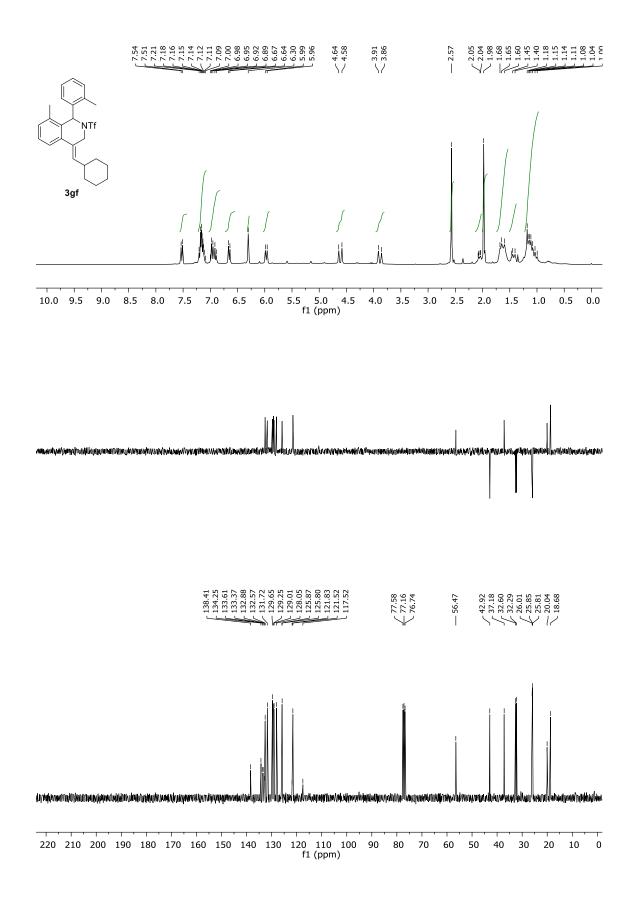


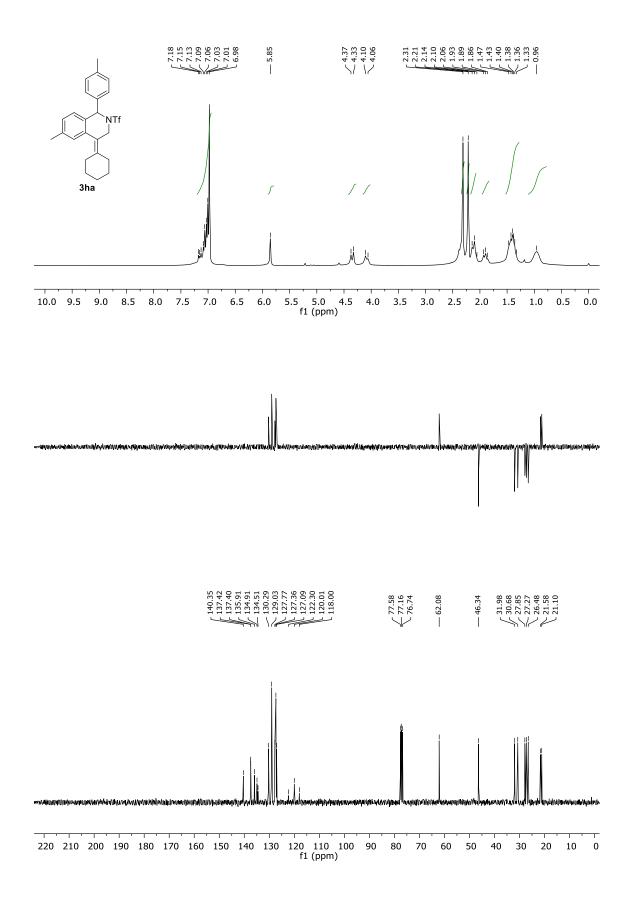


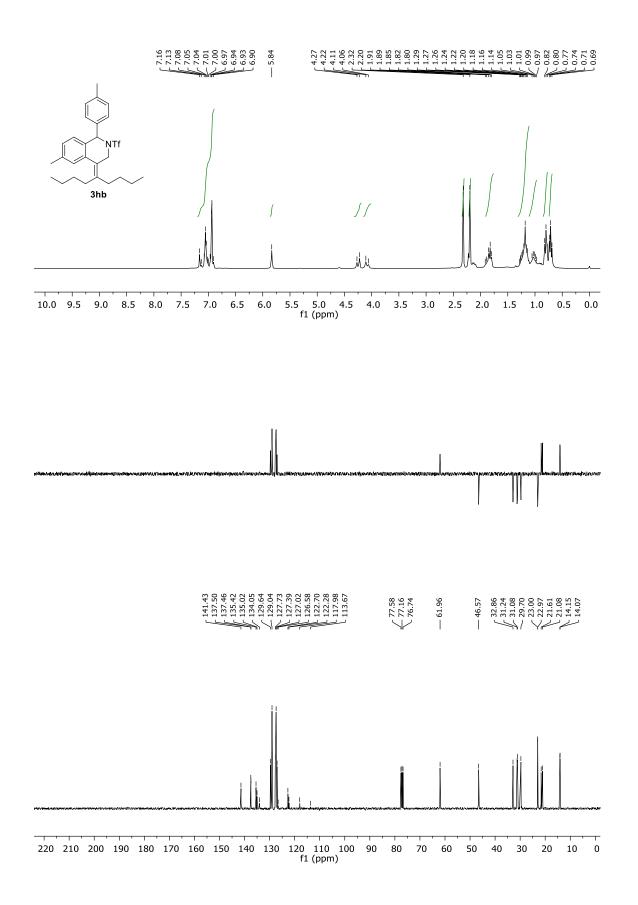


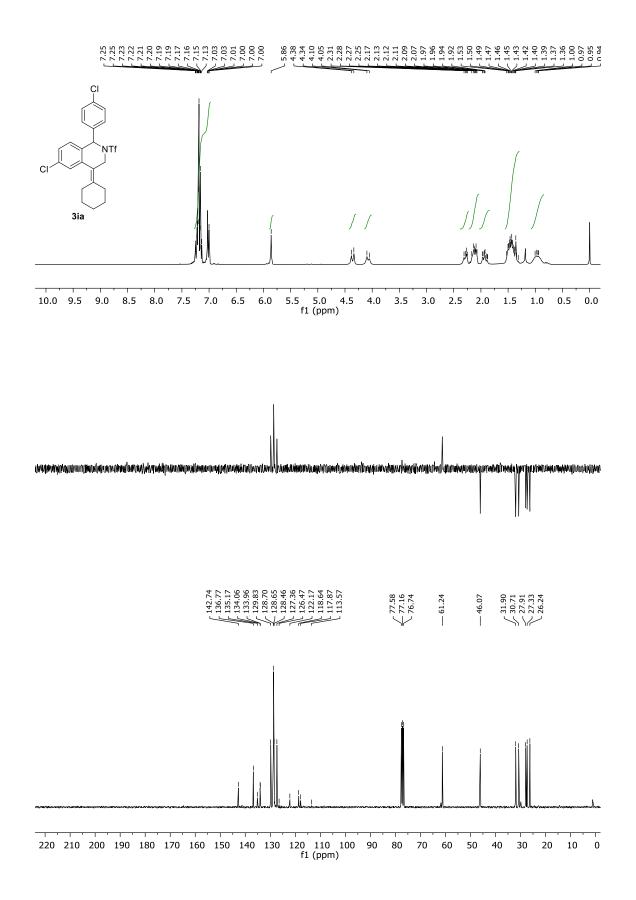


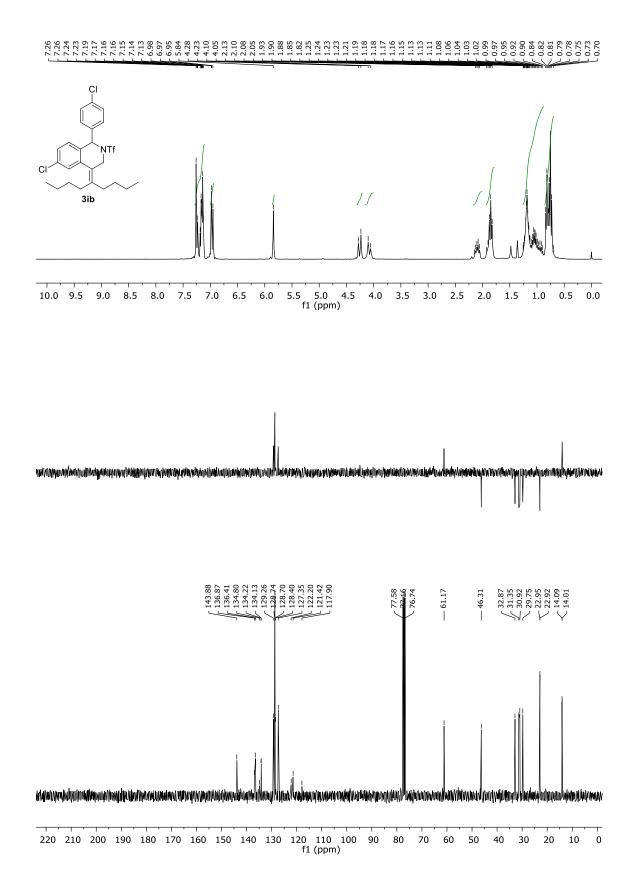


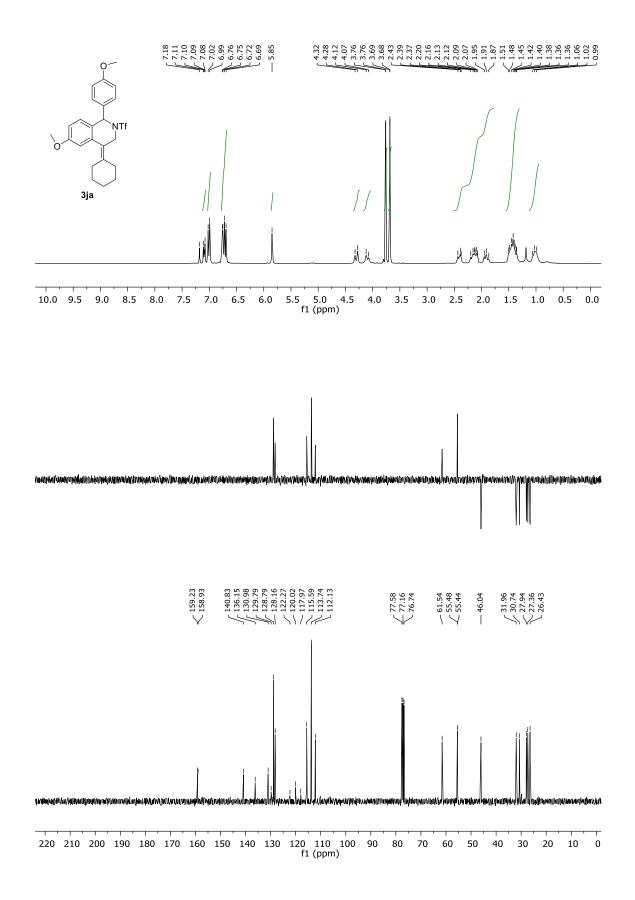


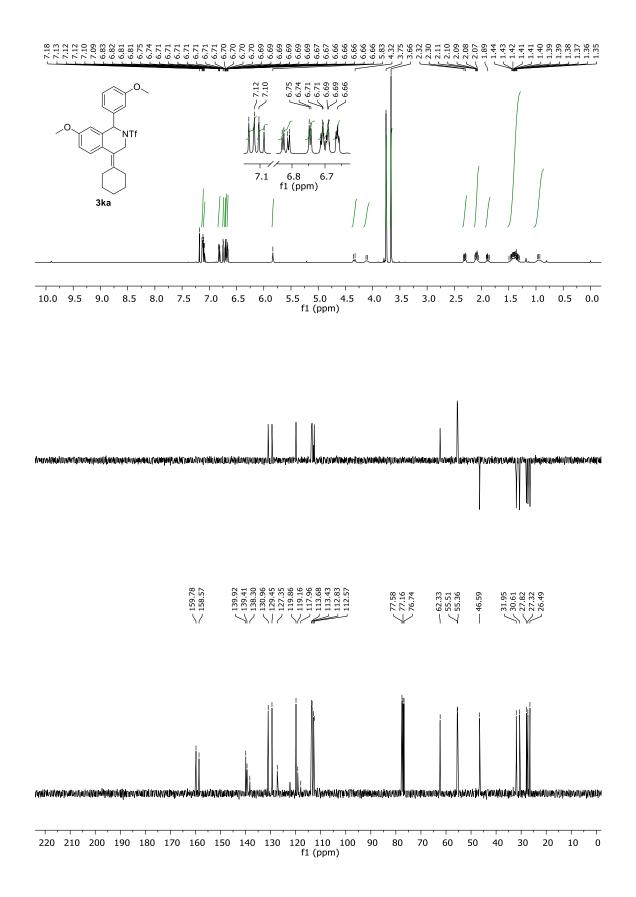


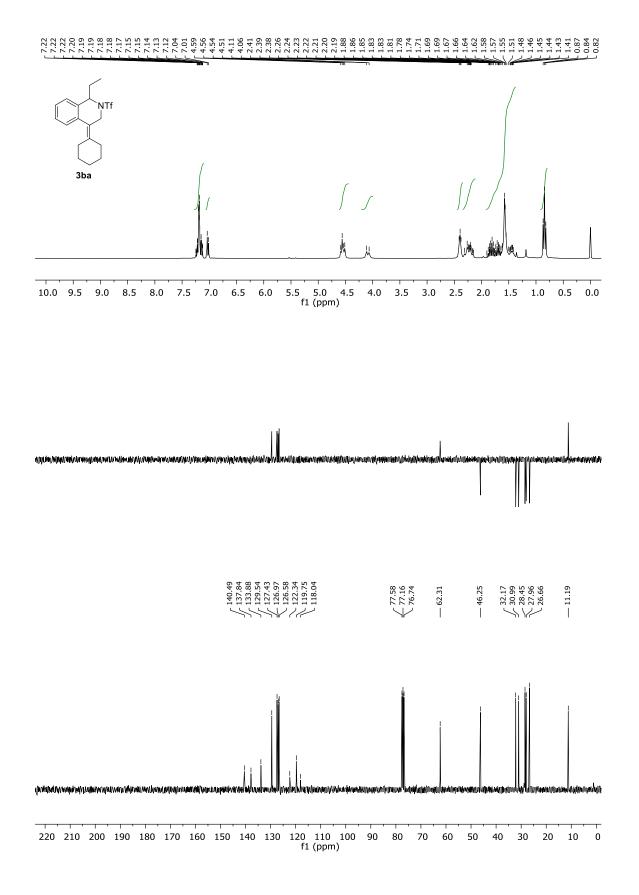


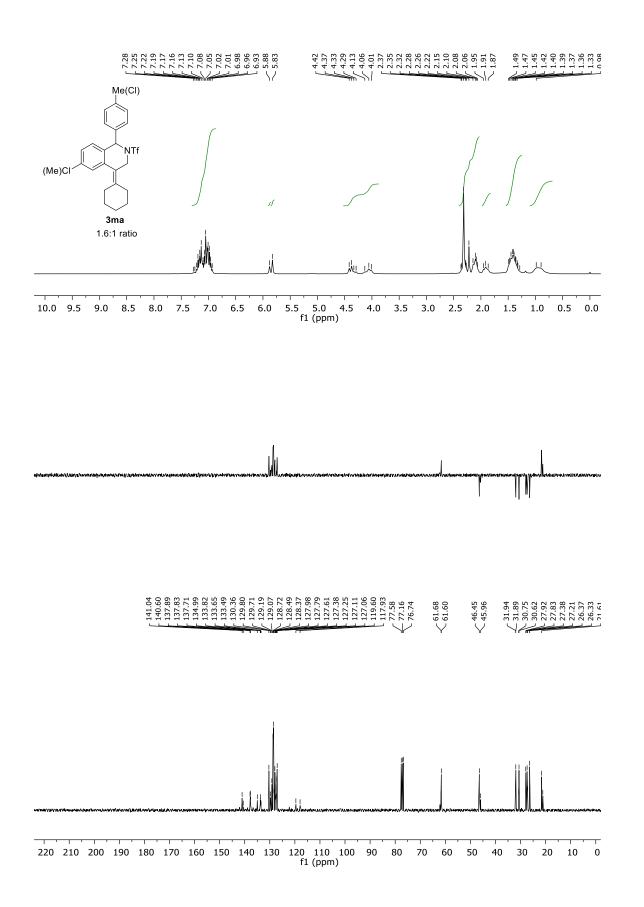












S67

