## Supporting Information

# Palladium-catalyzed, enantioselective annulation of benzyltriflimides with allenes: Straight access to enantioenriched isoquinolines 

Xandro Vidal, José L. Mascareñas,* Moisés Gulías*

e-mail: moises.gulias@usc.es; ioseluis.mascarenas@usc.es

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

## Contents

1. GENERAL EXPERIMENTAL PROCEDURES ..... S32. EXPERIMENTAL DATA
_ General procedure for the synthesis of trifyl benzylamines and trifyl allylamines ..... S4
_ General procedure for the synthesis of trifyl alkenylamines ..... S6
— General procedure for the Pd-catalyzed annulation of benzylamines/allylamines allenes ..... S9
— Procedure for the synthesis of azepine 3ea ..... S12

- Procedure for the Pd-catalyzed desymmetrization of benzylamines with allenes ..... S13
- Procedure for the kinetic resolution of benzylamines with allenes ..... S27
- Pd-catalyzed annulation of a triflamide 1 m (with two different aryl rings) with allene $\mathbf{2 a}$ ..... S28

3. NMR SPECTRA ..... S29

## General experimental procedures

Reactions were conducted in dry solvents under argon atmosphere unless otherwise stated. Dry solvents were obtained from Aldrich and used without further purification. Toluene HPLC grade used for catalysis was obtained from Fisher Chemical. $\mathrm{Pd}(\mathrm{OAc})_{2}(98 \%)$ [3375-31-3] was obtained from Strem. All other chemicals were purchased in Aldrich and used without further purification.

The abbreviation "rt" refers to reactions carried out at a temperature between $21-25{ }^{\circ} \mathrm{C}$. Reaction mixtures were stirred using Teflon-coated magnetic stir bars. High reaction temperatures were maintained using Thermowatch-controlled heating blocks. Thin-layer chromatography (TLC) was performed on silica gel plates and components were visualized by observation under UV light, and/or by treating the plates with $p$-anisaldehyde, ninhydrin, phospomolybdic or potassium permanganate solutions, followed by heating. Flash chromatography was carried out on silica gel. Dryings were performed with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

Concentration refers to the removal of volatile solvents via distillation using a Büchi rotary evaporator followed by high vacuum.

All palladium-catalyzed reactions were carried out without particular precautions to extrude moisture or oxygen.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at room temperature on a Varian 300 MHz or 500 MHz spectrometer in $\mathrm{CDCl}_{3}$ [using $\mathrm{CDCl}_{3}$ (for ${ }^{1} \mathrm{H}, \delta=7.26$ ) as internal standard]. ${ }^{19} \mathrm{~F}-\mathrm{NMR}(282 \mathrm{MHz}$ ) spectra were recorded at room temperature on a Varian 300 MHz spectrometer in $\mathrm{CDCl3}_{3}{ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature on a Varian spectrometer in $\mathrm{CDCl}_{3}$ [using $\mathrm{CDCl}_{3}$ (for ${ }^{13} \mathrm{C}, \delta=77.160$ ) as internal standard]. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, brs = broad singlet. Carbon types and structure assignments were determined from DEPT-NMR and two dimensional experiments (HSQC and HMBC, COSY and NOESY). NMR spectra were analyzed using MestReNova ${ }^{\oplus}$ NMR data processing software (www.mestrelab.com). Mass spectra were acquired using electrospray ionization (ESI, ion polarity positive) or atmospheric pressure chemical ionization (APCI) and were recorded at the CACTUS facility of the University of Santiago de Compostela on Bruker micrOTOF. Melting points were measured on a Büchi Melting Point B-560 apparatus.

Enantiomeric ratios (er) were determined on an Agilent HPLC 1100 Series or on a Jasco SFC 4000 series using commercially available chiral colums. All racemic products were prepared under the same procedure than the chiral products but with the employment of a racemic amino acid.

X-ray crystallographic analysis of 3ga and 3ba was performed at the CACTUS facility of the University of Santiago de Compostela.

Amounts of isolated products are indicated independently of the scale used.

Allene 2a (vinylidenecyclohexane) and allene $\mathbf{2 f}$ (propa-1,2-dien-1-ylcyclohexane) were purchased from Aldrich. Allene 2b (5-vinylidenenonane), allene 2c ((4-methylpenta-1,2-dien-3-yl)benzene), allene 2d (1,3-diphenylpropa-1,2-diene), allene $\mathbf{2 e}$ (buta-1,2-dien-1-ylbenzene), allene $\mathbf{2 g}$ ((3-methylbuta-1,2-dien-1-yl)benzene) and allene $\mathbf{2 h}$ ((3-methylhepta-1,2-dien-1-yl)benzene) were prepared according procedures reported in the literature ${ }^{1}$.


## General procedure for the synthesis of benzylamines:

Benzylamine, 1-phenylpropan-1-amine, diphenylmethanamine, bis(4-methoxyphenyl)methanamine, bis(3methoxyphenyl)methanamine and 2-(cyclohex-1-en-1-yl)ethan-1-amine were commercially available. All noncommercial benzylamines were synthesized with a method previously reported in literature. ${ }^{2}$ All spectral data recorded for known compounds were in agreement with those in the corresponding literature ${ }^{3}$.

General procedure for the synthesis of the trifyl benzylamines (1a-1b, 1f-1m) and triflyl allylamines (1e and 1I), from the precursor amines, exemplified for 1a


1a

To a solution of benzylamine ( $2 \mathrm{~mL}, 18.31 \mathrm{mmol}$ ) in dichloromethane ( 36.6 mL ) under argon atmosphere was added triethylamine ( $2.55 \mathrm{~mL}, 18.31 \mathrm{mmol}$ ) at $-12^{\circ} \mathrm{C}$. After the solution was stirred 5 minutes at that temperature, trifluoromethanesulfonic anhydride ( $3.23 \mathrm{~mL}, 19.22 \mathrm{mmol}$ ) was added dropwise. The reaction was stirred for 1 h at that temperature before being quenched with water. The organic layer was separated and the aqueous layer extracted with dichloromethane. The combined organic phase was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and column chromatography on silica gel (hexanes:diethylether; 80:20) afforded N-benzyl-1,1,1trifluoromethanesulfonamide (1a) as a white solid (3.97g, 91\%). Mp: 43-44 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-$ $7.18(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{brs}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.64 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 135.3(\mathrm{C}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 119.8(\mathrm{q}, ~ J=320.9 \mathrm{~Hz}, \mathrm{C}), 48.3\left(\mathrm{CH}_{2}\right)$. HRMS [APCI]: m/z calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 238.0144, found 238.0145.

## 1,1,1-trifluoro- $\mathbf{N}$-(1-phenylpropyl)methanesulfonamide (1b)

[^0]( $836 \mathrm{mg}, 84 \%$ yield), obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.34-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H})$, $5.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-78.03 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.2(\mathrm{C}), 129.1(\mathrm{CH}), 128.4(\mathrm{CH}), 126.3(\mathrm{CH}), 120.0(\mathrm{~d}, \mathrm{~J}=320.9 \mathrm{~Hz}$, C), $61.6(\mathrm{CH}), 31.0\left(\mathrm{CH}_{2}\right), 10.6\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 290.0433$, found 290.0433. Data in agreement with those reported in literature. ${ }^{4}$

## N -(2-(cyclohex-1-en-1-yl)ethyl)-1,1,1-trifluoromethanesulfonamide (1e)


( $433 \mathrm{mg}, 84 \%$ yield), obtained as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.46$ (brs, 1 H ), 5.03 (brs, 1 H ), $3.28(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $-1.49(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-78.00 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.8(\mathrm{C}), 125.7$ $(\mathrm{CH}), 119.8(\mathrm{q}, ~ J=321.2 \mathrm{~Hz}, \mathrm{C}), 42.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$ : 258.0770, found 258.0769.

## N-benzhydryl-1,1,1-trifluoromethanesulfonamide (1f)


( $1.62 \mathrm{~g}, 63 \%$ yield), obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.31-7.11$ (m, 10H), 5.77 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-77.31 .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.7(\mathrm{C}), 129.1(\mathrm{CH}), 128.4(\mathrm{CH}), 127.3(\mathrm{CH}), 119.5\left(\mathrm{q}, \mathrm{J}=321.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right) 62.5(\mathrm{CH})$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 338.0443$, found 338.0440. Data in agreement with those reported in literature. ${ }^{5}$

N -(di-o-tolylmethyl)-1,1,1-trifluoromethanesulfonamide (1g)


1 g
$\left(2.60 \mathrm{~g}, 80 \%\right.$ yield), obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.09$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$ ) $\delta-77.42 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.2(\mathrm{C}), 136.0(\mathrm{C}), 131.2(\mathrm{CH}), 128.5(\mathrm{CH}), 127.0(\mathrm{CH}), 126.5(\mathrm{CH}, 119.4$ ( $q, J=321.2 \mathrm{~Hz}, \mathrm{C}$ ), $56.7(\mathrm{CH}), 19.1\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 366.0746, found 336.0749. Data in agreement with those reported in literature. ${ }^{5}$
$N$-(di-p-tolylmethyl)-1,1,1-trifluoromethanesulfonamide (1h)

( $1.95 \mathrm{~g}, 70 \%$ yield), obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09-6.97(\mathrm{~m}, 8 \mathrm{H})$, $5.75-5.54(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.69 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) б 138.2 (C), 137.1 (C), 129.7 (CH), 127.1 (CH), 119.6 (d, J=321.0 Hz, C), $62.2(\mathrm{CH}), 21.2\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 366.0746$, found 336.0743 . Data in agreement with those reported in literature. ${ }^{5}$

## $N$-(bis(4-chlorophenyl)methyl)-1,1,1-trifluoromethanesulfonamide (1i)


( $2.92 \mathrm{~g}, 74 \%$ yield), obtained as a white solid. $\mathrm{Mp}: 105-107{ }^{\circ} \mathrm{C}$ C. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 4 \mathrm{H}), 5.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl 3 ) $\delta-77.64 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.7$ (C), 134.8 (C), 129.5 $(\mathrm{CH}), 128.6(\mathrm{CH}), 119.5(\mathrm{q}, J=321.0 \mathrm{~Hz}, \mathrm{C}), 61.4(\mathrm{CH})$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 405.9654$, found 405.9656 .

[^1]
## N -(bis(4-methoxyphenyl)methyl)-1,1,1-trifluoromethanesulfonamide (1j)


( $302 \mathrm{mg}, 24 \%$ yield), obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.09-7.02$ (m, $4 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 4 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl 3$) \delta-77.90 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.5(\mathrm{C}), 132.2(\mathrm{C}), 128.5(\mathrm{CH}), 119.6$ (d, $\left.J=321.1 \mathrm{~Hz}, \mathrm{C}\right), 114.4$ (C), 61.67 (C), $55.5\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 398.0644, found 398.0641. Data in agreement with those reported in literature. ${ }^{5}$

## $N$-(bis(3-methoxyphenyl)methyl)-1,1,1-trifluoromethanesulfonamide (1k)


( $325 \mathrm{mg}, 84 \%$ yield), obtained as a white solid. $\mathrm{Mp}: 86-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.65(\mathrm{~m}, 5 \mathrm{H}), 6.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (s, 6H). ${ }^{19}$ F NMR (282 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-77.82 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.0(\mathrm{C})$, $141.2(\mathrm{C}), 130.1(\mathrm{CH}), 119.6(\mathrm{~d}, \mathrm{~J}=321.1 \mathrm{~Hz}), 119.6(\mathrm{CH}), 113.6(\mathrm{CH}), 113.2(\mathrm{CH}), 62.3(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 376.0825$, found 376.0825 .

## N -allyl-1,1,1-trifluoromethanesulfonamide (11)



11
$\left(1.35 \mathrm{~g}, 82 \%\right.$ yield), obtained as a transparent oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.86$ (ddt, $J=17.1,10.2$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{brs}, 1 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$ ) $\delta-78.02$ (d, $J=16.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.16(\mathrm{CH}), 119.72(\mathrm{q}, J=320.8 \mathrm{~Hz}, \mathrm{C}), 118.87\left(\mathrm{CH}_{2}\right)$, $46.71\left(\mathrm{CH}_{2}\right)$.

## N -((4-chlorophenyl)(p-tolyl)methyl)-1,1,1-trifluoromethanesulfonamide (1m)

$(0.57 \mathrm{~g}, 72 \%$ yield $)$, obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.03(\mathrm{~m}$,
$8 \mathrm{H}), 5.82(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 77.67 .{ }^{13} \mathrm{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.7(\mathrm{C}), 138.5(\mathrm{C}), 136.3(\mathrm{C}), 134.3(\mathrm{C}), 129.9(\mathrm{CH})$,
$129.2(\mathrm{CH}), 128.6(\mathrm{CH}), 127.1(\mathrm{CH}), 119.5(\mathrm{~d}, \mathrm{~J}=321.1 \mathrm{~Hz}, \mathrm{C}), 61.8(\mathrm{CH}), 21.2\left(\mathrm{CH}_{3}\right)$.

General procedure for the synthesis of the triflyl alken-amines 1c-1d from the corresponding alcohols, exemplified for 1 c .

2-methylprop-2-en-1-ol was commercially available. Cyclohex-1-en-1-ylmethanol was synthesized with a method previously reported in literature. ${ }^{6}$ All spectral data recorded agreed with those in the corresponding literature ${ }^{7}$.


To a solution of cyclohex-1-en-1-ylmethanol ( $801.4 \mathrm{mg}, 7.145 \mathrm{mmol}$ ), trifluoromethane sulfonamide ( 2.13 g , 2 equiv.), and triphenylphosphine ( $3.75 \mathrm{~g}, 2$ equiv.) in THF ( 25 mL ) at $0^{\circ} \mathrm{C}$ was added DEAD ( $5.6 \mathrm{~mL}, 40 \%$ in toluene, 2 equiv.). The reaction mixture was stirred at room temperature overnight, and was quenched with water, then diluted with ethyl acetate. The combined organic phases were washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and column

[^2]chromatography on silica gel (hexanes:diethylether; 90:10) afforded $\mathbf{N}$-(cyclohex-1-en-1-ylmethyl)-1,1,1trifluoromethanesulfonamide 1 c as a yellow oil ( $0.80 \mathrm{~g}, 46 \%$ ). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.65$ (brs, 1 H$), 4.98$ (brs, $1 \mathrm{H}), 3.67(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl 3$) \delta-77.84 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.2(\mathrm{C}), 126.9(\mathrm{CH}), 119.8(\mathrm{q}, J=321.2 \mathrm{~Hz}, \mathrm{C}), 50.8\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right)$, $22.1\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 266.0433$, found 266.0432.

## 1,1,1-trifluoro- N -(2-methylallyl)methanesulfonamide (1d)


( $0.94 \mathrm{~g}, 33 \%$ yield), obtained as a transparent oil. ${ }^{1} \mathbf{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.01$ (brs, 1 H ), 4.94 - 4.90 ( $\mathrm{m}, 2 \mathrm{H}$ ) , $3.74(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.83 .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.6(\mathrm{C}), 119.8(\mathrm{~d}, \mathrm{~J}=321.2 \mathrm{~Hz}, \mathrm{C}), 113.9\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: m/z calculated $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 204.0301, found 204.0300.

## Procedure for the synthesis of N -(2,6-difluorobenzoyl)-L-leucine ${ }^{8}$



To a 25 mL round bottom flask with stir bar was added L-leucine ( $1.11 \mathrm{~g}, 8.496 \mathrm{mmol}$ ), sodium hydroxide ( $2.52 \mathrm{~g}, 7.4$ equiv), and water ( 15.5 mL ). The mixture was stirred at room temperature until homogeneous before cooling to $0^{\circ} \mathrm{C}$ in an ice bath. Upon cooling, 2,6-difluorobenzoyl chloride ( $1.07 \mathrm{~mL}, 8.496 \mathrm{mmol}$ ) was added dropwise to the mixture. After 1 hour, the reaction mixture was allowed to warm to room temperature and pH adjusted to $\sim 3.0$ with hydrochloric acid ( $36 \%$ w/w). The precipitate was filtered and washed with cold water and then dried with a high-vacuum pump to give $\mathbf{N}$ -(2,6-difluorobenzoyl)-L-leucine as a white solid ( $2.10 \mathrm{~g}, 91 \%$ yield). Spectral data recorded were in agreement with those in the corresponding literature. ${ }^{8}{ }^{1} \mathrm{H}$ NMR ( 300 MHz , DMSO-d6) $\delta 12.63$ (brs, 1 H ), $8.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-$ $7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.27(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.41(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 6 \mathrm{H})$.

[^3]

| Entry | R | Solvent | Base | Temp | Ligand $\mathbf{L}^{\text {b }}$ | Yield ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tf | t-AmyOH | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) | $80{ }^{\circ} \mathrm{C}$ | - | 15\% |
| 2 | Tf | Dioxane | $\mathrm{Cs} 2_{2} \mathrm{CO}_{3}(1.5$ equiv) | $80{ }^{\circ} \mathrm{C}$ | - | 23\% |
| 3 | Tf | DCE | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) | $80{ }^{\circ} \mathrm{C}$ |  | 24\% |
| 4 | Tf | $\mathrm{CH}_{3} \mathrm{CN}$ | $\mathrm{Cs} 2_{2} \mathrm{CO}_{3}(1.5$ equiv) | $80{ }^{\circ} \mathrm{C}$ | - | 9\% |
| 5 | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90^{\circ} \mathrm{C}$ | - | 25\% |
| $6^{\text {d }}$ | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) | $90^{\circ} \mathrm{C}$ | - | 34\% |
| 7 | Tf | Toluene | - | $90{ }^{\circ} \mathrm{C}$ | - | 28\% |
| 8 | Tf | Toluene | $E t_{3} \mathrm{~N}$ (2 equiv.) | $90{ }^{\circ} \mathrm{C}$ | - | 35\% |
| 9 | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) | $90{ }^{\circ} \mathrm{C}$ | Boc-Ala-OH | 58\% |
| 10 | Tf | Toluene | $\mathrm{Cs} 2_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90{ }^{\circ} \mathrm{C}$ | Boc-Val-OH | 69\% |
| 11 | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90^{\circ} \mathrm{C}$ | Boc-Leu-NHOMe | 37\% |
| 12 | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) | $90^{\circ} \mathrm{C}$ | Boc-Phe-NHOMe | 31\% |
| 13 | Tf | Toluene | $\mathrm{Cs} 2_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90^{\circ} \mathrm{C}$ | 2,6-F,F-Bz-Leu-OH | 85\% |
| $14^{d}$ | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) | 90응 | 2,6-F,F-Bz-Leu-OH | 95\%e |
| $15^{d}$ | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90^{\circ} \mathrm{C}$ | 2,6-F,F-Bz-Leu-OH | 86\% ${ }^{\text {e,f }}$ |
| $16^{d}$ | Ac | Toluene | $\mathrm{Cs} 2_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90{ }^{\circ} \mathrm{C}$ | 2,6-F,F-Bz-Leu-OH | No reaction |
| $17^{d}$ | Me | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90{ }^{\circ} \mathrm{C}$ | 2,6-F,F-Bz-Leu-OH | No reaction |
| $18^{d}$ | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90^{\circ} \mathrm{C}$ | 2,6-F,F-Bz-Leu-OH | 95\% ${ }^{\text {g }}$ |
| 19 | Tf | Toluene | $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.5$ equiv) | $90^{\circ} \mathrm{C}$ | 2,6-F,F-Bz-Leu-OH | $31 \%{ }^{\text {g }}$ |

${ }^{\text {a }}$ Conditions: $0.333 \mathrm{mmol} \mathbf{1 a}, 0.167 \mathrm{mmol}$ of allene $\mathbf{2 a}, 2 \mathrm{~mL}$ of solvent, under air, $16 \mathrm{~h} .{ }^{b} 40 \%$ of ligand. ${ }^{c}$ Yields calculated by using an internal standard. ${ }^{d} 15$ equiv of DMSO added ${ }^{e}$ Isolated yield based on 2a. ${ }^{\dagger} 0.5$ equiv. of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{g}$ Reaction performed during 40 minutes.

General procedure for the Pd-catalyzed annulation of benzylamines, alkenyl and allylamines with allenes, exemplified for 3aa:


To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}\left(3.7 \mathrm{mg}, 10 \mathrm{~mol} \%\right.$ ), 2,6-F,F-Bz-Leu-OH (18.1 mg, $40 \mathrm{~mol} \%$ ), $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(66.7 \mathrm{mg}, 2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $81.6 \mathrm{mg}, 1.5$ equiv.) and $\mathbf{1 a}$ ( $79.9 \mathrm{mg}, 0.333 \mathrm{mmol}$, 2 equiv.) in toluene ( 2 mL ), under air atmosphere, in a Schlenk tube was added the allene $\mathbf{2 a}(18.0 \mathrm{mg}, 0.167 \mathrm{mmol})$. The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at $90^{\circ} \mathrm{C}$, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded 4-cyclohexylidene-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3aa) as a white solid ( $54.8 \mathrm{mg}, 95 \%$ yield) Mp: 66-67 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.28-7.04(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H})$, $2.45-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-75.78 .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}$ ) б 141.7 (C), 135.9 (C), 133.3 (C), $129.0(\mathrm{CH}), 127.3(\mathrm{CH}), 126.1(\mathrm{CH}), 120.4(\mathrm{C}), 120.3(\mathrm{~d}, \mathrm{~J}=324.0 \mathrm{~Hz}, \mathrm{C})$, $48.2\left(\mathrm{CH}_{2}\right)$, $46.8\left(\mathrm{CH}_{2}\right)$, $32.1\left(\mathrm{CH}_{2}\right)$, $31.3\left(\mathrm{CH}_{2}\right)$, $28.6\left(\mathrm{CH}_{2}\right)$, $28.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 346.1083$, found 346.1085.

## 4-(nonan-5-ylidene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ab)


( $55.3 \mathrm{mg}, 85 \%$ yield), obtained as a transparent oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.07$ $(\mathrm{m}, 4 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.35-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.09(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.85(\mathrm{~m}$, 3H), $0.85-0.76(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.22 .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , Chloroformd) $\delta 143.1$ (C), 136.1 (C), $133.4(\mathrm{C}), 128.3(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 126.1(\mathrm{CH}), 123.6(\mathrm{C})$, $120.4(\mathrm{~d}, J=324.2 \mathrm{~Hz}, \mathrm{C}), 48.2\left(\mathrm{CH}_{2}\right), 47.2\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$, $14.0\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $\mathrm{m} / z$ calculated $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$ : 390.1709, found 390.1711.

4-(2-methyl-1-phenylpropylidene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ac and 3ac')


3ac


3ac'
(3.3:1 E/Z ratio of 3ac and 3ac', inseparable mixture ( $56.8 \mathrm{mg}, 86 \%$ yield, white solid. Mp: 79-81 ${ }^{\circ} \mathrm{C}$ )). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 0.23 \mathrm{H}$ ), $7.36-7.22(\mathrm{~m}, 1.15 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2.54 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 0.45 \mathrm{H}), 6.99-$ $6.89(\mathrm{~m}, 3.08 \mathrm{H}), 6.74-6.66(\mathrm{~m}, 0.77 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 0.77 \mathrm{H}), 4.55(\mathrm{~s}$, 1.54 H ), $4.42(\mathrm{~s}, 2.00 \mathrm{H}), 3.75(\mathrm{~s}, 0.46 \mathrm{H}), 3.35$ (hept, $J=6.8 \mathrm{~Hz}, 0.23 \mathrm{H}$ ), 3.16 (hept,
$J=6.9 \mathrm{~Hz}, 0.77 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4.62 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.38 \mathrm{H}) .{ }^{19}$ F NMR (470 MHz, CDCl 3 ) $\delta-75.50,-75.72$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 149.0$ (C), 147.4 (C), 139.3 (C), 137.1 (C), 135.3 (C), 135.2 (C), 134.0 (C), 132.4 (C), 130.0 $(\mathrm{CH}), 129.9(\mathrm{CH}), 129.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.5(\mathrm{CH}), 127.1(\mathrm{CH})$, $126.9(\mathrm{CH}), 126.6(\mathrm{CH}), 126.3(\mathrm{CH}), 125.5(\mathrm{CH}), 124.66(\mathrm{C}), 124.46(\mathrm{C}), 120.29(\mathrm{~d}, J=324.1 \mathrm{~Hz}, \mathrm{C}), 48.80\left(\mathrm{CH}_{2}\right), 48.49$ $\left(\mathrm{CH}_{2}\right), 48.23\left(\mathrm{CH}_{2}\right), 46.42\left(\mathrm{CH}_{2}\right), 30.98(\mathrm{CH}), 30.60(\mathrm{CH}), 21.82\left(\mathrm{CH}_{3}\right)$, $21.71\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $\mathrm{m} / \mathrm{z}$ calculated $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 418.1059, found 418.1056. Assignment of stereochemistry based on the observed nOe between the $\mathrm{H}_{\mathrm{a}}(3.16 \mathrm{ppm}, 100 \%)$ with $\mathrm{H}_{\mathrm{b}}(4.42$
 ppm, 12.3\%) and between the $\mathrm{H}_{\mathrm{c}}(3.35 \mathrm{ppm}, 100 \%)$ with $\mathrm{H}_{\mathrm{d}}(7.44 \mathrm{ppm}, 5.5 \%)$.

## (E)-4-benzylidene-3-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ad)


( $57.9 \mathrm{mg}, 80 \%$ yield), obtained as a white solid. $\mathrm{Mp}: 100-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28$ $-6.98(\mathrm{~m}, 12 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, CDCl3) $\delta-75.65 .{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4(\mathrm{C}), 136.1(\mathrm{C}), 131.2(\mathrm{C}), 130.9(\mathrm{CH}), 130.7(\mathrm{C})$, 130.5 (C), $129.8(\mathrm{CH}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9$ $(\mathrm{CH}), 127.2(\mathrm{CH}), 126.7(\mathrm{CH}), 125.8(\mathrm{CH}), 120.2(\mathrm{~d}, \mathrm{~J}=323.5 \mathrm{~Hz}, \mathrm{C}), 64.9(\mathrm{CH}), 45.8\left(\mathrm{CH}_{2}\right)$.
 HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 452.0903$, found 452.0901. Assignment of stereochemistry based on the observed nOe between the $\mathrm{H}_{\mathrm{a}}\left(6.75 \mathrm{ppm}, 100 \%\right.$ ) with $\mathrm{H}_{\mathrm{b}}(5.74 \mathrm{ppm}$, 11.3\%).

## (E)-4-benzylidene-3-methyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline


(46.2 mg, 74\% yield), obtained as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.40-6.85(\mathrm{~m}, 9 \mathrm{H}), 6.58(\mathrm{~s}$, $1 \mathrm{H}), 4.98-4.42(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-77.16 .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4(\mathrm{C}), 133.7$ (C), 131.0 (C), 130.2 (C), $130.0(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4$ (CH), 127.7 (CH), $127.5(\mathrm{CH}), 126.8(\mathrm{CH}), 125.9(\mathrm{CH}), 120.2(\mathrm{~d}, ~ J=$ $323.6 \mathrm{~Hz}, \mathrm{C}), 58.8(\mathrm{CH}), 45.3\left(\mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{3}\right.$, brs identified by HSQC experiment). HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 390.0746$, found 390.0745. Assignment of stereochemistry based on the observed nOe between
 the $\mathrm{H}_{\mathrm{a}}(6.58 \mathrm{ppm}, 100 \%)$ with $\mathrm{H}_{\mathrm{b}}(4.94-4.88 \mathrm{ppm}, 7.9 \%)$.

## 4-(cyclohexylmethylene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3af and 3af')



3af


3af'
(1.1:1 E/Z r.r. of 3af and 3af', inseparable mixture ( $50.8 \mathrm{mg}, 85 \%$ yield, transparent oil)) ${ }^{1} \mathrm{H}$ NMR ( 300 \%MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.58$ - 7.47 (m, 0.47H), 7.36 - 7.06 (m, 3.06H), 7.05 $6.95(\mathrm{~m}, 0.47 \mathrm{H}), 5.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.47 \mathrm{H}), 5.46(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 0.53 \mathrm{H}), 4.65-4.50$ (m, 2H), $4.33(\mathrm{~s}, 0.94 \mathrm{H}), 4.05(\mathrm{~s}, 1.06 \mathrm{H}), 2.60-2.44(\mathrm{~m}, 0.47 \mathrm{H}), 2.35-2.16(\mathrm{~m}, 0.53 \mathrm{H})$, $1.74-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.99(\mathrm{~m}, 5 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$ ) $\delta-75.81,-76.20$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.1$ (CH), 133.6 (C), 133.4 (CH), 133.1 (C), 132.2 (C), 130.3 (C), 128.0 (CH), 127.93 $(\mathrm{CH}), 127.87(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 126.12(\mathrm{CH}), 126.05(\mathrm{CH})$, 125.8 (C), 125.4 (C), 124.0 (CH), 120.13 (d, $J=332.4 \mathrm{~Hz}, \mathrm{C}), 120.12$ (d, $J=315.2 \mathrm{~Hz}, \mathrm{C})$, $52.9\left(\mathrm{CH}_{2}\right), 48.5\left(\mathrm{CH}_{2}\right), 48.3\left(\mathrm{CH}_{2}\right), 45.7\left(\mathrm{CH}_{2}\right)$, $37.4(\mathrm{CH}), 37.22(\mathrm{CH}), 33.15\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$, $25.6\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: m/z calculated $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$:

8.3\% nOe
360.1240, found 360.1238. Assignment of stereochemistry based on the observed nOe between the $\mathrm{Ha}_{\mathrm{a}}(5.46 \mathrm{ppm}$, $100 \%$ ) with $\mathrm{H}_{\mathrm{b}}(4.05 \mathrm{ppm}, 6.5 \%)$ and between the $\mathrm{H}_{\mathrm{c}}(5.95 \mathrm{ppm}, 100 \%)$ with $\mathrm{H}_{\mathrm{d}}(7.58-7.47,8.3 \%)$.
( $E$ )-4-benzylidene-3,3-dimethyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ag)

( $50.7 \mathrm{mg}, 80 \%$ yield), obtained as a white solid. $\mathrm{Mp}: 91-92{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.22-6.87$ (m, 9H), $6.74(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, CDCl 3 ) $\delta-76.10 .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.8(\mathrm{C}), 136.3(\mathrm{C}), 135.0(\mathrm{C}), 134.8(\mathrm{C}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH})$, $128.29(\mathrm{CH}), 128.26(\mathrm{CH}), 128.0(\mathrm{CH}), 127.5(\mathrm{CH}), 125.7(\mathrm{CH}), 125.5(\mathrm{CH})$, 119.7 (d, $J=324.4 \mathrm{~Hz}, \mathrm{C}), 67.6(\mathrm{C}), 49.4\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right.$, brs). HRMS [ESI]:

$\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 382.1083$, found 382.1085. Assignment of stereochemistry based on the observed nOe between the $\mathrm{H}_{\mathrm{a}}$ ( $6.74 \mathrm{ppm} 100 \%$ ) with $\mathrm{H}_{\mathrm{b}}$ ( $1.69 \mathrm{ppm}, 9.0 \%$ ).
(E)-4-benzylidene-3-butyl-3-methyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ah)

( $63.8 \mathrm{mg}, 90 \%$ yield), obtained as a transparent oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.23-6.83(\mathrm{~m}$, $9 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 2.15-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.77(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-75.93 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.9(\mathrm{C}), 136.4$ (C), 135.2 (C), $134.6(\mathrm{C}), 129.5(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3$ $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 125.4(\mathrm{CH}), 119.8(\mathrm{~d}, J=$ $324.9 \mathrm{~Hz}, \mathrm{C}), 71.2(\mathrm{C}), 50.2\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right.$, brs), $22.8\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 424.1553, found 424.1553. Assignment of stereochemistry based on the observed nOe between the $\mathrm{H}_{\mathrm{a}}(6.67 \mathrm{ppm}$,
 $100 \%$ ) with $\mathrm{H}_{\mathrm{b}}$ ( $0.77 \mathrm{ppm}, 5.7 \%$ ).

4-cyclohexylidene-2-((trifluoromethyl)sulfonyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline (3ca)


3 ca

Reaction performed at $105^{\circ} \mathrm{C} .\left(41.5 \mathrm{mg}, 71 \%\right.$ yield), obtained as a transparent oil. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.36-2.17(\mathrm{~m}, 6 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ 1.51 (m, 8H). ${ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.01 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 139.6$ (C), 132.0 (C), $128.4(\mathrm{C}), 123.0(\mathrm{C}), 120.3(\mathrm{~d}, J=324.0 \mathrm{~Hz}, \mathrm{C}), 49.3\left(\mathrm{CH}_{2}\right), 46.4\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 28.33\left(\mathrm{CH}_{2}\right), 28.28\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 350.1396, found 350.1399.
(E)-4-benzylidene-3,3-dimethyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline (3cg)


3 cg
( $58.2 \mathrm{mg}, 90 \%$ yield), obtained as a transparent oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.27-7.10(\mathrm{~m}, 5 \mathrm{H})$, $6.48(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H})$, 1.46 - $1.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.94 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 142.6$ (C), 137.7 (C), 132.7 (C), 132.5 (C), $129.0(\mathrm{CH}), 128.2$ (CH), 127.4 (CH), 123.2 (CH), 120.0 (d, $J=325.1 \mathrm{~Hz}, \mathrm{C}$ ), $65.8(\mathrm{C}), 49.9\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 27.3$ (brs, $\mathrm{CH}_{3}$ ), $22.8\left(\mathrm{CH}_{2}\right)$, $22.4\left(\mathrm{CH}_{2}\right)$. HRMS [APCI]: $m / z$ calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 386.1396, found 386.1395. Assignment of stereochemistry based on the observed nOe
 between the $\mathrm{H}_{\mathrm{a}}(6.48 \mathrm{ppm}, 100 \%)$ with $\mathrm{H}_{\mathrm{b}}(1.64 \mathrm{ppm})$.

3-cyclohexylidene-5-methyl-1-((trifluoromethyl)sulfonyl)-1,2,3,6-tetrahydropyridine (3da)


3da
( $45.7 \mathrm{mg}, 88 \%$ yield), obtained as a transparent oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.33-6.28(\mathrm{~m}, 1 \mathrm{H}), 4.10$ $(\mathrm{s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 2.32-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl3) $\delta$ 76.34. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.4$ (C), 129.3 (C), 120.6 (CH), 120.2 (d, J=324.0 Hz, C), 118.6 (C), $49.1\left(\mathrm{CH}_{2}\right)$, $44.9\left(\mathrm{CH}_{2}\right)$, $30.7\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right)$, $28.11\left(\mathrm{CH}_{2}\right)$, $28.08\left(\mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{2}\right)$. HRMS [APCI]: $m / z$ calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 310.1083$, found 310.1083.

Procedure for the synthesis of 1-cyclohexylidene-3-((trifluoromethyl)sulfonyl)-2,3,4,5,6,7,8,9-octahydro-1Hbenzo[d]azepine 3ea

## Method A



To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 10 \mathrm{~mol} \%$ ), 2,6-F,F-Bz-Leu-OH (18.1 mg, $40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(66.7 \mathrm{mg}, 2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $81.6 \mathrm{mg}, 1.5$ equiv.) and triflimide $1 \mathrm{e}(43.0 \mathrm{mg}, 0.167 \mathrm{mmol}, 1$ equiv.) in toluene ( 2 mL ) under air atmosphere in a Schlenk tube was added the allene $\mathbf{2 a}(18.0 \mathrm{mg}, 0.167 \mathrm{mmol})$. The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at 105 ${ }^{\circ} \mathrm{C}$, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded 1-cyclohexylidene-3-((trifluoromethyl)sulfonyl)-2,3,4,5,6,7,8,9-octahydro-1 Hbenzo[d]azepine 3ea as a yellow oil ( $50.4 \mathrm{mg}, 83 \%$ yield). NMR characterization performed at $110{ }^{\circ} \mathrm{C}$ due to the presence of conformers. ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 4 \mathrm{H})$, $1.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.09(\mathrm{~m}, 10 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz, DMSO-d6) $\delta-76.03 .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d6) $\delta 139.6$ (C), 132.5 (C), 130.2 (C), 125.8 (C), 119.4 (q, J=324.7 Hz, C), $48.2\left(\mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right)$, $33.6\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 364.1553$, found 364.1549 .

## Method B



To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(16.7 \mathrm{mg}, 0.5$ equiv. $)$, $\mathrm{Et}_{3} \mathrm{~N}(46 \mu \mathrm{~L}, 2$ equiv.) and $\mathbf{1 e}$ ( 43.0 $\mathrm{mg}, 0.167 \mathrm{mmol}, 1$ equiv.) in acetonitrile ( 2 mL ) under air atmosphere in a Schlenk tube was added the allene $\mathbf{2 a}$ (18.0 $\mathrm{mg}, 0.167 \mathrm{mmol})$. The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at $80^{\circ} \mathrm{C}$, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded 1-cyclohexylidene-3-((trifluoromethyl)sulfonyl)-2,3,4,5,6,7,8,9-octahydro-1H-benzo[d]azepine 3ea as a yellow oil (37.8 mg, 62\% yield).

## Procedure for the Pd-catalyzed desymmetrization of benzylamides with allenes 2

Method A (using excess of amide)


To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 10 \mathrm{~mol} \%)$, $2,6-\mathrm{F}, \mathrm{F}-\mathrm{Bz}-\mathrm{Leu}-\mathrm{OH}(18.1 \mathrm{mg}, 40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(66.7 \mathrm{mg}, 2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $81.6 \mathrm{mg}, 1.5$ equiv.) and triflimides 1 ( $0.333 \mathrm{mmol}, 2$ equiv.) in toluene ( 2 mL ) under air atmosphere in a Schlenk tube was added the allene $2(0.167 \mathrm{mmol})$. The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at $90^{\circ} \mathrm{C}$, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded adducts 3.

Method B (using excess of allene)


To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}\left(3.7 \mathrm{mg}, 10 \mathrm{~mol} \%\right.$ ), 2,6-F,F-Bz-Leu-OH (18.1 mg, $40 \mathrm{~mol} \%$ ), $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(66.7 \mathrm{mg}, 2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $81.6 \mathrm{mg}, 1.5$ equiv.) and 1 ( 0.167 mmol , 2 equiv.) in toluene ( 2 mL ) under air atmosphere in a Schlenk tube was added the allene 2 ( 0.333 mmol ). The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at $90^{\circ} \mathrm{C}$, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded compounds 3.

Racemic products were obtained using the racemic 2,6-F,F-Bz-Leu-OH

## 4-cyclohexylidene-1-phenyl-2-((trifluoromethyl) sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3fa)



3fa

Method A: ( $60.1 \mathrm{mg}, 85 \%$ yield), obtained as a white solid. Mp: 97-99 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.35-7.05(\mathrm{~m}, 9 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.00-0.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19}$ F NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-75.18{ }^{13} \mathrm{CNMR}^{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.9$ (C), 138.5 (C), 137.3(C), 135.2(C), 129.8 (CH), $128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH}), 127.31(\mathrm{CH}), 127.26(\mathrm{CH}), 127.2(\mathrm{CH}), 120.1(\mathrm{q}, J=324.4 \mathrm{~Hz}, \mathrm{C})$, $119.7(\mathrm{C}), 62.4(\mathrm{CH}), 46.5\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 422.1396$, found 422.1386.

Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IB at rt (Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ).
Racemic sample


Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | $\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.781 |  | 0.4998 | 2.72435 e 4 | 823.86963 | 49.7619 |
| 2 | 20.414 |  | 0.6477 | 2.75042 e 4 | 644.70233 | 50.2381 |
| Total | s : |  |  | 5.47478 e 4 | 1468.57196 |  |

Asymmetric sample (94: 6 e.r.)


Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$ | Height [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.668 | BB | 0.5091 | 3.63547 e 4 | 1090.09351 | 93.6232 |
| 2 | 20.638 | BB | 0.5843 | 2476.17505 | 63.03621 | 6.3768 |

Totals :
$3.88308 \mathrm{e} 4 \quad 1153.12972$

## 4-(nonan-5-ylidene)-1-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3fb)



Method A: ( $73.2 \mathrm{mg}, 94 \%$ yield), obtained as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.36-7.02$ (m, 10H), $5.90(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, ~ J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.25-0.82(\mathrm{~m}, 8 \mathrm{H}), 0.80-0.68(\mathrm{~m}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl $\left.{ }_{3}\right) \delta-75.62$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.9$ (C), 138.2 (C), 136.8 (C), 135.3 (C), 129.1 (CH), 128.4 (CH), $128.1(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{CH}), 127.2(\mathrm{CH}), 122.5(\mathrm{C}), 120.1(\mathrm{~d}, \mathrm{~J}=324.4 \mathrm{~Hz}$, C), $62.3(\mathrm{CH}), 46.7\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right)$, $31.2\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right), 23.03\left(\mathrm{CH}_{2}\right), 22.97$ $\left(\mathrm{CH}_{2}\right), 14.13\left(\mathrm{CH}_{3}\right), 14.07\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 466.2022$, found 466.2015 .

Enantioselectivity was determined by chiral SFC analysis on Phenomenex i-Cellulose-5 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}: \mathrm{MeOH}=98: 02\right.$, $0.5 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample

|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | o,0 |  | 10,0 |  |  | 20,0 | me [m |  | з0, |  | o 44,0 |
| Channel Name |  |  | $222,0 \mathrm{~nm}$ |  |  | Sampling Interval |  |  |  | 200 [msec] |  |  |
| \# | Peak Name | CH | tR [min] | Area $[\mu \mathrm{V} / \mathrm{sec}]$ | Height [ $\mu \mathrm{V}$ ] $]$ | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| 1 | Urknown | 9 | 20,887 | 15244033 | 319865 | 50.484 | 54,195 | N/A | 4537 | 1.436 | 0,826 |  |
| 2 | Urknown | 9 | 22,833 | 14951856 | 270352 | 49,516 | 45,805 | $\mathrm{N} / \mathrm{A}$ | 3821 | $\mathrm{N} / \mathrm{A}$ | 0,909 |  |

Asymmetric sample (95:5 e.r.)


| $\#$ | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}]$ | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Urknown | 9 | 20,790 | 1419800 | 38483 | 4,739 | 7,048 | $\mathrm{~N} / \mathrm{A}$ | 6876 | 1,423 | 0.786 |  |
| 2 | Unknown | 9 | 22,560 | 28540687 | 507501 | 95,261 | 92,952 | $\mathrm{~N} / \mathrm{A}$ | 3665 | $\mathrm{~N} / \mathrm{A}$ |  | 0,922 |

## 4-(2-methyl-1-phenylpropylidene)-1-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline



Method A performed at $70{ }^{\circ} \mathrm{C}$ over 72 h : (1:4.9 E/Z r.r. of 3 fc and 3 fc ', inseparable mixture ( $51.8 \mathrm{mg}, 66 \%$ yield, white solid, Mp: $143-145{ }^{\circ} \mathrm{C}$ ) ). ${ }^{1} \mathbf{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46-6.57(\mathrm{~m}, 14 \mathrm{H}), 5.98-5.86(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.32(\mathrm{~m}, 0.34 \mathrm{H}), 3.76$ (s, 1.66H), 3.09 (hept, $J=6.8 \mathrm{~Hz}, 0.83 \mathrm{H}$ ), 2.81 (hept, $J=7.0 \mathrm{~Hz}, 0.17 \mathrm{H}$ ), 0.93 (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.51 \mathrm{H}), 0.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2.49 \mathrm{H}) .{ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.34 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 147.5$ (C), 138.5 (C), 137.0 (C), 134.6 (C), 130.6 (C), 129.8 (C), 129.2 (CH), 128.64 (CH), 128.55 (CH), $128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{CH}), 123.8(\mathrm{C}), 120.1(\mathrm{~d}$, $J=324.3 \mathrm{~Hz}, \mathrm{C}), 62.4(\mathrm{CH}), 62.2(\mathrm{CH}), 48.3\left(\mathrm{CH}_{2}\right), 45.7\left(\mathrm{CH}_{2}\right), 30.5(\mathrm{CH}), 22.3\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 19.9$ $\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 472.1555$, found 472.1549.

Assignment of stereochemistry based on the observed nOe between the $\mathrm{H}_{\mathrm{a}}$ (3.09 ppm, 100\%) with $\mathrm{H}_{\mathrm{b}}\left(7.45-7.28 \mathrm{ppm}, 9.4 \%\right.$ ) and the $\mathrm{H}_{\mathrm{c}}$ (2.81 ppm, $100 \%)$ with the $\mathrm{H}_{\mathrm{d}}(4.58-4.32 \mathrm{ppm}, 4.1 \%)$.

9.4\% nOe


Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-2 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}\right.$ : $\mathrm{MeOH}=98: 02$, $1 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample

Channel Name 254,0nm Sampling Interval 200 [msec]

| $\#$ | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height $[\mu \mathrm{V}]$ | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Wrknown | 11 | 19,283 | 210552 | 4866 | 7,704 | 9,360 | $\mathrm{~N} / \mathrm{A}$ | 4391 | 1,550 | 1,087 |
| 2 | Urknown | 11 | 21,100 | 207639 | 4747 | 7,598 | 9,132 | $\mathrm{~N} / \mathrm{A}$ | 5065 | 2.240 |  |
| 3 | Urknown | 11 | 23,933 | 1165726 | 22705 | 42,656 | 43,678 | $\mathrm{~N} / \mathrm{A}$ | 5023 | 1,728 | 1,126 |
| 4 | Urknown | 11 | 26,410 | 1148947 | 19664 | 42,042 | 37,829 | $\mathrm{~N} / \mathrm{A}$ | 4808 | $\mathrm{~N} / \mathrm{A}$ |  |

Asymmetric sample (3fc, 95 : 5 e.r., 3fc', 94 : 6 e.r.)


Channel Name
254,0nm Sampling Interval
200 [msec]

| $\#^{\#}$ | Peak Name | CH | tR $[\mathrm{min}]$ | Area $[\mu \mathrm{V}$-sec] | Height $[\mu \mathrm{V}]$ | Area\% | Height 6 | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Unknown | 11 | 20,670 | 70695 | 1474 | 0,846 | 1,081 | $\mathrm{~N} / \mathrm{A}$ | 3968 | 1,455 | 1,069 |  |
| 2 | Urknown | 11 | 22,703 | 1117247 | 20266 | 13,362 | 14,862 | $\mathrm{~N} / \mathrm{A}$ | 3715 | 2,079 | 1,107 |  |
| 3 | Unknown | 11 | 25,937 | 6805087 | 108729 | 81,386 | 79,732 | $\mathrm{~N} / \mathrm{A}$ | 4059 | 1,910 | 1,266 |  |
| 4 | Unknown | 11 | 29,137 | 368302 | 5898 | 4,405 | 4,325 | $\mathrm{~N} / \mathrm{A}$ | 4529 | $\mathrm{~N} / \mathrm{A}$ | 1,108 |  |

(Z)-4-(cyclohexylmethylene)-1-phenyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ff)


3ff

Method A: $\left(58.9 \mathrm{mg}, 81 \%\right.$ yield), obtained as a transparent oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.09(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.76-0.89(\mathrm{~m}, 10 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-76.64 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.3$ (C), 133.2 (C), 132.9 (CH), $128.83(\mathrm{CH}), 128.76(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH})$, $125.0(\mathrm{C}), 123.9(\mathrm{CH}), 119.8(\mathrm{q}, J=323.2 \mathrm{~Hz}, \mathrm{C}), 61.2(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right), 37.1$ $(\mathrm{CH})$, $32.7\left(\mathrm{CH}_{2}\right)$, $32.6\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 436.1553$, found 436.1550.

Assignment of stereochemistry based on the observed nOe between the $\mathrm{Ha}_{\mathrm{a}}$ ( $5.97 \mathrm{ppm}, 100 \%$ ) with $\mathrm{H}_{\mathrm{b}}$ (7.65 ppm, 11.8\%).


Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}\right.$ : $\mathrm{MeOH}=98: 02$, $1 \mathrm{~mL} / \mathrm{min})$.

Racemic sample


|  | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}]$ | Areas | Heights | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :--- | :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Unknown | 5 | 23.537 | 13523659 | 330453 | 51,207 | 53.629 | $\mathrm{~N} / \mathrm{A}$ | 7432 | 3.505 | 0.995 |  |
| 2 | Unknown | 5 | 27.570 | 12886049 | 285726 | 48.793 | 46.371 | $\mathrm{~N} / \mathrm{A}$ | 8227 | $\mathrm{~N} / \mathrm{A}$ |  | 1.115 |

Asymmetric sample (93:7e.r.)


| $\#$ | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}$ ] | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Urknown | 5 | 23,467 | 22591968 | 532175 | 92,535 | 93,358 | $\mathrm{~N} / \mathrm{A}$ | 6934 | 4,194 | 0,959 |  |
| 2 | Urknown | 5 | 28,507 | 1822624 | 37862 | 7,465 | 6,642 | $\mathrm{~N} / \mathrm{A}$ | 7906 | $\mathrm{~N} / \mathrm{A}$ |  | 0,912 |



3ga

Method B: (44.9 mg, 66\% yield), obtained as a white solid. Mp: 145-147 으. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.20-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ $(\mathrm{s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (s, 3H), $2.04-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.26(\mathrm{~m}, 7 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-75.78 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.7$ (C), 136.5 (C), 134.4 (C), 134.1 (C), 131.9 (C), $131.5(\mathrm{CH}), 130.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH})$, $127.3(\mathrm{CH}), 125.6(\mathrm{CH}), 121.0(\mathrm{C}), 119.6(\mathrm{~d}, \mathrm{~J}=325.2 \mathrm{~Hz}, \mathrm{C}), 57.9(\mathrm{CH}), 46.2$ $\left(\mathrm{CH}_{2}\right)$, $32.4\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 450.1709$, found 450.1715 .


The structure of this compound (3ga) was confirmed by X-Ray diffraction analysis (CCDC: 1877409).
Enantioselectivity was determined by chiral HPLC analysis on Chiralpak IB at rt (Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ).
Racemic sample


Signal 2: DAD1 B, Sig=254,4 Ref=off

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ 8 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.603 | BV R | 0.3945 | $3.35972 e 4$ | 1252.76074 | 50.2071 |
| 2 | 16.120 |  | 0.4492 | $3.33200 e 4$ | 1100.64124 | 49.7929 |
| Total | $s$ : |  |  | $6.69172 e 4$ | 2353.40198 |  |

Asymmetric sample (97: 3 e.r.)


Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | RetTime [min] |  | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12.884 | BB | 0.3744 | 776.70538 | 30.16767 | 2.7075 |
| 2 | 15.248 | BB | 0.4320 | 2.79104 e 4 | 969.03998 | 97.2925 |
| Total | s : |  |  | 2.86871 e 4 | 999.20765 |  |

## (Z)-4-(cyclohexylmethylene)-8-methyl-1-(o-tolyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline

 (3gf)

3gf

Method B: (73.5 mg, 95\% yield), obtained as a transparent oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.97$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.01(\mathrm{~m}, 5 \mathrm{H}) .{ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.74 .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 138.4(\mathrm{C}), 134.3(\mathrm{C}), 133.6(\mathrm{C}), 133.4(\mathrm{C}), 132.9(\mathrm{C}), 132.6$ $(\mathrm{CH}), 131.7(\mathrm{CH}), 129.7(\mathrm{CH}), 129.3(\mathrm{CH}), 129.0(\mathrm{CH}), 128.1(\mathrm{CH}), 125.9(\mathrm{C})$, $125.8(\mathrm{CH}), 121.5(\mathrm{CH}), 119.7(\mathrm{~d}, \mathrm{~J}=324.8 \mathrm{~Hz}, \mathrm{C}), 56.5(\mathrm{CH}), 42.9\left(\mathrm{CH}_{2}\right)$, $37.2(\mathrm{CH}), 32.6\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 464.1866$, found 464.1862 .

Assignment of stereochemistry based on the observed nOe between the $\mathrm{Ha}_{\mathrm{a}}$ ( $5.97 \mathrm{ppm}, 100 \%$ ) with $\mathrm{H}_{\mathrm{b}}$ (7.52 ppm, 13.1\%).


Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}\right.$ : $\mathrm{MeOH}=99: 01$, $1 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample


| $\#$ | Peak Name | CH | tR [min] | Area [ LV V-sec] | Height [ $\mu \mathrm{V}]$ | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Urknown | 10 | 42,633 | 6308646 | 98969 | 50,828 | 52,326 | $\mathrm{~N} / \mathrm{A}$ | 9955 | 1,647 | 1,094 |  |
| 2 | Urknown | 10 | 45,530 | 6103049 | 90169 | 49,172 | 47,674 | $\mathrm{~N} / \mathrm{A}$ | 10037 | $\mathrm{~N} / \mathrm{A}$ | 1,121 |  |

Asymmetric sample (98:2 e.r.)


| $\#$ | Peak Name | CH | $\mathrm{tR}[\mathrm{min}]$ | Area [ $\mu \mathrm{V}$-sec] | Height $[\mu \mathrm{V}]$ | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Urknown | 10 | 42,663 | 6737805 | 114745 | 98,233 | 98,191 | $\mathrm{~N} / \mathrm{A}$ | 11900 | 1.881 | 1,194 |  |
| 2 | Urknown | 10 | 45,673 | 121172 | 2115 | 1,767 | 1,809 | $\mathrm{~N} / \mathrm{A}$ | 12349 | $\mathrm{~N} / \mathrm{A}$ |  | 1,267 |

4-cyclohexylidene-6-methyl-1-(p-tolyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ha)


3ha

Method A: (71.2 mg, 95\% yield), obtained as a transparent oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22$ $6.87(\mathrm{~m}, 7 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 4 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 2.12(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{brs}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-75.16 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.4$ (C), 137.4 (C), 137.4 (C), 135.9 (C), 134.9 (C), $134.5(\mathrm{C}), 130.3(\mathrm{CH}), 129.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 127.1(\mathrm{CH}), 120.2(\mathrm{~d}, J=324.2$ $\mathrm{Hz}, \mathrm{C}), 120.0(\mathrm{C}), 62.1(\mathrm{CH}), 46.3\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right)$, $21.6\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 450.1709$, found 450.1707.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}\right.$ : $\mathrm{MeOH}=98: 02$, $1 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample


| \# | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V} / \mathrm{sec}$ ] | Height [ $\mu \mathrm{V}$ ] | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Unknown | 5 | 24.047 | 14221311 | 326263 | 50,358 | 52,512 | N/A | 6651 | 1.611 | 0.913 |  |
| 2 | Unknown | 5 | 26,030 | 14019082 | 295054 | 49.642 | 47.488 | N/A | 6526 | N/A | 0,935 |  |

Asymmetric sample (94: 6 e.r.)


| $\#$ | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}]$ | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Urknown | 5 | 22,953 | 26775063 | 657766 | 93.968 | 93.772 | $\mathrm{~N} / \mathrm{A}$ | 6934 | 1.893 | 0,955 |
| 2 | Urknown | 5 | 25,017 | 1718772 | 43685 | 6.032 | 6.228 | $\mathrm{~N} / \mathrm{A}$ | 8536 | $\mathrm{~N} / \mathrm{A}$ |  |

## 6-methyl-4-(nonan-5-ylidene)-1-(p-tolyl)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3hb)



3hb

Method A: $\left(76.2 \mathrm{mg}, 92 \%\right.$ yield), obtained as a white solid. $\mathrm{Mp}: 56-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.20-6.89(\mathrm{~m}, 7 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.11(\mathrm{~m}, 7 \mathrm{H}), 1.11-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.52 .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 141.4$ (C), 137.50 (C), 137.46 (C), 135.4 (C), 135.0 (C), 134.1 (C) 129.7 (CH), 129.0 (CH), 127.7 (CH), $127.4(\mathrm{CH}), 127.0(\mathrm{CH}), 122.7(\mathrm{C}), 120.1$ (d, $J=324.4 \mathrm{~Hz}, \mathrm{C}), 62.0(\mathrm{CH}), 46.6$ $\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right)$, $31.2\left(\mathrm{CH}_{2}\right)$, $31.1\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right), 23.00\left(\mathrm{CH}_{2}\right), 22.97\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 21.1$ $\left(\mathrm{CH}_{3}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 494.2335$, found 494.2337.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-2 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}: \mathrm{MeOH}=98: 02\right.$, $1 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample


| \# | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}$ ] | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Urknown | 5 | 13.827 | 12282853 | 229944 | 50,397 | 55,069 | N/A | 1512 | 1.783 | 1.054 |  |
| 2 | Urknown | 5 | 16.610 | 12089469 | 187611 | 49,603 | 44,931 | N/A | 1512 | N/A | 1,130 |  |

Asymmetric sample (95 : 5 e.r.)


| $\#$ | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}]$ | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Urknown | 5 | 13,347 | 18751014 | 406458 | 94,741 | 94,670 | $\mathrm{~N} / \mathrm{A}$ | 2063 | 2,378 | 1,411 |
| 2 | Urknown | 5 | 16,220 | 1040795 | 22882 | 5,259 | 5,330 | $\mathrm{~N} / \mathrm{A}$ | 2705 | $\mathrm{~N} / \mathrm{A}$ |  |

## 6-chloro-1-(4-chlorophenyl)-4-cyclohexylidene-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline



3ia

Method A: ( $75.9 \mathrm{mg}, 93 \%$ yield), obtained as a white solid. Mp: 47-49 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.27-6.97(\mathrm{~m}, 7 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.22-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.08-0.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, CDCl 3 ) $\delta-75.38 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 142.7$ (C), 136.8 (C), 135.2 (C), 134.1 (C), $134.0(\mathrm{C}), 129.8(\mathrm{CH}), 128.70(\mathrm{CH}), 128.65(\mathrm{CH}), 128.5(\mathrm{CH}), 127.4(\mathrm{CH}), 120.0(\mathrm{q}, J=324.0 \mathrm{~Hz}$, C), $118.7(\mathrm{C}), 77.4(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 490.0617$, found 490.0616 .

Enantioselectivity was determined by chiral SFC analysis on Phenomenex i-Cellulose-5 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}\right.$ : $\mathrm{MeOH}=97: 03$, $0.5 \mathrm{~mL} / \mathrm{min})$.

Racemic sample

Channel Name 254,0nm Sampling Interval 200 [msec]

| $\#$ | Peak Name | CH | tR $[\mathrm{min}]$ | Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$ | Height $[\mu \mathrm{V}]$ | Area\% | Height | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Unknown | 11 | 36,737 | 1718634 | 27961 | 50,611 | 53,843 | $\mathrm{~N} / \mathrm{A}$ | 7956 | 3,486 | 1,000 |  |
| 2 | Unknown | 11 | 42,853 | 1677171 | 23970 | 49,389 | 46,157 | $\mathrm{~N} / \mathrm{A}$ | 8392 | $\mathrm{~N} / \mathrm{A}$ | 1,024 |  |

Asymmetric sample (91: 9 e.r.)


## 6-chloro-1-(4-chlorophenyl)-4-(nonan-5-ylidene)-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ib)



Method A: ( $76.8 \mathrm{mg}, 86 \%$ yield), obtained as a transparent oil. ${ }^{1} \mathbf{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.29-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.26-0.87(\mathrm{~m}, 8 \mathrm{H}), 0.86-0.69(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-75.39 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 143.9$ (C), 136.9 (C), 136.4 (C), 134.8 (C), 134.2 (C), 134.1 (C), 129.3 (CH), 128.7 (CH), 128.7 (CH), 128.4 (CH), $127.4(\mathrm{CH}), 121.4(\mathrm{C}), 120.1(\mathrm{~d}, \mathrm{~J}=324.4 \mathrm{~Hz}, \mathrm{C}), 61.2(\mathrm{CH}), 46.3\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right)$, $30.1\left(\mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{CH}_{2}\right)$, $22.95\left(\mathrm{CH}_{2}\right), 22.92\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$. HRMS [ESI]: $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 534.1243$, found 534.1237.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex i-Cellulose-5 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}\right.$ : $\mathrm{MeOH}=$ 96:04, $0.5 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample


Asymmetric sample (91:9 e.r.)


|  | Peak Name | CH | R [min] | Ar | [ $\mu \mathrm{V}$-sec] $]$ | Height [ $\mu \mathrm{V}$ ] | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Urknown | 5 | 17.717 |  | 4367855 | 127345 | 9.485 | 10,328 | N/A | 6027 | 1.751 | 0,866 |  |
| 2 | Unknown | 5 | 19,387 |  | 41683416 | 1105637 | 90.515 | 89,672 | N/A | 6021 | N/A | 0,959 |  |



Method A: (74.8 mg, 93\% yield), obtained as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.13-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.68(\mathrm{~m}, 4 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.53-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.13-0.95(\mathrm{~m}$, 2H). ${ }^{19}$ F NMR (282 MHz, CDCl 3 ) $\delta-75.59 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.2$ (C), 158.9 (C), 140.8 (C), 136.2 (C), 131.0 (C), 129.8 (C), 128.8 (CH), 128.2 (CH), 120.1 (d, $J=324.0 \mathrm{~Hz}, \mathrm{C}), 120.0$ (C), $115.6(\mathrm{CH}), 113.7(\mathrm{CH}), 112.1(\mathrm{CH}), 61.5(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{3}\right), 46.0\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.8$ $\left(\mathrm{CH}_{2}\right)$, $27.9\left(\mathrm{CH}_{2}\right)$, $27.4\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 482.1607, found 482.1612.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}: \mathrm{MeOH}=95: 05\right.$, $1 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample


| \# | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V} / \mathrm{sec}$ ] | Height [ $\mu \mathrm{V}$ ] | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Unknown | 10 | 20.093 | 12979419 | 476051 | 50,142 | 52.401 | N/A | 12311 | 2.976 | 1.087 |  |
| 2 | Unknown | 10 | 22.343 | 12905703 | 432425 | 49,858 | 47,599 | N/A | 12735 | NA | 1,088 |  |

Asymmetric sample (94: 6 e.r.)


| \# | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}$ ] | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Urknown | 10 | 20.017 | 13956839 | 557304 | 93,685 | 94,256 | N/A | 14680 | 3.483 | 1.127 |  |
| 2 | Urknown | 10 | 22.437 | 940851 | 33965 | 6.315 | 5.744 | N/A | 15014 | N/A | 1.098 |  |



Method A: (72.4 mg, 90\% yield), obtained as a white solid. Mp: 125-127 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.34$ (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.22(\mathrm{~m}, 1 \mathrm{H})$, $2.18-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.05-0.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19}$ F NMR (470 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-75.58 .{ }^{13} \mathrm{C}$ NMR ( $76 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.8$ (C), 158.6 (C), 139.9 (C), 139.4 (C), 138.3 (C), $131.0(\mathrm{CH}), 129.5(\mathrm{CH}), 127.4(\mathrm{C}), 120.1$ (d, $J=323.9 \mathrm{~Hz}, \mathrm{C}), 119.9$ (CH), 119.2 (C), $113.7(\mathrm{CH}), 113.4(\mathrm{CH}), 112.8(\mathrm{CH}), 112.6(\mathrm{CH}), 62.3(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{3}\right), 46.6\left(\mathrm{CH}_{2}\right)$, $32.0\left(\mathrm{CH}_{2}\right)$, $30.6\left(\mathrm{CH}_{2}\right)$, $27.8\left(\mathrm{CH}_{2}\right)$, $27.3\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right)$. HRMS [ESI]: m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 482.1607, found 482.1619.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex Amylose-2 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}: \mathrm{MeOH}=96: 04\right.$, $0.5 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample


Asymmetric sample (90:10 e.r.)


| Channel Nar |  |  |  | 254,0nm |  | Sampling Interval |  |  |  | 200 [msec] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# Peak Name | CH | tR [min] | Area [ L /-sec] | Height [ $\mu \mathrm{V}$ ] | Area\% | Height ${ }^{\text {a }}$ | Quantity | NTP | Resolution | Symmetry Factor | Warring |
| Unknown | 5 | 36.020 | 6055247 | 39232 | 89.702 | 89,352 | N/A | 1185 | 1.251 | 1.061 |  |
| 2 Unknown | 5 | 41.210 | 695179 | 4675 | 10.298 | 10.648 | N/A | 1589 | N/A | 1.321 |  |

## Procedure for the kinetic resolution of benzylamides with allenes



To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 10 \mathrm{~mol} \%$ ), 2,6-F,F-Bz-Leu-OH (18.1 mg, $40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(66.7 \mathrm{mg}, 2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(81.6 \mathrm{mg}, 1.5$ equiv.) and $\mathbf{1 b}(89.3 \mathrm{mg}, 0.333 \mathrm{mmol}$, 2 equiv.) in toluene ( 2 mL ) under air atmosphere in a Schlenk tube was added the allene $\mathbf{2 a}(18.0 \mathrm{mg}, 0.167 \mathrm{mmol})$. The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at $90{ }^{\circ} \mathrm{C}$, stirred during 22 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1) afforded 4-cyclohexylidene-1-ethyl-2-((trifluoromethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ba) as a white solid ( $56.6 \mathrm{mg}, 91 \%$ yield, $\mathrm{Mp}: 88-90^{\circ} \mathrm{C}$ ) and remaining $\mathbf{1 b}$ as a white solid ( $39.0 \mathrm{mg}, 40 \%$ yield based on the starting benzylamide, $80 \%$ recovered based on reaction yield). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.28-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.03$ ( $\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.62-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.37$ ( $\mathrm{m}, 9 \mathrm{H}$ ) , $0.84(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.54 .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 140.5(\mathrm{C}), 137.8(\mathrm{C}), 133.9(\mathrm{C}), 129.5(\mathrm{CH}), 127.4(\mathrm{CH}), 127.0(\mathrm{CH}), 126.6(\mathrm{CH})$, $120.2(\mathrm{~d}, J=324.4 \mathrm{~Hz}, \mathrm{C}), 119.8(\mathrm{C}), 62.3(\mathrm{CH}), 46.3\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 28.5$ $\left(\mathrm{CH}_{2}\right)$, $28.0\left(\mathrm{CH}_{2}\right)$, $26.7\left(\mathrm{CH}_{2}\right)$, $11.2(\mathrm{CH})$. HRMS [ESI]: $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 374.1396$, found 374.1398. The structure of 3ba was confirmed by X-Ray diffraction
 analysis (CCDC: 1880116, hydrogens omitted for clarity).

Enantioselectivity was determined by chiral SFC analysis on Chiralpak IF-3 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}, 2 \mathrm{~mL} / \mathrm{min}\right)$.
Racemic sample


| $\#$ | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ LV$]$ | Areas | Heights | Quantity | NTP | Resolution | Symmetry Factor |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Unknown | 5 | 14.907 | 4535366 | 120606 | 50.574 | 54.98 Br | $\mathrm{N} / \mathrm{A}$ | 3234 | 1.214 | 1.259 |
| 2 | Unknown | 5 | 16.287 | 4432385 | 98727 | 49.426 | 45.012 | $\mathrm{~N} / \mathrm{A}$ | 2804 | N |  |

Asymmetric sample (93:7 e.r.)


| \# | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] | Height [ $\mu \mathrm{V}$ ] | Areas | Heights | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Unknown | 9 | 16.320 | 2467749 | 52800 | 93.060 | 92.707 | N/A | 2635 | 1.376 | 1.288 |  |
| 2 | Unknown | 9 | 18,030 | 184031 | 4154 | 6,940 | 7.293 | N/A | 3487 | N/A | 1.353 |  |

## Procedure for the derivatization ${ }^{9}$ of recovered triflimide $1 b$ to measure the enantiomeric ratio



To a solution of recovered 1,1,1-trifluoro-N-(1-phenylpropyl)methanesulfonamide (1b, $39.0 \mathrm{mg}, 0.146$ mmol ), benzyl alcohol ( 15.8 mg , 1 equiv.), and triphenylphosphine ( $42.1 \mathrm{mg}, 1.1$ equiv.) in THF ( 0.15 mL ) was added DEAD ( $63 \mu \mathrm{~L}, 40 \%$ in toluene, 1.1 equiv.). The reaction mixture was stirred at room temperature overnight. Evaporation of the solvent and column chromatography on silica gel (hexanes:diethylether; 90:10) afforded $\mathbf{N}$-benzyl-1,1,1-trifluoro-$\mathbf{N}$-(1-phenylpropyl)methanesulfonamide (4) as a transparent oil ( $22.8 \mathrm{mg}, 44 \%$ ). ${ }^{1} \mathbf{H} \mathbf{N M R}$ ( 300 MHz , Chloroform-d) $\delta 7.36-6.99(\mathrm{~m}, 10 \mathrm{H}), 4.87(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{brs}, 1 \mathrm{H}), 1.77(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.69$ ( $\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}$ ). HRMS [ESI]: $m / z$ calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 357.1005$, found 357.1001.

Enantioselectivity was determined by chiral SFC analysis on Phenomenex Cellulose-1 at $40{ }^{\circ} \mathrm{C}\left(\mathrm{CO}_{2}\right.$ : $\mathrm{MeOH}=99: 01$, $0.5 \mathrm{~mL} / \mathrm{min}$ ).

Racemic sample


| \# | Peak Name | CH | tR [min] | Area [ $\mu \mathrm{V}$-sec] $]$ | Height [ HV ] | Area\% | Heights | Quantity | NTP | Resolution | Symmetry Factor | ging |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Unknown | 10 | 40.423 | 3235516 | 32453 | 50.331 | 51.475 | N/A | 3633 | 1.208 | 0.818 |  |
| 2 | Unknown | 10 | 43.773 | 3192986 | 30593 | 49,669 | 48,525 | N/A | 3705 | N/A | 1.010 |  |

Asymmetric sample (86 :14 e.r.)


[^4]
## Pd-catalyzed annulation of a triflamide 1 m (with two different aryl rings) with allene $\mathbf{2 a}$



To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 10 \mathrm{~mol} \%), 2,6-\mathrm{F}, \mathrm{F}-\mathrm{Bz}-\mathrm{Leu}-\mathrm{OH}(18.1 \mathrm{mg}, 40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(66.7 \mathrm{mg}, 2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $81.6 \mathrm{mg}, 1.5$ equiv.) and $1 \mathrm{~m}(121.5 \mathrm{mg}, 0.333 \mathrm{mmol}, 2$ equiv.) in toluene ( 2 mL ), under air atmosphere, in a Schlenk tube was added the allene $\mathbf{2 a}(18.0 \mathrm{mg}, 0.167 \mathrm{mmol})$. The tube was sealed with a rubber septum and an air atmosphere was injected in the flask with a balloon and a needle. The reaction was heated at $90^{\circ} \mathrm{C}$, stirred during 18 h and then cooled to room temperature. Evaporation and column cromatography on silica gel (hexanes:diethylether; 99:1). Obtained as a 1.6:1 inseparable mixture ( $70.4 \mathrm{mg}, 90 \%$ yield, white solid). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-$ $6.87(\mathrm{~m}, 7 \mathrm{H}), 5.88(\mathrm{~s}, 0.39 \mathrm{H}), 5.83(\mathrm{~s}, 0.61 \mathrm{H}), 4.52-3.88(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.03(\mathrm{~m}, 6 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.25$ ( $\mathrm{m}, 4 \mathrm{H}$ ), $1.10-0.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.42 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.0(\mathrm{C}), 140.6$ (C), 137.9 (C), 137.8 (C), 137.7 (C), 135.0 (C), 133.8 (C), 133.7 (C), 133.5 (C), 130.4 (CH) 129.8 (C), 129.7 (CH), 129.2 (CH), $129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{C}), 127.8(\mathrm{C}), 127.6(\mathrm{C}), 127.4(\mathrm{CH}), 127.38(\mathrm{CH}), 127.11$ $(\mathrm{CH}), 127.06(\mathrm{CH}), 118.76(\mathrm{~d}, J=125.7 \mathrm{~Hz}, \mathrm{C}), 61.7(\mathrm{CH}), 61.6(\mathrm{CH}), 46.5\left(\mathrm{CH}_{2}\right), 46.0\left(\mathrm{CH}_{2}\right), 31.94\left(\mathrm{CH}_{2}\right), 31.89\left(\mathrm{CH}_{2}\right)$, $30.8\left(\mathrm{CH}_{2}\right)$, $30.6\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$.

NMR SPECTRA





NHTf
人


| N | がロ | $\stackrel{9}{ }$ |  |
| :---: | :---: | :---: | :---: |
|  | べ人 | in |  |
| ｜ 1111 | $\checkmark$ | ｜ | \1 |






[^5]





1g


| 1 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




$\begin{array}{lllllllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$



[^6]















[^7]

す。


[^8]



[^9]


$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{\text { N }}{\substack{\infty \\ \sim}}$
U



[^10]


[^11]



 が














3da





~~~
|









3fa










\footnotetext{

}


\footnotetext{

}

\(\mathbf{3 f f}\)






(


\footnotetext{
\(\begin{array}{lllllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\)
}



年
f \(\quad\) の

｜













\(\begin{array}{llllllllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}\)


\footnotetext{

}






\footnotetext{

}



1．6：1 ratio

N N \(\qquad\)性入入 \(\qquad\)
\(\begin{array}{lllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}\)
~~~


[^0]:    ${ }^{1}$ Allene 2b: Kippo, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 3864-3867. Allene 2c and 2d: Zhao, Z.; Racicot, L.; Murphy, G. K. Angew. Chemie - Int. Ed. 2017, 56, 11620-11623. Allene 2e: Zhao, Z.; Racicot, L.; Murphy, G. K. Angew. Chemie - Int. Ed. 2017, 56, 11620-11623. Allene 2g and 2h: Ting, C.-H.; Hsu, Y.-L.; Liu, R.-S., Chem. Commun. 2012, 48, 6577-6579.
    ${ }^{2}$ Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432.
    ${ }^{3}$ For di-o-tolylmethanamine and di-p-tolylmethanamine: Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432. For bis(4-chlorophenyl)methanamine: Huang, H.; Chen, W.; Xu, Y.; Li, J. Green Chem. 2015, 17, 4715-4719.

[^1]:    ${ }^{4}$ Miyamoto, K.; Hoque, M. M.; Ogasa, S. J. Org. Chem. 2012, 77, 8317-8320.
    ${ }^{5}$ Chu, L.; Wang, X. C.; Moore, C. E.; Rheingold, A. L.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 16344-16347.

[^2]:    ${ }^{5}$ Chu, L.; Wang, X. C.; Moore, C. E.; Rheingold, A. L.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 16344-16347.
    ${ }^{6}$ Karaki, F.; Ohgane, K.; Fukuda, H.; Nakamura, M.; Dodo, K.; Hashimoto, Y. Bioorganic Med. Chem. 2014, 22, 3587-3609.
    ${ }^{7}$ Hanessian, S.; Szychowski, J.; Pablo Maianti, J. Org. Lett. 2009, 11, 429-432.

[^3]:    ${ }^{8}$ Plata, R. E.; Hill, D. E.; Haines, B. E.; Musaev, D. G.; Chu, L.; Hickey, D. P.; Sigman, M. S.; Yu, J. Q.; Blackmond, D. G. J. Am. Chem. Soc. 2017, 139, 9238-9245.

[^4]:    ${ }^{9}$ Bell, E.; Knight, D. W.; Uk, N. G. Z. R. D.; Gravestock, B. Org. Lett. 1995, 36, 8681-8684.

[^5]:    $\begin{array}{llllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & \begin{array}{c}120 \\ \mathrm{f1}(\mathrm{ppm})\end{array} & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^6]:    $\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^7]:    

[^8]:    $\begin{array}{lllllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ (\mathrm{ppm})\end{array}$

[^9]:    

[^10]:    

[^11]:    $\begin{array}{lllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f 1(\mathrm{ppm})\end{array}$

