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Figure S1. Representative XRF spectrum of CZTGSe with x = 0.2.

Figure S1 shows a representative XRF spectrum of CZTGSe with x = 0.2. The Ge composition, x = 

Ge/(Sn+Ge), was determined by integrating the Cu, Ge, Se, and Se XRF signals. Moreover, we report 

the XRD patterns of CZTGSe(112) as functions of Ge composition x.29
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Figure S2. (a) Representative survey XPS spectra of CZTGSe (x=0.2) without NH3 surface treatment. 

(b) Representative survey XPS spectra of CZTGSe (x = 0.2) after NH3 treatment with 0–30-nm thick 

CdS overlayers. 

Figure S2(a) shows representative survey Al K α X-ray photoelectron spectra for 0-, 3-, 6-, and 

30-nm-thick CdS overlayers on a CZTGSe bottom layer with a Ge composition (x) of 0.2 (a) prior to 

NH3 treatment and (b) after NH3 surface treatment. C and O were almost removed from the CZTGSe 

surface following NH3 treatment and lamp annealing of the CZTGSe films, as shown in Fig. S2(a). XPS 

signals corresponding to Zn, Cu, Sn, Ge, and Se are clearly evident, while a small amount of O-related 

signals are observed at a binding energy of 532 eV. The intensity of the O-related signal decreased with 

increasing CdS-overlayer thickness, and the O and C signals were completely absent at a CdS-overlayer 

thickness of 30 nm, which suggests that we can suppress the additional attachment of C and O onto the 

CZTGSe surface during XPS, UPS, and IPES in our setup. 
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Figure S3. XPS signals originating from the S 2p and Se 3p signals as functions of CdS film thickness 

on the CZTGSe substrate. Black, blue, red and green correspond to CdS overlayer thicknesses of 0, 3, 6, 

and 30 nm, respectively.

Figure S3 shows representative survey Se 3p and S 2p XPS spectra of CZTGSe (x=0.2) with 0–30-nm 

thick CdS overlayers. The S 2p signals increasingly overlap with the Se 3p signals with increasing CdS 

film thickness; consequently, we only used the Cd core-level shift to discuss the iibb of the CdS 

overlayer.
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