Supporting Information

Polymer-assisted Synthesis of Single and Fused Diketomorpholines

Petra Králová1, Sandra Benická ${ }^{1}$ and Miroslav Soural ${ }^{*}$
${ }^{1}$ Department of Organic Chemistry, Faculty of Science, Palacký University, 77146 Olomouc, Czech Republic
${ }^{2}$ Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
*Corresponding author. E-mail: miroslav.soural@upol.cz

Content

General Information 2
Experimental Procedures 3
Analytical Data of Final Compounds 5

General Information

Solvents and chemicals were purchased from Sigma-Aldrich (Milwaukee, WI, www.sigmaaldrich.com) and Acros (Geel, Belgium, www.across.cz). The Wang resin (100-200 mesh, 1% DVB, $0.9 \mathrm{mmol} / \mathrm{g}$) was obtained from AAPPTec (Louisville, KY, www.aapptec.com).

The synthesis was carried out in plastic reaction vessels (syringes, each equipped with a porous disk) using a manually operated synthesizer (Torviq, Niles, MI, www.torviq.com). All reactions were carried out at ambient temperature $\left(25^{\circ} \mathrm{C}\right)$ unless stated otherwise. The volume of wash solvent was 10 mL per 1 g of resin. For washing, resin slurry was shaken with the fresh solvent for at least 1 min before changing the solvent. Resin-bound intermediates were dried by a stream of nitrogen for prolonged storage and/or quantitative analysis. For the LC/MS analysis, a sample of resin ($\sim 5 \mathrm{mg}$) was treated with TFA in DCM, the cleavage cocktail was evaporated under a stream of nitrogen, and cleaved compounds extracted into MeCN (1 mL).

The LC/MS analyses were carried out on UHPLC-MS system consisting of UHPLC chromatograph Acquity with photodiode array detector and single quadrupole mass spectrometer (Waters), using X-Select C 18 column at $30{ }^{\circ} \mathrm{C}$ and flow rate of $600 \mu \mathrm{~L} / \mathrm{min}$. The mobile phase was (A) 10 mM ammonium acetate in $\mathrm{H}_{2} \mathrm{O}$, and (B) MeCN, linearly programmed from 20% to 80\% B over 2.5 min, kept for 1.5 min. The column was re-equilibrated with 20% of solution B for 1 min. The ESI source operated at discharge current of $5 \mu \mathrm{~A}$, vaporizer temperature of $350{ }^{\circ} \mathrm{C}$ and capillary temperature of $200^{\circ} \mathrm{C}$.

Purification was carried out on C18 reverse phase column (YMC Pack ODS-A, 20×100 $\mathrm{mm}, 5 \mu \mathrm{~m}$ particles), the gradient was formed from 10 mM aqueous ammonium acetate and MeCN , flow rate $15 \mathrm{~mL} / \mathrm{min}$.

For lyophilization of residual solvents $\left(\mathrm{H}_{2} \mathrm{O}\right.$, ammonium acetate buffer, DMSO) the ScanVac Coolsafe $110-4$ working at $-110{ }^{\circ} \mathrm{C}$ was used.

All 1D and 2D NMR experiments were performed with using ECA400II or ECX500 spectrometer (JEOL RESONANCE, Tokyo, Japan) at magnetic field strength of 9.39 T or 11.75 T corresponding to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonance frequencies of 399.78 MHz or 500.16 MHz and 100.53 MHz or 125.77 MHz at $27^{\circ} \mathrm{C}$. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz). The signal of MeCN- d_{3} was set at 1.94 ppm in ${ }^{1} \mathrm{H}$ NMR spectra and at 118.26 ppm in ${ }^{13} \mathrm{C}$ NMR spectra. The signal of $\mathrm{MeOH}-d_{4}$ was set at 3.31 ppm in ${ }^{1} \mathrm{H}$ NMR spectra and at 49.15 ppm in ${ }^{13} \mathrm{C}$ NMR spectra.

HRMS analysis was performed using LC-MS (Dionex Ultimate 3000) with Orbitrap Elite high-resolution mass spectrometer (Thermo Exactive plus, MA, USA) operating at positive full scan mode (120 000 FWMH) in the range of $100-1000 \mathrm{~m} / \mathrm{z}$. The settings for electrospray
ionization were as follows: oven temperature of $150{ }^{\circ} \mathrm{C}$ and the source voltage of 3.6 kV . The acquired data were internally calibrated with phthalate as a contaminant in $\mathrm{MeOH}(\mathrm{m} / \mathrm{z}$ 297.15909). Samples were diluted to a final concentration of $0.1 \mathrm{mg} / \mathrm{mL}$ in MeCN. Before HPLC separation (column Phenomenex Gemini, $50 \times 2.00 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particles, C18), the samples were injected using direct infusion into the mass spectrometer using autosampler. The mobile phase was isocratic MeCN/10 mM ammonium acetate (80:20) and flow $0.3 \mathrm{~mL} / \mathrm{min}$.

The supercritical fluid chromatography system UPC² (Waters, Milford, MA, USA) utilized two columns ($100 \times 4.6 \mathrm{~mm}$) with different stationary phases with particle size $3 \mu \mathrm{~m}$ CHIRALPAK® IC-3 (Daicel, Illkirch Cedex, France). Column IC-3 was used for all analyses. Isocratic elution was performed using CO_{2} ($>99,995 \%$, SIAD, Czech Republic) with $25 \% \mathrm{MeOH}$, $1 \% \mathrm{H}_{2} \mathrm{O}, 0.1 \%$ TFA and 0.1% DEA for purified compounds $4\{1,1\}, 5\left\{R^{1}, R^{2}\right\}$ and $5^{\mathrm{R}}\{1,2\}$. Second, with $20 \% \mathrm{MeOH}, 1 \% \mathrm{H}_{2} \mathrm{O}$ and 0.1% TFA for purified compound $7\{1,1\}$ and with $10 \% \mathrm{MeOH}, 1 \%$ $\mathrm{H}_{2} \mathrm{O}, 0.1 \%$ TFA and 0.1% DEA for reaction mixture $5\{1,2\}$ and $\mathbf{5}^{\mathrm{R}}\{1,2\}$ originating from reaction kinetic. Flow rate was set at $2.2 \mathrm{~mL} / \mathrm{min}$, the temperature at $38^{\circ} \mathrm{C}, \mathrm{ABPR} 2000 \mathrm{psi}$, the temperature of autosampler was set to $10{ }^{\circ} \mathrm{C}$. All samples were dissolved in $\mathrm{MeCN}(1 \mathrm{~mL})$. Injected volume was $2 \mu \mathrm{~L}$.

Experimental Procedures

Synthesis of α-acylamino ketones $1\left\{R^{1}\right\}$ was performed according to previously reported procedure (Králová, P.; Fülöpová, V.; Maloň, M.; Volná, T.; Popa, I.; Soural, M. Stereoselective Polymer-Supported Synthesis of Morpholine- and Thiomorpholine-3-Carboxylic Acid Derivatives. ACS Comb. Sci. 2017, 19 (3), 173-180).

1. Acylation: $\mathbf{2}\left\{R^{1}, R^{2}\right\}$

Carboxylic acids: 2-iodoacetic acid ($560 \mathrm{mg}, 3.0 \mathrm{mmol}$), (S)-(-)-a-bromopropionic acid $(459 \mathrm{mg}, 3.0 \mathrm{mmol})$ or α-bromophenylacetic acid ($645 \mathrm{mg}, 3.0 \mathrm{mmol}$) was dissolved in DCM (10 mL) and DIC ($232 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) was added. The reaction mixture was shaken for 30 min at room temperature, the precipitated diisopropylurea was filtered and the remaining solution was added to resin $1\left\{R^{1}\right\}(1 \mathrm{~g})$. After shaking for 24 h at room temperature the resulting resins $2\left\{R^{1}, R^{2}\right\}$ were washed three times with DCM, DMF and DCM.

Acyl bromides: Solution of 2-bromopropionyl bromide ($310 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and DIEA (350 $\mu \mathrm{L}, 1.5 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added to the resin $1\left\{R^{1}\right\}(1 \mathrm{~g})$ and shaken for 24 h at room temperature. The resulting resin $2\left\{R^{1}, 2\right\}$ was washed three times with DCM, DMF and DCM.

2. Cyclization to oxazines: $3\left\{R^{1}, R^{2}\right\}$

The resin $2\left\{R^{1}, R^{2}\right\}$ (500 mg) was washed three times with DCM and solution of trifluoroacetic acid (TFA) in DCM $(50 \%, 5 \mathrm{~mL})$ was added. The suspension was shaken for 1 h (or 4 h for derivatives $2\left\{R^{1}, 3\right\}$) at room temperature. The cleavage cocktail was isolated, and the resin was further washed three times with the fresh cleavage cocktail (5 mL). The combined washes were evaporated using a stream of nitrogen.

Table 1. Crude purities of N -acyl-3,4-dihydro-2H-1,4-oxazine-3-carboxylic acids $3\left\{R^{1}, R^{2}\right\}$

cmpd	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	crude purity [\%] $^{\text {a }}$
$\mathbf{3}\{1,1\}$	H	H	97
$\mathbf{3}\{1,2\}$	H	Me	94
$\mathbf{3}\{1,2\}$	H	Me	96
$\mathbf{3}\{1,3\}$	H	Ph	91
$\mathbf{3}\{2,2\}$	MeO	Me	94
$\mathbf{3}\{2,3\}$	MeO	Ph	56
$\mathbf{3}\{3,1\}$	Br	H	94
$\mathbf{3}\{3,2\}$	Br	Me	85
$\mathbf{3}\{3,3\}$	Br	Ph	79
$\mathbf{3}\{1,1\}$	H	H	90

${ }^{a}$ Determined from the HPLC-UV traces (205-400 nm).

3. Cyclization to diketomorpholines: $\mathbf{4}\left\{R^{1}, R^{2}\right\}, 5\left\{R^{1}, R^{2}\right\}$

To the crude intermediates $\mathbf{3}\left\{R^{1}, R^{2}\right\}$ (cleaved from 500 mg resin), a solution of DIEA (435 $\mu \mathrm{L}, 2.5 \mathrm{mmol}$) in DMSO was added. The reaction mixture was stirred either for 20 min at room temperature (derivatives $4\left\{R^{1}, 1\right\}$), for 20 h at room temperature (derivatives $\mathbf{5}\left\{R^{1}, 1\right\}$ and $\mathbf{5}\left\{R^{1}, 3\right\}$) or for 1 h at $80^{\circ} \mathrm{C}$ (derivatives $5\left\{R^{1}, 2\right\}$). The reaction mixture was freeze-dried and residual material was purified by semi-preparative HPLC chromatography.

4. TES reduction: $\mathbf{6}\left\{R^{1}, R^{2}\right\}$ and $7\left\{R^{1}, R^{2}\right\}$

To the crude intermediates $\mathbf{4}\left\{R^{1}, R^{2}\right\}$ and $\mathbf{5}\left\{R^{1}, R^{2}\right\}$ a solution of TFA/TES/DCM (2:1:2, 3.75 mL) was added and the reaction mixture was stirred for 8 h at room temperature. Solvents were
evaporated using a stream of nitrogen and the residual material was purified by semipreparative HPLC chromatography.

Analytical Data of Final Compounds

SFC chromatogram of crude intermediate $\mathbf{4}\{1,1\}$

General method for calculation of yields using ${ }^{1} \mathrm{H}$ NMR: ${ }^{1} \mathrm{H}$ NMR spectra of external standard at three different concentration were measured. In each spectrum, solvent signal was integrated followed by the integration of selected H^{Ar} signal of external standard. Ratios of solvent/standard signal areas along with known quantity of standard were used to construct a calibration curve. Then, ${ }^{1} \mathrm{H}$ NMR spectra of studied sample was measured and the ratio of solvent/sample (selected H^{Ar} signal) areas was determined. Using the calibration curve, the quantity of compound in a sample was calculated.

Creme amorphous solid, $11.6 \mathrm{mg}(45 \%, 0.047 \mathrm{mmol})$. Cleaved from 347 mg of resin $\mathbf{2}\{1,1\}$ (0.37 $\mathrm{mmol} / \mathrm{g}, 0.128 \mathrm{mmol}$ of substrate). HPLC purity $98 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$): dissolving the sample led to partial conversion to $\mathbf{5 \{ 1 , 1 \}}$ (17%, see the zoomed proton spectrum below), the following NMR data were extracted for $\mathbf{4}\{1,1\}: \delta=7.56-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~s}$, $1 \mathrm{H}), 5.00$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.84 (dd, $J=11.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (dd, $J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12 (dd, $J=11.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$): $\delta=165.08$, 159.87, 142.24, 133.96, 129.52, 129.44, 124.86, 100.00, 68.18, 66.00, 52.17. HRMS (ESI-TOF, pos.): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 246.0761$, found 246.0760.

3-methylene-4-(2-oxo-2-phenylethyl)morpholine-2,5-dione 5\{1,1\}

Creme amorphous solid, $18.3 \mathrm{mg}(46 \%, 0.075 \mathrm{mmol})$. Cleaved from 415 mg of resin $\mathbf{2}\{1,1\}(0.39$ $\mathrm{mmol} / \mathrm{g}, 0.162 \mathrm{mmol}$ of substrate$)$. HPLC purity 99%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$): $\delta=8.02-$ $8.05(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.94(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, MeCN-d ${ }_{3}$): $\delta=192.57,163.27,160.13,135.60$, 135.11, 134.32, 129.90, 129.08, 107.38, 67.88, 50.75. HRMS (ESI-TOF, pos.): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 246.0761$, found 246.0761 .

SFC: Mixture of enantiomers in ratio 90:10 (R:S). Creme amorphous solid, $21.5 \mathrm{mg}(48 \%, 0.083$ $\mathrm{mmol})$. Cleaved from 473 mg of resin $2\{1,2\}(0.37 \mathrm{mmol} / \mathrm{g}, 0.175 \mathrm{mmol}$ of substrate). HPLC purity $99 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta=8.05-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H})$, $5.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=7.0,0.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta=$ 193.36, 167.35, 161.37, 136.07, 135.45, 135.25, 130.21, 129.39, 107.82, 76.02, 51.32, 18.91. HRMS (ESI-TOF, pos.): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 260.0917$, found 260.0918.

(6R)-methyl-3-methylene-4-(2-oxo-2-phenylethyl)morpholine-2,5-dione $\mathbf{5}^{\boldsymbol{R}\{1,2\}}$

SFC: Mixture of enantiomers in ratio $85: 15(R: S)$. Creme amorphous solid, $11.6 \mathrm{mg}(24 \%, 0.045$
 from (S)-(-)-2-bromopropionic. HPLC purity 99%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta=8.06-8.08$ ($\mathrm{m}, 2 \mathrm{H}$), 7.67-7.71 (m, 1H), 7.55-7.58 (m, 2H), $5.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.26 (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=7.0,0.6$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta=193.37,167.38,161.38,136.09,135.45,135.27$, 130.21, 129.39, 107.81, 76.03, 51.33, 18.91. HRMS (ESI-TOF, neg.): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{4}$ [M-H] 258.0761, found 258.0758.

3-methylene-4-(2-oxo-2-phenylethyl)-6-phenylmorpholine-2,5-dione 5\{1,3\}

SFC: 100% R-isomer. Creme amorphous solid, 7.6 mg ($27 \%, 0.024 \mathrm{mmol}$). Cleaved from 222 mg of resin $2\{1,2\}\left(0.39 \mathrm{mmol} / \mathrm{g}, 0.087 \mathrm{mmol}\right.$ of substrate). HPLC purity 98%. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{MeCN}-\mathrm{d}_{3}\right): \delta=8.03-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.55(\mathrm{~m}, 5 \mathrm{H}), 6.05$ (s, 1H), 5.81 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.45 (d, J = $18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (d, J = $18.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeCN- d_{3}): $\delta=192.79,164.26,160.21,136.31,135.54$, 135.19, 134.56, 130.59, 130.02, 129.92, 129.15, 128.33, 108.42, 80.65, 51.52. HRMS (ESI-TOF, neg.): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]-320.0917$, found 320.0912 .

4-(2-(4-methoxyphenyl)-2-oxoethyl)-6-methyl-3-methylenemorpholine-2,5-dione 5\{2,2\}

SFC: Mixture of enantiomers in ratio $91: 9(R: S)$. Yellow-brown amorphous solid, $15.4 \mathrm{mg}(35 \%$, $0.053 \mathrm{mmol})$. Cleaved from 411 mg of resin $2\{2,2\}(0.37 \mathrm{mmol} / \mathrm{g}, 0.152 \mathrm{mmol}$ of substrate). HPLC purity 99%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta=8.04$ (br. d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (br. d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.78$ (s, 1H), 5.28 (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (q, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (s, 1H), 3.90 (s, 3H), 1.64 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$): $\delta=$ 191.80, 167.38, 166.18, 161.39, 135.31, 131.82, 128.90, 115.39, 107.74, 76.03, 56.31, 50.94, 18.92. HRMS (ESI-TOF, pos.): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 290.1023$, found 290.1020.

4-(2-(4-methoxyphenyl)-2-oxoethyl)-3-methylene-6-phenylmorpholine-2,5-dione 5\{2,3\}

SFC: 100\% R-isomer. Yellow-brown amorphous solid, 9.1 mg ($14 \%, 0.026 \mathrm{mmol})$. Cleaved from 511 mg of resin $2\{2,2\}\left(0.37 \mathrm{mmol} / \mathrm{g}, 0.189 \mathrm{mmol}\right.$ of substrate). HPLC purity 99%. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{MeCN}-d_{3}$): $\delta=8.01$ (br. d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.05$ (br. d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.04(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}$, $J=17.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeCN-d ${ }_{3}$): $\delta=190.95,165.38$, 164.23, 160.23, 136.34, 134.61, 131.53, 130.57, 130.01, 128.45, 128.35, 115.08, 108.34, 80.66, 56.44 , 51.15. HRMS (ESI-TOF, pos.): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 352.1179$, found 352.1180 .

4-(2-(4-bromophenyl)-2-oxoethyl)-3-methylenemorpholine-2,5-dione 5\{3,1\}

Creme amorphous solid, 16.6 mg ($30 \%, 0.052 \mathrm{mmol}$). Cleaved from 466 mg of resin $\mathbf{2}\{2,1\}$ (0.37 $\mathrm{mmol} / \mathrm{g}, 0.172 \mathrm{mmol}$ of substrate). HPLC purity 98%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$): $\delta=7.94$ (br. d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (br. d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (s, 2H), 5.00 (d, $J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$): $\delta=191.91,163.28,160.09,134.54$, 134.29, 133.09, 130.92, 129.60, 107.42, 67.87, 50.70. HRMS (ESI-TOF, neg.): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrNO}_{4}[\mathrm{M}-\mathrm{H}]-321.9709$, found 321.9711 .

4-(2-(4-bromophenyl)-2-oxoethyl)-6-methyl-3-methylenemorpholine-2,5-dione 5\{3,2\}

SFC: Mixture of enantiomers in ratio 87:13 ($R: S$). Creme amorphous solid, $9.1 \mathrm{mg}(22 \%, 0.027$ mmol). Cleaved from 339 mg of resin $\mathbf{2}\{3,2\}(0.37 \mathrm{mmol} / \mathrm{g}, 0.125 \mathrm{mmol}$ of substrate). HPLC purity 96%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta=7.97$ (br. d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (br. d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.79 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (d, $J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$): $\delta=192.55$, 167.37, 161.36, 135.25, 134.98, 133.51, 131.13, 130.35, 107.88, 76.01, 51.27, 18.90. HRMS (ESI-TOF, neg.): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrNO}_{4}[\mathrm{M}-\mathrm{H}]-335.9866$, found 335.9870 .

4-(2-(4-bromophenyl)-2-oxoethyl)-3-methylene-6-phenyl-morpholine-2,5-dione 5\{3,3\}

SFC: Mixture of enantiomers in ratio 50:50 (R:S). Creme amorphous solid, 9.8 mg ($18 \%, 0.025$ mmol). Cleaved from 359 mg of resin $2\{3,2\}(0.37 \mathrm{mmol} / \mathrm{g}, 0.132 \mathrm{mmol}$ of substrate). HPLC purity 99%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}$): $\delta=7.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-$ 7.53 (m, 5H), $6.04(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}$, 1 H), 5.03 ($\mathrm{d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$): $\delta=192.14,164.25,160.16$, 136.26, 134.50, 134.48, 133.11, 130.96, 130.59, 130.02, 129.68, 128.29, 108.46, 80.62, 51.46. HRMS (ESI-TOF, pos.): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 400.0179$, found 400.0179 .

(7R,9aS)-7-phenyltetrahydro-1H-[1,4]oxazino[3,4-c][1,4]oxazine-1,4(3H)-dione 6\{1,1\}

Creme amorphous solid, 24.6 mg ($54 \%, 0.010 \mathrm{mmol}$). Cleaved from 471 mg of resin $\mathbf{2}\{1,1\}(0.39$ $\mathrm{mmol} / \mathrm{g}, 0.184 \mathrm{mmol}$ of substrate), prepared to reduce the crude compound $\mathbf{4}\{1,1\}$. HPLC purity 98%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$): $\delta=7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 4.92$ (d, $\left.J=16.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.80$ (d, $J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (dd, $J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (dd, $J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dd, $J=11.5$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=13.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=11.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}$, overlap with methyl of $\mathrm{MeOH}-d_{4}$), 2.80 (dd, $J=13.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta=165.89$, 165.26, 139.87, 129.80, 129.71, 127.27, 78.61, 69.24, 68.42, 54.57, 47.79. HRMS (ESI-TOF, pos.): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 248.0917$, found 248.0918.

3-methyl-4-(2-oxo-2-phenylethyl)morpholine-2,5-dione 7\{1,1\}

SFC: Mixture of enantiomers in ratio 80:20 (R:S). Yellow-brown amorphous solid, $3.1 \mathrm{mg}(12 \%$, 0.013 mmol). Cleaved from 279 mg of resin $\mathbf{2}\{1,1\}(0.37 \mathrm{mmol} / \mathrm{g}, 0.103 \mathrm{mmol}$ of substrate), prepared to reduce the compound $\mathbf{5}\{1,1\}$. HPLC purity 97%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta=$ 7.62-7.66 (m, 2H), 7.33-7.39 (m, 3H), 5.08 (q, J = 7.5 Hz, 1H), 4.36-4.42 (m, 2H), 3.64 (d, J = $12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.36 (td, $J=10.5,1.9 \mathrm{~Hz}, 3 \mathrm{H}$). HRMS (ESI-TOF, pos.): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$248.0917, found 248.0918.

