Supporting Information

Probing the Role of Imidazopyridine and Imidazophosphorine Scaffolds to Design Novel Proton Pump Inhibitor for H⁺,K⁺-ATPase: A DFT Study

Kalyanashis Jana^{a,b}, Shibaji Ghosh^{a,b}, Padmaja D. Wakchaure^{a,b}, Tusar Bandyopadhyay^c, and Bishwajit Ganguly^{a,b,*}

^aComputation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR– Central Salt and Marine Chemicals Research Institute, Bhavnagar–364002, Gujarat, India ^bAcademy of Scientific and Innovative Research, CSIR–CSMCRI, Bhavnagar–364002, Gujarat, India ^cTheoretical Chemistry Section, Chemistry Group MOD LAB, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

* To whom correspondence should be addressed. E-mail: <u>ganguly@csmcri.res.in</u> and <u>gang 12@rediffmail.com</u>

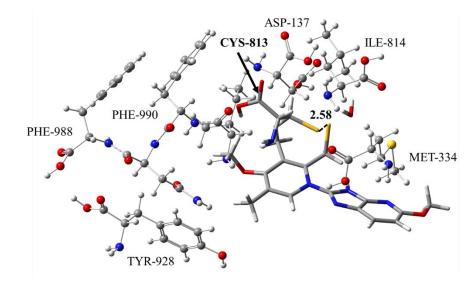


Figure S1: TS4 of Tenatoprazole with binding site residues of H⁺,K⁺-ATPase

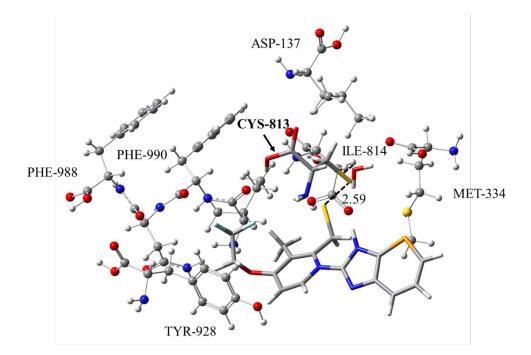


Figure S2: TS4 of Inhibitor-5 with binding site residues of H⁺,K⁺-ATPase

Tenatoprazole and inhibitor-5 with binding site residues are optimized, The transition state was treated with m062x/6-31g(d) and second layer of residues treated with MM force field uff. The ONIOM optimized geometries were taken for single point calculations at M11L/6-31++G(d,p) in aqueous phase using SMD solvation model to obtain the energies.