Supporting Information

Direct Synthesis of Free α-Amino Acids by Telescoping Three-Step Process from 1,2-Diols

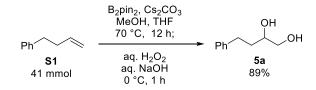
Haruki Inada, Masatoshi Shibuya,* and Yoshihiko Yamamoto

Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan

Corresponding author, Email: m-shibu@ps.nagoya-u.ac.jp

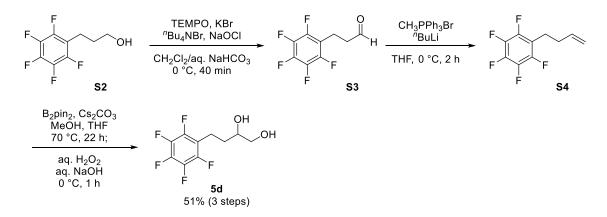
1.	General considerations	S2
2.	Preparation of 1,2-diols	S 3
3.	Transamination of α-keto acids to α-amino acids	S15
4.	Three-step synthesis of α-amino acids from 1,2-diols	S18
5.	Derivatization of α-amino acids	S23
6.	Synthesis of ¹⁵ N-labeled α -amino acid	S24
7.	Synthesis of bicyclic α-amino acids	S26
8.	Kinetic resolution of <i>N</i> -acetyl α-amino acids	S28
9.	Single crystal X-ray diffraction study	S60
10.	References	S61
11.	NMR spectra	S62

1. General considerations


All reactions were carried out under an argon atmosphere, stirred magnetically, unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC: Merck Silica Gel 60 F_{254}). Column chromatography was carried out using neutral silica gel (Cica silica gel 60N, particle size 0.040-0.050 mm, neutral, KANTO CHEMICAL CO., INC.). NMR spectra were measured by JEOL ECS-400 (400 MHz). in CDCl₃, chemical shifts are expressed in parts per million (ppm, δ scale) relative to tetramethylsilane (TMS) as 0.00 ppm or residual CHCl₃ (7.26 ppm) for ¹H NMR and 77.00 ppm for CDCl₃ for ¹³C NMR as an internal reference. In CD₃OD, chemical shifts are expressed relative to residual CH₃OH (3.31 ppm for ¹H NMR). In D₂O, DSS (sodium 2,2-dimethyl-2-silapentane-5-sulfonate) was used as an internal reference. ¹H and ¹³C NMR spectra were reported in terms of chemical shift (δ , ppm) relative to the singlet at δ 0.00 ppm for DSS. Coupling constants (*J*) are reported in Hz. Multiplicities are reported using the following abbreviations; s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broad. Infrared (IR) spectra were measured by JEOL JMS-T100LP using Electrospray Ionization (ESI) and Direct Analysis in Real Time (DART). Elemental analyses were performed using Yanaco CHN CORDER MT-6.

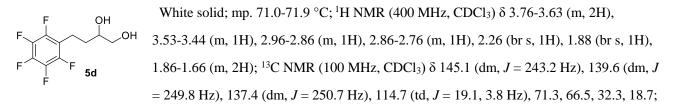
L-Aminoacylase (Acylase H "Amano", >30 kunits/g, mixture of 15% of enzyme and 85% of sodium sulfate) and D-aminoacylase (D-Aminoacylase "Amano", >10.2 Munits/g) were used for chemoenzymatic resolution. 2-Oxo-4-phenylbutyric acid (1a) (TCI), 4-methyl-2-oxovaleric acid (1b) (TCI), pyruvic acid (S29) (Wako), 2-oxobutyric acid (S31) (Aldrich), phenylpyruvic acid (S33) (TCI), 4-hydroxyphenylpyruvic acid (S37) (TCI), 3-methyl-2-oxovaleric acid (S39) (TCI), oxaloacetic acid (S41) (TCI), and 2-oxoglutaric acid (S42) (TCI) were purchased and used as received. α -Keto acid S35 was prepared by the oxidation of the corresponding α -hydroxy acid according to our previous report.¹ ¹³C NMR spectra of α -amino acids 3g-3l, 8, 11, and S45 could not be collected owing to their low solubility.

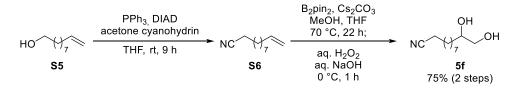
2. Preparation of 1,2-diols.


1,2-Diols **5a**, **5d**, **5f**, **5h**, **5i**, **5l**, and **5m** were synthesized from corresponding terminal olefins according to the previous reports.^{2, 3}

Typical procedure for synthesis of 1,2-diols from terminal olefins.

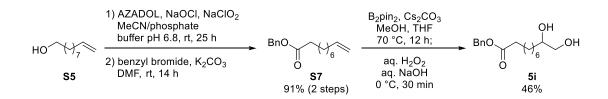
To a solution of olefin **S1** (5.4 g, 41 mmol) in THF (74 mL) were added bis(pinacolato)diboron (20.8 g, 81.7 mmol), Cs_2CO_3 (4.08 g, 12.5 mmol), and MeOH (8.3 mL, 204 mmol) at 0 °C. After the reaction mixture was stirred for 12 h at 70 °C, it was cooled to 0 °C. After the addition of THF (74 mL), aq. H₂O₂ (30%, 20.9 mL, 204 mmol), and aq. NaOH (10%, 73.5 mL, 204 mmol) were added. After 30 min, additional aq. H₂O₂ (30%, 20.9 mL, 204 mmol) and aq. NaOH (10%, 73.5 mL, 204 mmol) were added and the reaction mixture was stirred for 30 min. Then, it was quenched with saturated aq. Na₂S₂O₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 2/1 to AcOEt only) to afford 1,2-diol **5a** (6.1 g, 89%) as a pale yellow oil.


Analytical data of **5a** was shown in ref 3.


To a solution of alcohol **S2** (1.36 g, 6.02 mmol), TEMPO (28.4 mg, 0.182 mmol), KBr (72.5 mg, 0.609 mmol), and ^{*n*}Bu₄NBr (98.6 mg, 0.306 mmol) in CH₂Cl₂ (16 mL) and saturated aq. NaHCO₃ (8.1 mL) was added a solution of aq. NaOCl (1.77 M, 4.42 mL, 7.82 mmol) and saturated aq. NaHCO₃ (8.1 mL) dropwise at 0 °C. After 40 min, it was quenched with saturated aq. NaHCO₃ and saturated aq. Na₂S₂O₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude aldehyde **S3**, which was used to the next reaction without any further purification.

To a well-dried round-bottom flask charged with CH₃PPh₃Br (2.58 g, 7.23 mmol) and dry THF (15 mL) was added ^{*n*}BuLi (15wt%, 4.24 mL, 7.22 mmol) dropwise at 0 °C. After 20 min, a solution of aldehyde **S3** (0.5 M) in THF was added at -78 °C and the reaction mixture was stirred for 2 h at 0 °C. Then, it was quenched with saturated aq. NH₄Cl and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude olefin **S4**. It was used to the next reaction without any further purification.

1,2-Diol **5d** was prepared from olefin **S4** according to the preparation procedure of **5a**. 1,2-Diol **5d** was afforded as a white solid (0.784 g, 51%, 3 steps) after purification by temporary acetonide-protection and washing by hexane to remove an impurity originated from the boron reagent.

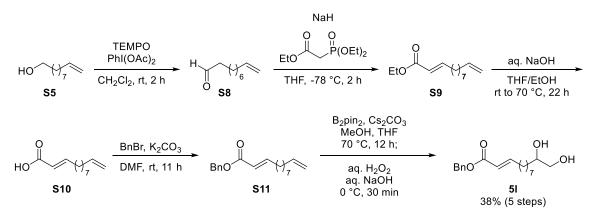

IR (neat, cm⁻¹) 3500-3200; HRMS (DART, m/z) Calcd. for $C_{10}H_9F_5O_2 \cdot NH_4$ ([M+NH₄]⁺): 274.0866, found 274.0875.

To a solution of alcohol **S5** (52.5 mg, 0.336 mmol), PPh₃ (104 mg, 0.450 mmol), and DIAD (84.6 μ L, 0.437 mmol) in THF (1.7 mL) was added acetone cyanohydrin (36.9 μ L, 0.403 mmol) at 0 °C. The reaction mixture was stirred for 9 h at room temperature and concentrated in vacuo. The residue was passed through flash column chromatography on silica gel (hexane/AcOEt = 30/1) to afford olefin **S6** including impurities.

1,2-Diol **5f** was prepared from olefin **S6** according to the preparation procedure of **5a**.

 $\begin{array}{c} & \text{OH} \\ \text{NC} & \begin{array}{c} & \text{OH} \\ & \text{NC} & \begin{array}{c} & \text{OH} \\ & \text{OH} \end{array} \end{array}$ White solid; mp 33.4-35.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.75-3.62 (m, 2H), 3.44 (ddd, J= 11.2, 7.2, 5.2 Hz, 1H), 2.34 (t, J = 6.8 Hz, 2H), 2.00 (br d, J = 4.4 Hz, 1H), 1.83 (br t, J = 5.2 Hz, 1H), 1.66 (quint, J = 7.6 Hz, 2H), 1.51-1.23 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 119.8, 72.2, 66.8, 33.1, 29.4, 29.1, 28.6, 28.6, 25.4, 25.3, 17.1; IR (neat, cm⁻¹) 3700-3200, 2247; HRMS (ESI, m/z) Calcd. for C₁₁H₂₁O₂ · Na ([M+Na]⁺): 222.1470, found 222.1473.

To a solution of alcohol **S5** (1.76 g, 11.3 mmol) and AZADOL (79.8 mg, 0.511 mmol) in MeCN (51 mL) and sodium phosphate buffer (1 M, pH = 6.8, 36 mL) were added a NaOCl aqueous solution (0.20 M, 2.53 mL, 0.506 mmol) and a NaClO₂ aqueous solution (20.2 mmol of 80% NaClO₂ dissolved into 19 mL of water) simultaneously dropwise at room temperature. After 25 h, the reaction mixture was quenched with sodium phosphate buffer (1 M, pH = 2.1, 7.2 mL) and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude carboxylic acid which was used to the next reaction without any further purification.


To a solution of carboxylic acid and K_2CO_3 (3.50 g, 25.3 mmol) in DMF (14 mL) was added benzyl bromide (1.80 mL, 15.2 mmol) at 0 °C. After the reaction mixture was stirred for 14 h at room temperature, it was quenched with H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane only to hexane/AcOEt = 30/1) to afford ester **S7** (2.67 g, 91%, 2 steps) as a colorless oil.

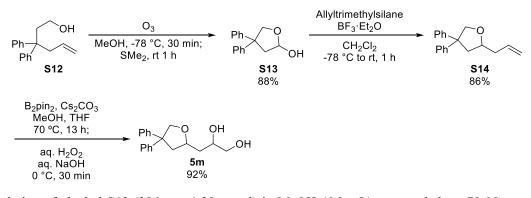
 $\begin{array}{c} \text{BnO} \\ & \bigcirc \\ & \bigcirc \\ & 0 \\ & \text{S7} \end{array} \\ \begin{array}{c} \text{Colorless oil; } ^{1}\text{H NMR (400 MHz, CDCl_3) } \delta \ 7.40\ -7.29 \ (\text{m}, 5\text{H}), \ 5.80 \ (\text{ddt}, \ J = 17.6, \ 10.0, \ 6.8 \ \text{Hz}, \\ & 1\text{H}), \ 5.11 \ (\text{s}, 2\text{H}), \ 4.99 \ (\text{dq}, \ J = 17.6, \ 1.6 \ \text{Hz}, \ 1\text{H}), \ 4.93 \ (\text{dm}, \ J = 10.0 \ \text{Hz}, \ 1\text{H}), \ 2.35 \ (\text{t}, \ J = 7.6 \ \text{Hz}, \\ & 2\text{H}), \ 2.03 \ (\text{qt}, \ J = 6.8, \ 1.6 \ \text{Hz}, \ 2\text{H}), \ 1.70\ -1.60 \ (\text{m}, 2\text{H}), \ 1.42\ -1.18 \ (\text{m}, 8\text{H}); \ ^{13}\text{C NMR (100 MHz}, \\ \hline \text{CDCl}_3) \ \delta \ 173.7, \ 139.1, \ 136.1, \ 128.5 \ (2\text{C}), \ 128.2 \ (3\text{C}), \ 114.2, \ 66.0, \ 34.3, \ 33.7, \ 29.1 \ (2\text{C}), \ 28.9, \ 28.8, \ 24.9; \ \text{IR (neat, } \\ \ \text{cm}^{-1}) \ 1738, \ 1641; \ \text{HRMS (ESI, m/z) Calcd. for } \ C_{17}\text{H}_{24}\text{O}_2 \ \cdot \ \text{Na} \ ([\text{M+Na}]^+): \ 283.1674, \ \text{found} \ 283.1683. \end{array}$

1,2-Diol **5i** was prepared from olefin **S7** according to the preparation procedure of **5a**. 1,2-Diol 5q was afforded as a white solid (1.40 g, 46%) after purification by temporary acetonide-protection to remove an impurity originated from the boron reagent.

 $\begin{array}{c} & \text{OH} \\ & \text{BnO} \\ & & \text{OH} \\ &$

NMR (100 MHz, CDCl₃) δ 173.7, 136.1, 128.5 (2C), 128.1 (3C), 72.2, 66.8, 66.1, 34.3, 33.1, 29.3, 29.1, 28.9, 25.4, 24.8; IR (neat, cm⁻¹) 3600-3200, 2929, 2850, 1736; HRMS (ESI, m/z) Calcd. for C₁₇H₂₆O₄ • Na ([M+Na]⁺): 317.1729, found 317.1715.

To a solution of alcohol **S5** (1.57 g, 10.1 mmol), TEMPO (158 mg, 1.01 mmol) in CH_2Cl_2 (50 mL) and was added iodobenzene diacetate (3.41 g, 10.6 mmol) at 0 °C. After the reaction mixture was stirred for 2 h at room temperature, it was quenched with saturated aq. NaHCO₃ and saturated aq. Na₂S₂O₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude aldehyde **S8**, which was used to the next reaction without any further purification.


To a well-dried round-bottom flask charged with NaH (60%, 443 mg, 11.1 mmol) and dry THF (50 mL) was added triethyl phosphonoacetate (2.21 mL, 11.1 mmol) dropwise at 0 °C. After 30 min, a solution of aldehyde **S8** (0.5 M) in THF was added at -78 °C. After 2 h, the reaction mixture was quenched with saturated H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude ester **S9**, which was used to the next reaction without any further purification.

To a solution of ester **S9** in THF (11 mL) and EtOH (2.7 mL) was added aq. NaOH (2.5 M, 13.3 mL, 33.2 mmol) at room temperature. After 12 h, aq. NaOH (2.5 M, 14.2 mL, 35.5 mmol) was added and stirred for 4 h. Then, the reaction mixture was warmed up to 70 °C and stirred for 6 h at the same temperature. After the reaction mixture was cooled to room temperature, AcOEt was added and the resultant mixture was separated into the organic layer and the aqueous layer. The aqueous layer was acidified with aq. HCl (2 M) and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude carboxylic acid **S10**, which was used to the next reaction without any further purification.

To a solution of carboxylic acid **S10** and K₂CO₃ (4.88 g, 35.3 mmol) in DMF (14 mL) was added benzyl bromide (2.39 mL, 20.1 mmol) at 0 °C. After the reaction mixture was stirred for 11 h at room temperature, it was quenched with saturated H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was passed through a flash column chromatography on silica gel (hexane/AcOEt = 20/1) to afford ester **S11** including impurities.

1,2-Diol **5**I was prepared from ester **S11** according to the preparation procedure of **5a**. 1,2-Diol **5**I was afforded as a white solid (1.22 g, 38%, 5 steps) after purification by temporary acetonide-protection to remove an impurity originated from the boron reagent.

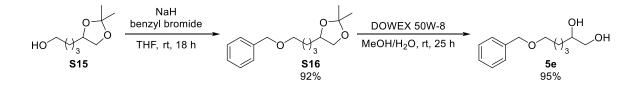
White solid; mp. 50.2-51.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 5H), 7.01 (dt, J = 15.6, 6.8 Hz, 1H), 5.86 (dt, J = 15.6, 1.2 Hz, 1H), 5.12 (s, 2H), 3.75-3.62 (m, 2H), 3.47-3.40 (m, 1H), 2.20 (qd, J = 6.8 Hz, 1.2 Hz, 2H), 1.98 (d, J = 4.4 Hz, 1H), 1.83 (t, J = 5.2 Hz, 1H), 1.50-1.23 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 150.1, 136.0, 128.4 (2C), 128.0 (3C), 120.8, 72.2, 66.6, 65.9, 32.9, 32.1, 29.4, 29.1, 28.9, 27.8, 25.4; IR (neat, cm⁻¹) 3700-3200, 1718, 1653; HRMS (ESI, m/z) Calcd. for C₁₉H₂₈O₄ • Na ([M+Na]⁺): 343.1885, found 343.1876.

After a solution of alcohol **S12** (286 mg, 1.20 mmol) in MeOH (6.0 mL) was cooled to -78 °C, ozone gas was bubbled into the solution until the color of the reaction mixture turned to deep blue. After 30 min, air was bubbled into the reaction mixture until a blue color disappeared. Then, dimethyl sulfide (0.877 mL, 12.0 mmol) was added at the same temperature. After the reaction mixture was stirred for 1 h at room temperature, it was concentrated in vacuo and purified by flash column chromatography on silica gel (hexane only to hexane/AcOEt = 4/1) to afford hemiacetal **S13** (254 mg, 88%) as a white solid.

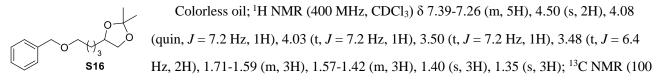
White solid; mp 108.9-109.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.16 (m, 10H), 5.62 (ddd, J Ph \rightarrow OH = 6.0, 5.6, 4.0 Hz, 1H), 4.55 (d, J = 8.8 Hz, 1H), 4.44 (dd, J = 8.8, 0.8 Hz, 1H), 2.93 (ddd, J = 13.6, 6.0, 0.8 Hz, 1H), 2.62 (dd, J = 13.6, 4.0 Hz, 1H), 2.50 (d, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 145.0, 128.6, 128.4, 127.2, 126.8, 126.7, 126.4, 99.5, 75.9, 55.4, 46.9; IR (neat, cm⁻¹) 3700-3200; HRMS (ESI, m/z) Calcd. for C₁₆H₁₆O₂ • Na ([M+Na]⁺): 263.1048, found 263.1031.

To a well-dried round-bottom flask charged with hemiacetal **S13** (29.9 mg, 0.124 mmol), allyltrimethylsilane (39.7 μ L, 0.249 mmol), and dry CH₂Cl₂ (300 μ L) was added boron trifluoride - ethyl ether complex (46.9 μ L, 0.373 mmol) dropwise at -78 °C. The reaction mixture was warmed up to room temperature over a period of 1 h. Then, it was quenched with H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 30/1) to afford olefin **S14** (28.3 mg, 86%) as a colorless oil.

 $\begin{array}{c} \begin{array}{c} \mathsf{Ph} & \mathsf{Colorless\ oil;}\,^1\mathrm{H\ NMR\ (400\ MHz,\ CDCl_3)\ \delta\ 7.32-7.15\ (m,\ 10\mathrm{H}),\ 5.81\ (ddt,\ J=17.6,\ 10.8,\ 7.6, \\ \\ \mathsf{Hz,\ 1\mathrm{H}}),\ 5.10\ (dq,\ J=17.6,\ 1.2\ \mathrm{Hz,\ 1\mathrm{H}}),\ 5.06\ (dm,\ J=10.8\ \mathrm{Hz,\ 1\mathrm{H}}),\ 4.62\ (dd,\ J=8.8,\ 1.2\ \mathrm{Hz,\ 1\mathrm{H}}),\ 4.13\ (d,\ J=8.8\ \mathrm{Hz,\ 1\mathrm{H}}),\ 4.13-4.06\ (m,\ 1\mathrm{H}),\ 2.59\ (ddd,\ J=12.4,\ 5.6,\ 1.2\ \mathrm{Hz,\ 1\mathrm{H}}),\ 2.45-2.27\ (m,\ 3\mathrm{H});\ ^{13}\mathrm{C\ NMR\ (100\ MHz,\ CDCl_3)\ \delta\ 146.3,\ 145.9,\ 134.7,\ 128.4,\ 128.3,\ 127.2,\ 127.1,\ 126.4,\ 126.2,\ 117.2,\ 78.0,\ \end{array}}$

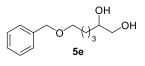

76.9, 56.0, 44.3, 40.3; IR (neat, cm⁻¹) 1072; HRMS (ESI, m/z) Calcd. for C₁₉H₂₀O • Na ([M+Na]⁺): 287.1412, found 287.1392.

1,2-Diol 5m was prepared from olefin S14 according to the preparation procedure of 5a. 1,2-Diol 5m was

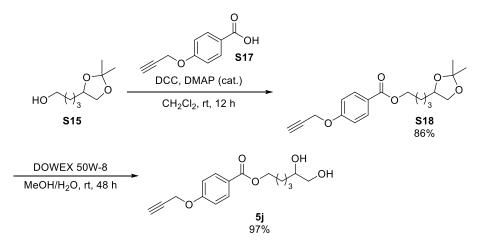

afforded as a white amorphous (644 mg, 92%).

Ph
$$O$$
 OH Ph O OH OH White amorphous; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.16 (m, 20H), 4.66 (d, $J = 9.6$ Hz, 1H), 4.63 (d, $J = 9.6$ Hz, 1H), 4.32-4.23 (m, 2H), 4.15 (dd, $J = 9.6$, 2.0 Hz, 2H), 3.98-3.89 (m, 2H), 3.69-3.59 (m, 3H), 3.57-3.46 (m, 2H), 2.81 (br d, $J = 9.2$ Hz, 1H), 2.70 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.2$ Hz, 1H), 2.70 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.2$ Hz, 1H), 2.70 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.6$ Hz, 2H), 3.98-3.89 (m, 2H), 3.69-3.59 (m, 3H), 3.57-3.46 (m, 2H), 2.81 (br d, $J = 9.2$ Hz, 1H), 2.70 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.6$ Hz, 2H), 3.98-3.89 (m, 2H), 3.69-3.59 (m, 3H), 3.57-3.46 (m, 2H), 2.81 (br d, $J = 9.2$ Hz, 1H), 2.70 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd, $J = 9.6$ Hz, 2H), 3.98-3.89 (m, 2H), 3.69-3.59 (m, 3H), 3.57-3.46 (m, 2H), 2.81 (br d, $J = 9.2$ Hz, 1H), 2.70 (dd, $J = 9.6$ Hz, 1H), 4.15 (dd,

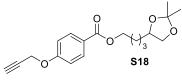
12.0, 5.6 Hz, 1H), 2.65 (dd, J = 12.4, 6.0 Hz, 1H), 2.40 (dd, J = 12.0, 9.6 Hz, 1H), 2.36 (dd, J = 12.4, 9.6 Hz, 1H), 2.23 (br t, J = 6.4 Hz, 1H), 2.09 (br t, J = 5.6 Hz, 1H), 1.85 (ddd, J = 14.0, 7.6, 3.2 Hz, 1H), 1.77-1.66 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 145.7, 145.5, 145.3, 128.5 (2C), 128.43 (2C), 128.37 (2C), 128.35 (2C), 127.02 (4C), 126.96 (4C), 126.6, 126.5, 126.4, 126.3, 78.2, 77.2, 76.6, 76.0, 71.6, 69.9, 66.8, 66.4, 55.7, 55.4, 45.4, 44.8, 38.7, 38.5; IR (neat, cm⁻¹) 3700-3200; HRMS (ESI, m/z) Calcd. for C₁₉H₂₂O₃ • Na ([M+Na]⁺): 321.1467, found 321.1449.



To a well-dried round-bottom flask charged with NaH (60%, 166 mg, 4.16 mmol) and dry THF (5.5 mL) was added a solution of alcohol **S15** (0.7 M, 481 mg, 2.76 mmol) in THF (5.5 mL) at 0 °C. After the mixture was stirred for 30 min at room temperature, benzyl bromide (492 μ L, 4.14 mmol) was added dropwise at 0 °C. After the reaction mixture was stirred for 18 h at room temperature, it was quenched with H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane only to hexane/AcOEt = 10/1) to afford ether **S16** (672 mg, 92%) as a colorless oil.

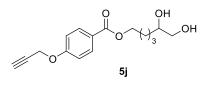

MHz, CDCl₃) δ 138.5, 128.3, 127.6, 127.5, 108.6, 76.0, 72.9, 70.1, 69.4, 33.4, 29.7, 26.9, 25.7, 22.5; IR (neat, cm⁻¹) 1101; HRMS (ESI, m/z) Calcd. for C₁₆H₂₄O₃ • Na ([M+Na]⁺): 287.1622, found 287.1623.

To a solution of ether **S16** (1.11 g, 4.19 mmol) in MeOH (17 mL) and H₂O (4.2 mL) was added DOWEX 50W-8 (200-400 mesh, 120 mg) at room temperature. After 25 h, the reaction mixture was filtered through a pad of Celite and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 1/2) to afford 1,2-diol **5e** (0.897 g, 95%) as a pale yellow oil.

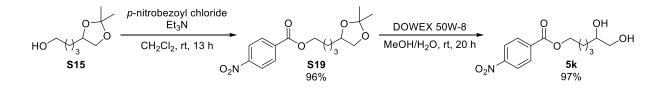


Pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.26 (m, 5H), 4.50 (s, 2H), 3.76-3.60 (m, 2H), 3.49 (t, *J* = 6.4 Hz, 2H), 3.47-3.39 (m, 1H), 2.13 (br s, 1H), 1.88 (br s, 1H), 1.73-1.39 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 128.4, 127.7, 127.6, 73.0,

72.1, 70.1, 66.8, 32.9, 29.6, 22.3; IR (neat, cm⁻¹) 3700-3200, 2937, 2862, 1099; HRMS (ESI, m/z) Calcd. for $C_{13}H_{20}O_3 \cdot Na$ ([M+Na]⁺): 247.1310, found 247.1310.

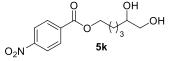

To a solution of alcohol **S15** (1.75 g, 10.1 mmol), DCC (2.29 g, 11.1 mmol) and DMAP (246 mg, 2.02 mmol) in CH_2Cl_2 (40 mL) was added carboxylic acid **S17** (1.78 g, 10.1 mmol) at room temperature. After 12 h, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 8/1) to afford ester **S18** (2.87 g, 86%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.00 (dt, *J* = 8.8, 2.8 Hz, 2H), 7.00 (dt, *J* = 8.8, 2.8 Hz, 2H), 4.75 (d, *J* = 2.0 Hz, 2H), 4.30 (t, *J* = 6.4 Hz, 2H), 4.13-4.07 (m, 1H), 4.04 (dd, *J* = 7.6, 6.0 Hz, 1H), 3.52 (t, *J* = 7.6 Hz, 1H), 2.54 (t, *J* = 2.0 Hz, 1H), 1.80 (quint, *J* = 7.6 Hz, 2H), 1.73-144 (m, 4H), 1.41 (s, 3H), 1.35 (s, 3H); ¹³C

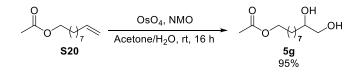

NMR (100 MHz, CDCl₃) δ 166.1, 161.1, 131.5, 123.6, 114.4, 108.7, 77.8, 76.0, 75.8, 69.3, 64.5, 55.8, 33.2, 28.7, 26.9, 25.7, 22.3; IR (KBr, cm⁻¹) 1712; HRMS (ESI, m/z) Calcd. for C₁₉H₂₄NO₅ • Na ([M+Na]⁺): 355.1514, found 355.1521.

To a solution of ester **S18** (1.75 g, 10.1 mmol) in MeOH (34 mL) and H₂O (8.6 mL) was added DOWEX 50W-8 (200-400 mesh, 292 mg) at room temperature. After 14 h, additional DOWEX 50W-8 (200-400 mesh, 287 mg) was added and the reaction mixture was stirred for 34 h. Then, the reaction mixture was filtered through a pad of Celite and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 1/1 to AcOEt only) to afford 1,2-diol **5j** (2.44 g, 97%) as a white solid.

White solid; mp. 75.2-77.1 °C; ¹H NMR (400 MHz, CD₃OD) δ 7.98 (dt, *J* = 8.8, 2.8 Hz, 2H), 7.06 (dt, *J* = 8.8, 2.8 Hz, 2H), 4.82 (d, *J* = 2.8 Hz, 2H), 4.31 (t, *J* = 6.4 Hz, 2H), 3.63-3.57 (m, 1H), 3.48 (dd, *J* = 10.8, 4.4 Hz, 1H), 3.44 (dd, *J* = 10.8, 6.4 Hz, 1H), 2.99 (t, *J* = 2.8 Hz, 1H), 1.87-1.72 (m, 2H), 1.71-1.39 (m,


4H); ¹³C NMR (100 MHz, CD₃OD) δ 167.9, 163.0, 132.4, 124.5, 115.7, 79.1, 77.3, 73.1, 67.3, 65.9, 56.7, 34.0, 29.9, 23.3; IR (KBr, cm⁻¹) 3700-3200, 2360, 1707; HRMS (ESI, m/z) Calcd. for C₁₆H₂₀NO₅ • Na ([M+Na]⁺): 315.1199, found 315.1208.

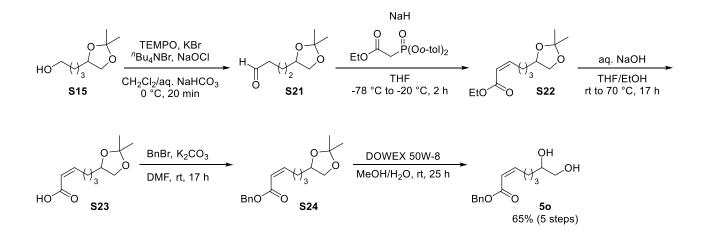
To a solution of alcohol **S15** (1.73 g, 9.96 mmol) and Et_3N (5.52 mL, 4.80 mmol) in CH_2Cl_2 (50 mL) was added *p*-nitrobenzoyl chloride (4.82 g, 26.0 mmol) at room temperature. After 13 h, the reaction mixture was quenched with saturated aq. NaHCO₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 4/1) to afford ester **S19** (3.10 g, 96%) as a pale yellow oil.


Pale yellow solid; mp 29.7-30.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dt, J = 9.2, 2.0 Hz, 2H), 4.39 (t, J = 6.4 Hz, 2H), 4.14-4.08 (m, 1H), 4.05 (dd, J = 7.6, 6.0 Hz, 1H), 3.53 (t, J = 7.6 Hz, 1H), 1.85 (quin, J = 6.8 Hz, 2H), 1.74-1.44 (m, 4H), 1.41 (s, 3H), 1.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 150.5, 135.7, 130.6, 123.5, 108.8, 75.8, 69.3, 65.7, 33.2, 28.6, 26.9, 25.7, 22.3; IR (neat, cm⁻¹) 1724, 1527, 1275, 1103; HRMS (ESI, m/z) Calcd. for C₁₆H₂₁NO₆ • Na ([M+Na]+): 346.1267, found 346.1263.

To a solution of ester **S19** (2.96 g, 9.15 mmol) in MeOH (37 mL) and H₂O (9.2 mL) was added DOWEX 50W-8 (200-400 mesh, 604 mg) at room temperature. After 20 h, the reaction mixture was filtered through a pad of Celite and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 1/1 to AcOEt only) to afford 1,2-diol **5k** (2.51 g, 97%) as a white solid.

White solid; mp 61.9-64.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.21 (dt, *J* = 9.2, 2.0 Hz, 2H), 4.39 (t, *J* = 6.4 Hz, 2H), 3.79-3.72 (m, 1H), 3.68 (dd, *J* = 11.2, 2.4 Hz, 1H), 3.47 (dd, *J* = 10.4, 7.2 Hz, 1H), 1.89-1.73 (m, 2H),

1.71-1.47 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 150.5, 135.7, 130.7, 123.5, 71.9, 66.7, 65.7, 32.6 28.6, 22.1; IR (neat, cm⁻¹) 3800-3100, 1722, 1527, 1279; HRMS (ESI, m/z) Calcd. for C₁₃H₁₇NO₆ • Na ([M+Na]+): 306.0954, found 306.0946.



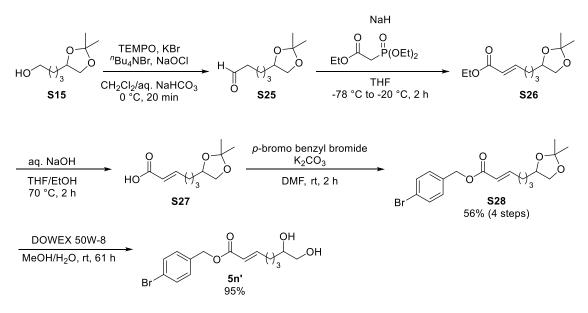
To a solution of olefin **S20** (1.08 g, 5.47 mmol) and *N*-methylmorpholine *N*-oxide (541 mg, 4.62 mmol) in acetone (27 mL) and H₂O (3.0 mL) was added osmium tetroxide (4% in H₂O, 185 μ L, 30.3 μ mol) at 0 °C. After the reaction mixture stirred for 14 h at room temperature, additional *N*-methylmorpholine *N*-oxide (368 mg, 3.14 mmol) was added and the reaction mixture was stirred for 3 h. Then, it was quenched with saturated aq. Na₂S₂O₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane only to hexane/AcOEt = 1/1 to AcOEt only) to afford 1,2-diol **5g** (1.21 g, 95%) as a white solid.

171.3, 72.2, 66.8, 64.6, 33.1, 29.5, 29.3, 29.1, 28.5, 25.8, 25.4, 21.0; IR (neat, cm⁻¹) 3700-3200, 1739; HRMS (ESI, m/z) Calcd. for C₁₂H₂₄O₄ • Na ([M+Na]⁺): 255.1572, found 255.1564.

1,2-Diol **5n** was prepared according to our previous report¹.

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 7.00 (dt, J = 16.0, 7.2Hz, 1H), 5.88 (dt, J = 16.0, 1.2 Hz, 1H), 5.17 (s, 2H), 3.75-3.62 (m, 1H), 3.66 (dd, J = 10.8, 3.2 Hz, 1H), 3.44 (dd, J = 10.8, 7.6 Hz, 1H), 2.25 (qd, J = 7.2, 1.2 Hz, 2H), 2.03 (br s, 1H), 1.79 (br s, 1H), 1.72-1.61 (m, 1H), 1.60-1.42 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 149.4, 136.0, 128.5 (2C), 128.2 (3C), 121.3, 71.8, 66.7, 66.1, 32.4, 32.0, 23.9; IR (neat, cm⁻¹) 3700-3200, 1716, 1653; HRMS (ESI, m/z) Calcd. for C₁₅H₂₀O₄ • Na ([M+Na]+): 287.1259, found 287.1233.

To a solution of alcohol **S15** (904 mg, 5.19 mmol), TEMPO (8.8 mg, 0.056 mmol), KBr (62.8 mg, 0.528 mmol), and "Bu₄NBr (85.9 mg, 0.266 mmol) in CH₂Cl₂ (14 mL) and saturated aq. NaHCO₃ (7.0 mL) was added a solution of aq. NaOCl (1.77 M, 3.81 mL, 6.75 mmol) and saturated aq. NaHCO₃ (5.3 mL) dropwise at 0 °C. After 20 min, the reaction mixture was quenched with saturated aq. NaHCO₃ and saturated aq. Na₂S₂O₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude aldehyde **S21**, which was used to the next reaction without any further purification.

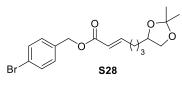

Next Z-selective Horner-Wadsworth-Emmons reaction was carried out according to Ando's report.⁴ To a well-dried round-bottom flask charged with NaH (60%, 207 mg, 5.18 mmol) and dry THF (26 mL) was added ethyl di-*o*-tolylphosphonoacetate (1.80 mL, 5.18 mmol) dropwise at 0 °C. After 30 min, a solution of aldehyde **S21** (0.5 M) in THF was added to the reaction mixture at -78 °C. After 1 h, the reaction mixture was warmed up to -20 °C over a period of 1 h. Then, it was quenched with saturated aq. NH₄Cl and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude ester **S22**, which was used to the next reaction without any further purification.

To a solution of ester **S22** in THF (5.5 mL) and EtOH (1.4 mL) was added aq. NaOH (5.0 M, 7.27 mL, 36.4 mmol) at room temperature. After 13 h, aq. NaOH (5.3 M, 7.27 mL, 38.8 mmol) was added to the reaction mixture. After 3 h, the reaction mixture was warmed up to 70 °C and stirred for 1 h at the same temperature. After the reaction mixture was cooled to room temperature, AcOEt was added and the resultant mixture was separated into the organic layer and the aqueous layer. The aqueous layer was acidified with aq. HCl (2M) and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude carboxylic acid **S23**, which was used to the next reaction without any further purification.

To a solution of carboxylic acid **S23** and K_2CO_3 (2.54 g, 18.3 mmol) in DMF (7.4 mL) was added benzyl bromide (1.23 mL, 10.4 mmol) at 0 °C. After the reaction mixture was stirred for 4 h at room temperature, additional K_2CO_3 (0.718 g, 5.20 mmol) and benzyl bromide (0.615 mL, 5.19 mmol) were added and stirred for 13 h. Then, it was quenched with saturated aq. Na₂S₂O₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was passed through a flash column chromatography on silica gel (hexane/AcOEt = 10/1) to afford ester **S24** including impurities.

To a solution of ester **S24**, in MeOH (16 mL) and H₂O (3.9 mL) was added DOWEX 50W-8 (200-400 mesh, 240 mg) at room temperature. After 36 h, the reaction mixture was filtered through a pad of Celite and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 1/1 to AcOEt only) to afford 1,2-diol **50** (898 mg, 65%, 5 steps) as a white solid.

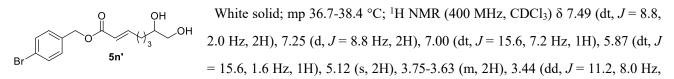
White solid; mp 26.1-27.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 6.28 (dt, *J* = 11.2, 7.2 Hz, 1H), 5.85 (dt, *J* = 11.2 Hz, 1.6 Hz, 1H), 5.15 (s, 2H), 3.78-3.70 (m, 1H), 3.67-3.60 (m, 1H), 3.47-3.39 (m, 1H), 2.80-2.69 (m, 1H), 2.69-2.57 (m, 1H), 2.23 (br d, *J* = 4.0 Hz, 1H), 1.86 (br t, *J* = 5.6 Hz, 1H), 1.69-1.40 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 150.6, 136.0, 128.6, 128.2, 128.2, 119.8, 71.7, 66.8, 65.8, 32.4, 28.7, 24.8; IR (neat, cm⁻¹) 3700-3200, 1718; HRMS (ESI, m/z) Calcd. for C₁₅H₂₀O₄ • Na ([M+Na]⁺): 287.1259, found 287.1252.


To a solution of alcohol **S15** (1.74 g, 10.0 mmol), TEMPO (15.7 mg, 0.100 mmol), KBr (122 mg, 1.03 mmol) and "Bu₄NBr (163 mg, 0.504 mmol) in CH₂Cl₂ (26 mL) and saturated aq. NaHCO₃ (14 mL) was added a solution of aq. NaOCl (1.77 M, 7.35 mL, 13.0 mmol) and saturated aq. NaHCO₃ (10 mL) dropwise at 0 °C. After 20 min, it was quenched with saturated aq. NaHCO₃ and saturated aq. Na₂S₂O₃ and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude aldehyde **S25**, which was used to the next reaction without any further purification.

To a well-dried round-bottom flask charged with NaH (60%, 441 mg, 11.0 mmol) and dry THF (50 mL) was added triethyl phosphonoacetate (2.19 mL, 11.0 mmol) dropwise at 0 °C. After 40 min, a solution of aldehyde **S25** (0.5 M) in THF was added at -78 °C. After 2 h, the reaction mixture was quenched with saturated H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide

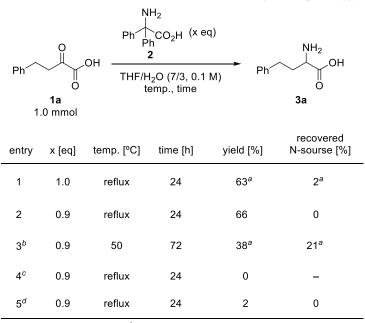
crude ester S26, which was used to the next reaction without any further purification.

To a solution of ester **S26** in THF (11 mL) and EtOH (2.7 mL) was added aq. NaOH (5.1 M, 14.0 mL, 70.8 mmol) at room temperature. After the reaction mixture was stirred for 3 h at 70 °C, it was cooled to room temperature. Then, AcOEt was added and the resultant mixture was separated into the organic layer and the aqueous layer. The aqueous layer was acidified with aq. HCl (2 M) and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude carboxylic acid **S27**, which was used to the next reaction without any further purification.


To a solution of carboxylic acid **S27** and K₂CO₃ (4.84 g, 35.0 mmol) in DMF (14 mL) was added *p*-bromobenzyl bromide (5.00 g, 20.1 mmol) at 0 °C. After the reaction mixture was stirred for 2 h at room temperature, it was quenched with saturated H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was passed through a flash column chromatography on silica gel (hexane/AcOEt = 10/1) to afford ester **S28** (2.16 g, 56%, 4 steps) as a colorless oil.

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dt, J = 8.0, 1.6 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.00 (dt, J = 15.6, 6.8 Hz, 1H), 5.87 (dt, J = 15.6, 1.2 Hz, 1H), 5.11 (s, 2H), 4.11-4.00 (m, 2H), 3.50 (t, J = 7.2 Hz, 1H), 2.25 (qd, J = 6.8, 1.2 Hz, 2H), 1.68-1.43 (m, 4H), 1.40 (s, 3H), 1.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

166.1, 149.5, 135.1, 131.6, 129.8, 122.1, 121.2, 108.7, 75.6, 69.3, 65.2, 33.0, 32.0, 26.9, 25.7, 24.1; IR (neat, cm⁻¹) 1720, 1653; HRMS (ESI, m/z) Calcd. for C₁₈H₂₃BrO₄ • Na ([M+Na]⁺): 405.0677, found 405.0663.


To a solution of ester **S28** (2.13 g, 5.57 mmol) in MeOH (22 mL) and H₂O (5.6 mL) was added DOWEX 50W-8 (200-400 mesh, 227 mg) at room temperature. After 61 h, the reaction mixture was filtered through a pad of Celite and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 1/1) to afford 1,2-diol **5n**' (1.82 g, 95%) as a white solid.

1H), 2.25 (qd, J = 7.2, 1.6 Hz, 2H), 2.03 (br s, 1H), 1.77 (br s, 1H), 172-1.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 149.7, 134.8, 131.4, 129.7, 122.0, 120.8, 71.7, 66.4, 65.1, 32.1, 31.9, 23.8; IR (neat, cm⁻¹) 3700-3200, 1718, 1651; HRMS (ESI, m/z) Calcd. for C₁₅H₁₉BrO₄ • Na ([M+Na]⁺): 365.0364 found 365.0353.

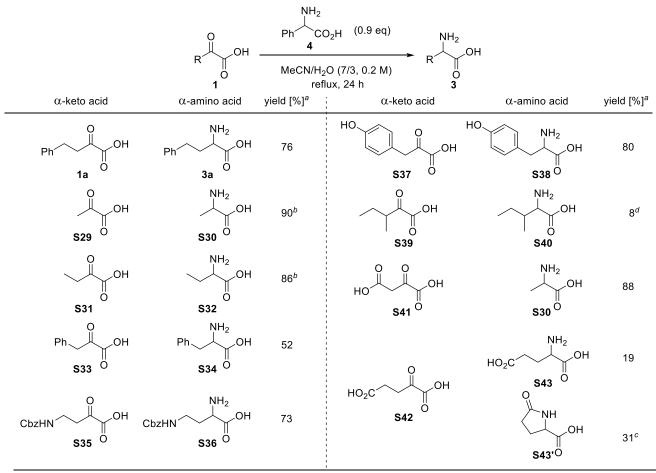

3. Transamination of α-keto acids to α-amino acids.

Table S1. Optimizing the reaction conditions of transamination using 2,2-diphenylglycine (2)

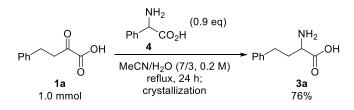
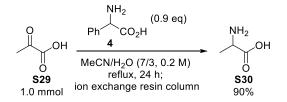

^{*a*}An inseparable mixture. ^{*b*}0.2 mmol of **1a** was used. ^{*c*}Benzylamine was used instead of **2**. ^{*d*}Pyridoxamine dihydrochloride monohydrate was used instead of **2**.

Table S2. Substrate scope of transamination of α-keto acids


^alsolated yield. ^bIon-exchange chromatography (Dowex 50W-8) was used for the purification. ^cNMR yield. ^dInseparable mixture with 4.

Representative procedure of transamination of a-keto acids to a-amino acids (method A).

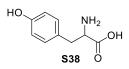


To a solution of α -keto acid **1a** (178 mg, 1.00 mmol) in MeCN (3.5 mL) and H₂O (1.5 mL) was added DL-2-phenylglycine (**4**) (136 mg, 0.900 mmol) at room temperature. After the reaction mixture was refluxed for 24 h, it was cooled to room temperature. After Et₂O (5.0 mL) was added, the desired α -amino acid was fully precipitated, the reaction mixture was filtrated. The precipitate was washed with Et₂O and dried under reduced pressure to afford α -amino acid **3a** (136 mg, 76%).

Representative procedure of transamination of α-keto acids to α-amino acids (method B).

To a solution of α -keto acid **S29** (88.4 mg, 1.00 mmol) in MeCN (3.5 mL) and H₂O (1.5 mL) was added DL-2-phenylglycine (**4**) (137 mg, 0.904 mmol) at room temperature. After the reaction mixture was refluxed for 24 h, it was cooled to room temperature, Then, CH₂Cl₂ was added and the resultant mixture was separated into organic layer and aqueous layer. The organic layer was extracted with H₂O and the two aqueous layers were combined. The resultant aqueous layer was charged on a cationic ion exchange chromatography (DOWEX 50W-8, 200-400 mesh). The product was eluted with aq. NH₃ (3%). The eluent was concentrated by freezed-dry to afford α -amino acid **S30** (79.8 mg, 90%).

90.8 mg (68% yield); method A; White solid; mp. 260.5-263.2 °C; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 3.24 (t, *J* = 6.8 Hz, 1H), 1.69-1.59 (m, 1H), 1.49-1.32 (m, 2H), 0.89 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, D₂O with 4 eq of KOH) δ 187.2, 57.3, 46.9, 27.1, 25.1, 24.0; IR (KBr,

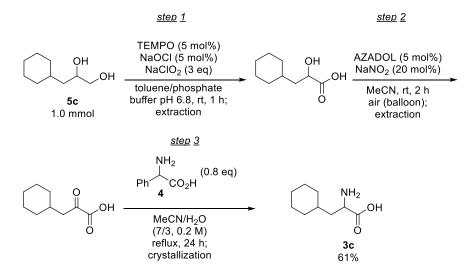

cm⁻¹) 3300-1800, 1618, 1587, 1508; HRMS (DART, m/z) Calcd. for C₆H₁₃NO₂ • H ([M+H]⁺): 132.1022, found 132.1025; Anal. Calcd. for C₆H₁₃NO₂: C, 54.94; H, 9.99; N, 10.68. Found: C, 54.89; H, 9.94; N, 10.60.

 $\begin{array}{c} \text{NH}_2 \\ \text{OH} \\ \text{S30} \end{array} \begin{array}{c} 79.8 \text{ mg (90\% yield); method B; White solid; 176 °C decomp.; }^{1}\text{H NMR (400 MHz, D_2O) } \delta 3.77 (q, J) \\ \text{S30} \end{array}$

 $\begin{array}{l} \begin{array}{l} \text{NH}_2 \\ \text{S32} \end{array} \begin{array}{l} \text{91.4 mg (86\% yield); method B; White solid; mp. 236.6-238.3 °C; ^1H NMR (400 MHz, D_2O) \delta \\ \text{3.69 (t, } J = 6.0 \text{ Hz, 1H}), 1.94\text{-}1.83 (m, 2H), 0.97 (t, } J = 7.2 \text{ Hz, 3H}); ^{13}\text{C NMR (100 MHz, D_2O) } \delta \\ \text{177.6, 58.6, 26.4, 11.2; IR (KBr, cm^{-1}) 3300\text{-}2000, 1654, 1577, 1508; HRMS (DART, m/z) Calcd.} \\ \text{for } C_4H_9NO_2 \cdot H ([M+H]^+): 104.0684, \text{found 104.0712.} \end{array}$

NH₂ Ph H_2 H_3 H_4 H_5 H_5 H_5

 $\begin{array}{c} \mathsf{NH}_2\\ \mathsf{CbzNH} & \qquad \mathsf{NH}_2\\ \mathsf{S36} & \mathsf{O} \end{array} \\ & \mathsf{NH}_2\\ \mathsf{S36} & \mathsf{O} \end{aligned} \\ & \mathsf{NH}_2\\ \mathsf{S36} & \mathsf{S324-3.16} (\mathsf{m}, \mathsf{3H}), \mathsf{1.87-1.79} (\mathsf{m}, \mathsf{1H}), \mathsf{1.69-1.60} (\mathsf{m}, \mathsf{1H}); \mathsf{1^3C} \mathsf{NMR} (\mathsf{100} \mathsf{MHz}, \mathsf{D}_2\mathsf{O} \mathsf{with} \mathsf{4} \mathsf{eq} \mathsf{of} \mathsf{KOH}) \mathsf{\delta} \mathsf{185.5}, \mathsf{161.0}, \mathsf{139.2}, \mathsf{131.5}, \mathsf{131.0}, \mathsf{130.3}, \mathsf{69.5}, \mathsf{56.5}, \mathsf{40.3}, \mathsf{37.3}; \mathsf{IR} (\mathsf{KBr}, \mathsf{cm}^{-1}) \mathsf{3305}, \mathsf{3200-1800}, \mathsf{1687}, \mathsf{1654}, \mathsf{1583}, \mathsf{1545}; \mathsf{HRMS} (\mathsf{DART}, \mathsf{m/z}) \mathsf{Calcd} \mathsf{for} \mathsf{C}_{\mathsf{12}}\mathsf{H}_{\mathsf{16}}\mathsf{N}_{\mathsf{2}}\mathsf{O}_{\mathsf{4}} \mathsf{\cdot} \mathsf{H} ([\mathsf{M}+\mathsf{H}]^+) : \mathsf{253.1182}, \mathsf{found} \mathsf{253.1188}; \mathsf{Anal.} \mathsf{Calcd} \mathsf{for} \mathsf{C}_{\mathsf{12}}\mathsf{H}_{\mathsf{16}}\mathsf{N}_{\mathsf{2}}\mathsf{O}_{\mathsf{4}} \mathsf{:} \mathsf{C}, \mathsf{57.13}; \mathsf{H}, \mathsf{6.39}; \mathsf{N}, \mathsf{11.10}. \mathsf{Found} : \mathsf{C}, \mathsf{57.02}; \mathsf{H}, \mathsf{6.45}; \mathsf{N}, \mathsf{10.93}. \end{aligned}$



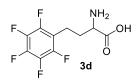
144.9 mg, (80% yield); method A; White solid; 234 °C decomp.; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 6.98 (d, J = 8.0 Hz, 2H), 6.57 (d, J = 8.0 Hz, 2H), 3.39 (dd, J = 7.2, 5.2 Hz, 1H), 2.84 (dd, J = 13.6, 5.2 Hz, 1H), 2.66 (dd, J = 13.6, 7.2 Hz, 1H); ¹³C NMR

(100 MHz, D₂O with 4 eq of KOH) δ 185.6, 167.3, 133.4, 126.4, 121.3, 60.3, 42.6; IR (KBr, cm⁻¹) 3400-2300, 1628, 1588, 1513; HRMS (DART, m/z) Calcd. for C₉H₁₁NO₃ • H ([M+H]⁺): 182.0812, found 182.0817; Anal. Calcd. for C₉H₁₁NO₃: C, 59.66; H, 6.12; N, 7.73. Found: C, 59.67; H, 6.29; N, 7.43.

4. Three-step synthesis of α-amino acids from 1,2-diols.

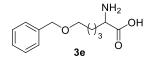
Typical procedure of synthesis of α-amino acids from 1,2-diols

Step1: To a solution of 1,2-diol **5c** (158.7 mg, 1.00 mmol) and TEMPO (7.8 mg, 0.05 mmol) in toluene (5.0 mL) and sodium phosphate buffer (1 M, pH = 6.8, 3.6 mL) were added a NaOCl aqueous solution (0.20 M, 251 μ L, 0.05 mmol) and a NaClO₂ aqueous solution (3.0 mmol of 80% NaClO₂ dissolved into 1.4 mL of water) simultaneously dropwise at room temperature. The color of the reaction mixture turned to deep red indicating the formation of charge-transfer complex TEMPO-ClO₂. After 1 h, sodium phosphate buffer (1 M, pH = 2.1, 7.2 mL) was added. The aqueous layer was extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude α-hydroxy acid.


Step 2: To a solution of crude α -hydroxy acid and AZADOL (7.7 mg, 0.05 mmol) in MeCN (5.0 mL) was added NaNO₂ (13.8 mg, 0.20 mmol) at room temperature. (The flask size should be ten times bigger than the solution's volume. The reaction mixture should be stirred vigorously.) After the reaction mixture was stirred under air (balloon) for 2 h, it was quenched with sodium phosphate buffer (1 M, pH = 2.1, 5.0 mL) was added. The aqueous layer was extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to provide crude α -keto acid.

Step 3: To a solution of crude α -keto acid in MeCN (3.5 mL) and H₂O (1.5 mL) was added DL-2-phenylglycine (4) (121 mg, 0.802 mmol) at room temperature. The reaction mixture was refluxed for 24 h and cooled to room temperature. After Et₂O (5.0 mL) was added to the reaction mixture, the solution was stirred until α -amino acid was fully precipitated. After filtration, the precipitate was washed with Et₂O and dried under reduced pressure to afford α -amino acid **3c** (105 mg, 61%) with high purity.

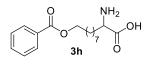
Ph 3a O 1.0 mmol-scale synthesis; 115 mg (63% yield); An additional NaOCl aqueous solution (0.20 M, 251 μ L, 0.05 mmol) was added after 3 h in step 1.


20 mmmol-scale synthesis; 2.52 g (70% yield); In step 1, the reaction mixture was stirred using a mechanical stirrer. An additional NaOCl aqueous solution (0.20 M, 2.51 mL, 0.50 mmol) was added after 3 h. White solid; 261 °C decomp.; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 7.37 (t, *J* = 6.8 Hz, 2H), 7.31 (d, *J* = 6.8, 2H), 7.26 (t, *J* = 6.8, 1H), 3.25 (dd, *J* = 6.8, 6.0 Hz, 1H), 2.64 (t, *J* = 8.0 Hz, 2H), 1.95-1.79 (m, 2H); ¹³C NMR (100 MHz, D₂O with 4 eq of KOH) δ 186.0, 145.1, 131.4, 131.2, 128.7, 58.5, 39.6, 34.2; IR (KBr, cm⁻¹) 3300-1800, 1654, 1625, 1582; HRMS (DART, m/z) Calcd. for C₁₀H₁₃NO₂ • H ([M+H]⁺): 180.1034, found 181.1025; Anal. Calcd. for C₁₀H₁₃NO₂: C, 67.02; H, 7.31; N, 7.82. Found: C, 67.12; H, 7.42; N, 7.51.

 $\begin{array}{c} 105 \text{ mg (61\% yield); White solid; mp. 240.1-240.7 °C; ^{1}H NMR (400 MHz, D_{2}O with 4 eq of MHz, D_{2}O with 4$

164 mg (61% yield); In step 1, the reaction was carried out at 50 °C. An additional NaOCl aqueous solution (0.20 M, 250 μ L, 0.05 mmol) was added after 1 h in step 1.; White solid; mp. 266.0-266.5 °C; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 3.25 (t, *J* = 6.0 Hz, 1H), 2.77 (t, *J* = 8.0 Hz, 2H), 1.94-1.76 (m, 2H); ¹³C NMR (100 MHz, D₂O with

4 eq of KOH) δ 185.3, 147.7 (dm, *J* = 241.2 Hz), 142.0 (dm, *J* = 246.9 Hz), 139.9 (dm, *J* = 247.0 Hz), 117.3 (td, *J* = 19.1, 2.9 Hz), 58.3, 36.8, 21.1; IR (KBr, cm⁻¹) 3300-1900, 1626, 1579, 1504; HRMS (DART, m/z) Calcd. for C₁₀H₈F₅NO₂ • H ([M+H]⁺): 270.0553, found 270.0536; Anal. Calcd. for C₁₀H₈F₅NO₂: C, 44.62; H, 3.00; N, 5.20. Found: C, 44.71; H, 3.36; N, 5.01.


^{H2} 144 mg (61% yield); White solid; 218 °C decomp.; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 7.46-7.36 (m, 5H), 4.54 (s, 2H), 3.57 (t, *J* = 6.4 Hz, 2H), 3.20 (dd, *J* = 6.8, 6.0 Hz, 1H), 1.66-1.48 (m, 4H), 1.39-1.30 (m, 2H); ¹³C NMR (100 MHz, D₂O with 4 eq

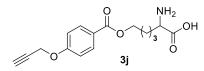
of KOH) δ 186.3, 140.1, 131.4, 131.2, 130.9, 75.1, 72.8, 58.6, 37.1, 31.3, 24.3; IR (KBr, cm⁻¹) 3300-1900, 1654, 1581, 1514; HRMS (DART, m/z) Calcd. for C₁₃H₁₉NO₃ • H ([M+H]⁺): 238.1443, found 238.1451; Anal. Calcd. for C₁₃H₁₉NO₃: C, 65.80; H, 8.07; N, 5.90. Found: C, 65.66; H, 8.12; N, 6.00.

NC VH2 NC VJ7 OH 3f 124 mg (58% yield), An additional NaOCl aqueous solution (0.20 M, 251 μ L, 0.05 mmol) was added after 1.5 h in step 1; MeCN was used for the precipitation instead of Et₂O in step 3.; White solid; 214 °C decomp.; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 3.20 (t, *J* = 6.8 Hz,

1H), 2.45 (t, J = 7.6 Hz, 2H), 1.68-1.47 (m, 4H), 1.45-1.37 (m, 2H), 1.36-1.22 (m, 8H); ¹³C NMR (100 MHz, D₂O with 4 eq of KOH) δ 186.6, 125.1, 58.7, 37.4, 31.3, 30.9, 30.5, 30.4, 27.6, 27.1, 18.9; IR (KBr, cm⁻¹) 3300-2000, 2247, 1654, 1583, 1516; HRMS (DART, m/z) Calcd. for C₁₁H₂₀N₂O₂ • H ([M+H]⁺): 213.1603, found 213.1588; Anal. Calcd. for C₁₁H₂₀N₂O₂: C, 62.24; H, 9.50; N, 13.20. Found: C, 62.05; H, 9.53; N, 13.25.

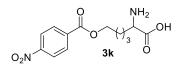
1.67-1.58 (m, 2H), 1.50-1.24 (m, 10H); IR (KBr, cm⁻¹) 3300-1900, 1730, 1657, 1581, 1508; HRMS (DART, m/z) Calcd. for C₁₂H₂₃NO₄ ⋅ H ([M+H]⁺): 246.1705, found 246.1700; Anal. Calcd. for C₁₂H₂₃NO₄: C, 58.75; H, 9.45; N, 5.71. Found: C, 58.74; H, 9.60; N, 5.85.

^{H2} 206 mg (67% yield); White solid; 196 °C decomp.; ¹H NMR (400 MHz, 5wt% deuterium chloride solution in D₂O) δ 8.04 (d, J = 8.0 Hz, 2H), 7.69 (t, J = 8.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 2H), 4.37 (t, J = 6.8 Hz, 2H), 4.09 (t, J = 6.8 Hz, 1H), 2.02-1.86 (m,


2H), 1.80-1.71 (m, 2H), 1.50-1.31 (m, 10H); IR (KBr, cm⁻¹) 3300-2300, 1718, 1643, 1600, 1568; HRMS (DART, m/z) Calcd. for C₁₇H₂₅NO₄ • H ([M+H]⁺): 308.1867, found 308.1862; Anal. Calcd. for C₁₇H₂₅NO₄: C, 66.43; H, 8.20; N, 4.56. Found: C, 66.54; H, 8.28; N, 4.37.

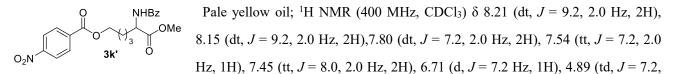
 $\begin{array}{c} \mathsf{NH}_2\\\mathsf{BnO}_{\mathsf{G}}\\\mathsf{Ji}\\\mathsf{Si}}\\\mathsf{Si}\\\mathsf{Si}\\\mathsf{Si}\\\mathsf{Si}\\\mathsf{Si}\\\mathsf{Si}\\$

3300-2000, 1737, 1657, 1583, 1512; HRMS (DART, m/z) Calcd. for $C_{17}H_{25}NO_4 \cdot H ([M+H]^+)$: 308.1863, found 308.1862.


For the characterization, 3i was converted to the N-benzoyl benzyl ester 3i'.

1H), 2.32 (t, J = 7.2 Hz, 2H), 2.01-1.90 (m, 1H), 1.83-1.72 (m, 1H), 1.65-1.53 (m, 2H), 1.43-1.17 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.6, 167.0, 136.1, 135.3, 134.0, 131.7, 128.6, 128.6, 128.5, 128.5, 128.3, 128.2, 128.2, 127.0, 67.2, 66.1, 52.6, 34.2, 32.6, 29.0, 28.9, 28.9, 25.0, 24.8; IR (neat, cm⁻¹) 2900-2700, 1738, 1645; HRMS (ESI, m/z) Calcd. for C₃₁H₃₅NO₅ • Na ([M+Na]⁺): 524.2413, found 524.2416.

163 mg (54% yield); An additional NaOCl aqueous solution (0.20 M, 250 µL, \bigvee^{12} OH 0.05 mmol) was added after 5 h in step 1; White solid; 201 °C decomp.; ¹H NMR (400 MHz, CD₃OD) δ 7.99 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.06 (dt, *J* = 9.2, 2.0 Hz, 2H), 4.82 (d, J = 2.4 Hz, 2H), 4.32 (t, J = 6.4 Hz, 2H), 3.55 (dd, J = 6.8, 6.4 Hz, 1H), 2.99 (t, J = 2.4 Hz, 1H),

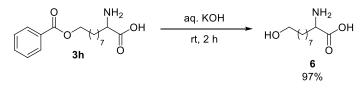

2.02-1.78 (m, 4H), 1.65-1.55 (m, 2H); IR (KBr, cm⁻¹) 3284, 3200-1900, 1718, 1620, 1587, 1504; HRMS (DART, m/z) Calcd. for C₁₆H₁₉NO₅ · H ([M+H]⁺): 306.1336, found 306.1342; Anal. Calcd. for C₁₆H₁₉NO₅: C, 62.94; H, 6.27; N, 4.59. Found: C, 62.97; H, 6.38; N, 4.25.

H₂ 199 mg (67% yield); In step 1, the reaction was carried out at 50 °C. An additional NaOCl aqueous solution (0.20 M, 250 μ L, 0.05 mmol) was added after 1 h; Pale brown solid; 148 °C decomp.; ¹H NMR (400 MHz, 5wt% deuterium

chloride solution in D₂O) δ 8.34 (dt, J = 8.8, 2.0 Hz, 2H), 8.21 (dt, J = 8.8, 2.0 Hz, 2H), 4.43 (t, J = 6.8 Hz, 2H), 4.17 (t, J = 6.0 Hz, 1H), 2.16-1.98 (m, 2H), 1.90 (t, J = 6.8 Hz, 2H), 1.76-1.53 (m, 2H); IR (KBr, cm⁻¹) 3500-2000, 1720, 1589, 1541, 1527, 1500, 1279; HRMS (DART, m/z) Calcd. for C₁₃H₁₇N₂O₆ • H ([M+H]⁺): 297.1093, found 297.1087.

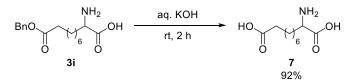
For the characterization, 3k was converted to the N-benzoyl methyl ester 3k'.

5.2 Hz, 1H), 4.38 (td, J = 6.4, 1.6 Hz, 2H), 3.79 (s, 3H), 2.13-2.03 (m, 1H), 1.95-1.78 (m, 3H), 1.67-1.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) & 173.0, 167.0, 164.7, 150.5, 135.6, 133.7, 131.9, 130.6, 128.6, 127.0, 123.5, 65.3, 52.6, 52.2, 32.3, 28.1, 21.8; IR (neat, cm⁻¹) 3400-3200, 1724, 1645, 1527, 1277; HRMS (ESI, m/z) Calcd. for C₂₁H₂₂NO₇ • Na ([M+Na]⁺): 437.1325, found 437.1329.


> 206 mg (62% yield); In step 1, the reaction was carried out at 50 °C. An additional NaOCl aqueous solution (0.20 M, 250 µL, 0.05 mmol) was added after 1 h; White solid; 213 °C decomp.; ¹H NMR (400 MHz, 5wt% deuterium chloride solution in D_2O) δ

7.47-7.39 (m, 5H), 7.09 (ddd, J = 15.2, 6.4, 6.4 Hz, 1H), 5.94 (d, J = 15.2 Hz, 1H), 5.22 (s, 2H), 4.10 (t, J = 6.0 Hz, 1H), 2.28-2.21 (m, 2H), 2.10-1.86 (m, 2H), 1.50-1.26 (m, 10H); IR (KBr, cm⁻¹) 3300-1800, 1718, 1652, 1581, 1512; HRMS (DART, m/z) Calcd. for C₁₉H₂₇NO₄ • H ([M+H]⁺): 334.2018, found 334.2022; Anal. Calcd. for C₁₉H₂₇NO₄: C, 68.44; H, 8.16; N, 4.20. Found: C, 68.20; H, 8.18; N, 4.23.

^{H2N} $_{Ph}$ $_{3m}$ ^{H2N} $_{Ph}$ $_{3m}$ ^{49.9} mg (16% yield), An additional NaOCl aqueous solution (0.20 M, 50 µL, 0.01 mmol) was added after 1 h in step 1. Due to the high solubility, **3m** was purified by the following procedure. aq. HCl (1 M) was poured into the reaction mixture and it was washed with CH₂Cl₂. After the aqueous layer was brought to pH 12 with aq. NaOH (10%), it was washed with CH₂Cl₂ and charged on cationic ion exchange chromatography (DOWEX 50W-8, 200-400 mesh). The product was eluted with aq. NH₃ (3%). The eluent was concentrated by freezed-dry to afford α-amino acid **3m**.; *dr* = 1/1; White solid; 172 °C decomp.; ¹H NMR (400 MHz, D₂O with 5 eq of KOH) δ 7.44-7.22 (m, 20H), 4.66 (d, *J* = 9.2 Hz, 2H), 4.16 (dd, *J* = 9.2, 2.4 Hz, 2H), 4.16-4.09 (m, 2H), 3.30 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.25 (dd, *J* = 8.0, 6.0 Hz, 1H), 3.02-2.93 (m, 2H), 2.37-2.28 (m, 2H), 2.03-1.65 (m, 4H); ¹³C NMR (100 MHz, D₂O with 4 eq of KOH) δ 185.0, 184.6, 147.9, 131.0 130.9, 129.5, 129.3, 128.9, 80.1, 78.6, 78.0, 77.9, 58.0, 57.9, 57.3, 56.3, 46.4, 46.3, 43.8, 43.5; IR (KBr, cm⁻¹) 3900-2800, 1601, 1493, 1404; HRMS (DART, m/z) Calcd. for C₁₉H₂₁N₁O₃ • H ([M+H]⁺): 312.1600, found 312.1596.


5. Derivatization of α-amino acids

Hydrolysis of a-amino acids

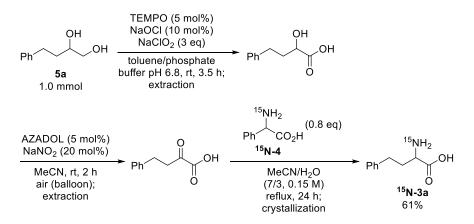
 α -Amino acid **3h** (30.5 mg, 0.0992 mmol) was dissolved in aq. KOH (5 M, 496 µL) and the reaction mixture was stirred for 2 h at room temperature. The reaction mixture was charged on a cationic ion exchange chromatography (DOWEX 50W-8, 200-400 mesh). The product was eluted with aq. NH₃ (3%). The eluent was concentrated by freezed-dry to afford α -amino acid **6** as a white solid (19.5 mg, 97%).

White solid; 211 °C decomp.; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 3.58 (t, J = 7.2HO H_7 $H_$

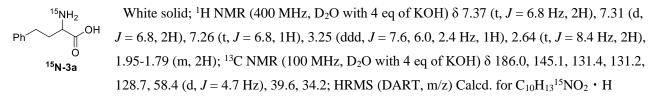
 α -Amino acid **3i** (30.9 mg, 0.101 mmol) was dissolved in aq. KOH (5 M, 503 µL) and the reaction mixture was stirred for 2 h at room temperature. The reaction mixture was charged on a cationic ion exchange chromatography (DOWEX 50W-8, 200-400 mesh). The product was eluted with aq. NH₃ (3%). The eluent was concentrated by freezed-dry to afford α -amino acid **7** as a white solid (20.0 mg, 92%).

 $\begin{array}{c} \text{White solid; } 212 \ ^{\circ}\text{C} \ \text{decomp.; }^{1}\text{H} \ \text{NMR} \ (400 \ \text{MHz}, \ \text{D}_{2}\text{O} \ \text{with 5 eq of KOH}) \ \delta \ 3.20 \ (t, \ J = 6.0 \ \text{Hz}, \ 1\text{H}), \ 2.16 \ (t, \ J = 7.6 \ \text{Hz}, \ 2\text{H}), \ 1.65 - 1.44 \ (m, \ 4\text{H}), \ 1.39 - 1.21 \ (m, \ 8\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (100 \ \text{MHz}, \ \text{D}_{2}\text{O} \ \text{with 5 eq of KOH}) \ \delta \ 187.0, \ 186.7, \ 58.7, \ 40.4, \ 37.4, \ 31.4, \ 31.3, \ 31.1, \ 28.6, \ 27.7; \ \text{IR} \ (\text{KBr}, \ 100 \ \text{KBr}, \ 100 \ \text{MHz}, \ 100 \$

cm⁻¹) 3500-2300, 1583; HRMS (DART, m/z) Calcd. for $C_{10}H_{19}NO_4 \cdot H([M+H]^+)$: 218.1379, found 218.1392.

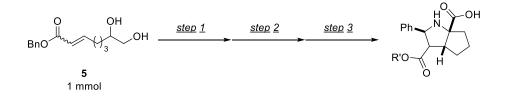

6. Synthesis of ¹⁵N-labeled α-amino acid

¹⁵NH₄Cl +
$$Ph$$
 H (2) 6 M HCl, reflux, 24 h (CO₂H)
¹⁵NH₄Cl + Ph H (2) 6 M HCl, reflux, 24 h (CO₂H)
¹⁵NH₂
 Ph (CO₂H)

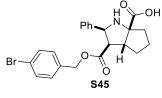

To a solution of KCN (657 mg, 10.1 mmol) and ¹⁵NH₄Cl (545 mg, 10.0 mmol) in H₂O (2.0 mL) was added benzaldehyde (**S44**) (1.38 g, 13.0 mmol) in MeOH (2.0 mL) at 0 °C. The reaction mixture was stirred for 2 h. After H₂O was added to the reaction mixture, the aqueous layer was extracted with CH₂Cl₂ and then the organic layer was extracted with aq. HCl (6 M, 10 mL×3). The resultant aqueous layer was refluxed for 24 h. After it was cooled to room temperature, the solution was neutralized to pH 7 with aq. NaOH (20%) and Et₂O was added. After it was stirred for several minutes at room temperature, ¹⁵N-phenylglycine (¹⁵N-4) was appeared as a precipitate. It was washed with H₂O, MeOH, and Et₂O and dried under reduced pressure to afford ¹⁵N-phenylglycine (¹⁵N-4) (571 mg, 38%) as a white solid. After that, the filtrate was basified with aq. NaOH (1 M) until pH 9 and washed with CH₂Cl₂. Then, the aqueous layer was neutralized with aq. HCl (1 M) to pH 8. The resultant aqueous layer was charged on a cationic ion exchange chromatography (DOWEX 50W-8, 200-400 mesh). The ¹⁵N-phenylglycine (¹⁵N-4) (170 mg, 11%) as a pale brown solid. The combined yield was 49%.

Ph OH 0 ¹⁵NH₂ 0 0 1⁵N-4

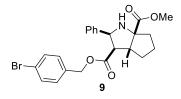
White solid; mp 211.5-212.2 °C; ¹H NMR (400 MHz, D₂O with 4 eq of KOH) δ 7.43-7.30 (m, 5H), 4.34 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, D₂O with 4 eq of KOH) δ 183.8, 144.8, 131.5, 130.2, 129.5, 63.2 (d, *J* = 4.8 Hz); IR (KBr, cm⁻¹) 3300-2400, 1657, 1630, 1585; HRMS (DART, m/z) Calcd. for C₈H₉¹⁵NO₂ • H ([M+H]⁺): 153.0682, found 153.0677.



 α -Amino acid ¹⁵N-3a was synthesized from 1,2-diol 5a (171 mg, 1.03 mmol) according to the synthetic procedure of 3a and afforded α -amino acid ¹⁵N-3a as a white solid (113 mg, 61%).


 $([M+H]^+)$: 181.0995, found 181.0996; Anal. Calcd. for $C_{10}H_{13}{}^{15}NO_2$: C, 66.65; H, 7.27; ¹⁵N, 8.32. Found: C, 66.49; H, 7.37; ¹⁵N, 7.97.

7. Synthesis of bicyclic α-amino acids


240 mg (65% yield); The synthesis of **8** was carried out according to the typical procedure of three-step α -amino acid synthesis except the following point. An additional NaOCl aqueous solution (0.20 M, 252 μ L, 0.05 mmol) was added after 2 h in step 1.; White solid; 238 °C decomp.; ¹H NMR (400 MHz, 5wt% deuterium chloride solution in D₂O) δ 7.47-7.29 (m, 8H),

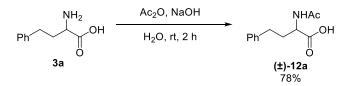
7.06 (d, J = 6.4 Hz, 2H), 5.45 (d, J = 6.4 Hz, 1H), 5.01 (d, J = 12.4 Hz, 1H), 4.96 (d, J = 12.4 Hz, 1H), 3.68 (dd, J = 6.4, 2.0 Hz, 1H), 3.56 (td, J = 8.4, 2.0 Hz, 1H), 2.59-2.51 (m, 1H), 2.42-2.22 (m, 2H), 2.11-1.82 (m, 3H); IR (KBr, cm⁻¹) 3200-1900, 1741, 1616; HRMS (DART, m/z) Calcd. for C₂₂H₂₃NO₄ · H ([M+H]⁺): 366.1705, found 366.1696; Anal. Calcd. for C₂₂H₂₃NO₄: C, 72.31; H, 6.34; N, 3.83. Found: C, 72.16; H, 6.44; N, 3.96.

317 mg (71% yield); The synthesis of **S45** was carried out according to the typical procedure of three-step α -amino acid synthesis except the following point. An additional NaOCl aqueous solution (0.20 M, 252 μ L, 0.05 mmol) was added after 2 h in step 1.; White solid; 248 °C decomp.; ¹H NMR (400 MHz, 5wt% deuterium

chloride solution in D₂O) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 8.4 Hz, 1H), 7.33 (t, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 5.45 (d, *J* = 6.0 Hz, 1H), 5.00 (d, *J* = 12.0 Hz, 1H), 4.90 (d, *J* = 12.0 Hz, 1H), 3.68 (d, *J* = 6.0, 1.2 Hz, 1H), 3.57 (t, *J* = 8.0 Hz, 1H), 2.58-2.51 (m, 1H), 2.40-2.23 (m, 2H), 2.10-1.81 (m, 3H); IR (KBr, cm⁻¹) 3200-2800, 1747, 1595; HRMS (DART, m/z) Calcd. for C₂₂H₂₂BrNO₄ • H ([M+H]⁺): 444.0811, found 444.0806; Anal. Calcd. for C₂₂H₂₂BrNO₄: C, 59.47; H, 4.99; N, 3.15. Found: C, 59.48; H, 5.04; N, 2.86.

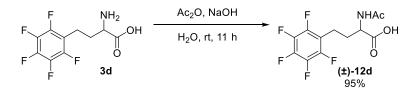
White solid; mp 128.3-128.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.4 Hz, 2H), 7.27-7.21 (m, 5H), 6.75 (d, J = 8.4 Hz, 2H), 4.66 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 6.4 Hz. 1H), 4.57 (1H, J = 12.0 Hz), 3.77 (s, 3H), 3.43 (br s, 1H), 3.17 (t, J = 8.8 Hz, 1H), 3.00 (d, J = 6.4 Hz, 1H), 2.29-2.13 (m, 2H), 1.92-1.73 (m, 3H),

1.61-1.51 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 172.6, 137.8, 134.3, 131.4, 130.0, 128.3, 127.5, 126.3, 122.1, 65.3, 64.7, 57.3, 53.3, 52.4, 41.1, 33.1, 26.6; IR (neat, cm⁻¹) 1732; HRMS (ESI, m/z) Calcd. for C₂₃H₂₄BrNO₄ · Na ([M+Na]⁺): 480.0786, found 480.0795.

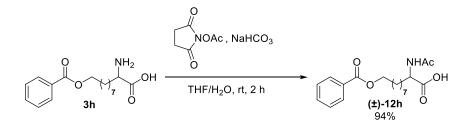


138 mg (38% yield); The synthesis of **11** was carried out according to the typical procedure of three-step α -amino acid synthesis except the following point. An additional NaOCl aqueous solution (0.20 M, 251 µL, 0.05 mmol) was added after 2 h in step 1.; White solid; 206 °C decomp.; ¹H NMR (400 MHz, CD₃OD) δ 7.59-7.53 (m, 2H), 7.49-7.43 (m, 3H), 7.33-7.28 (m,

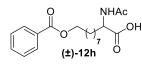
3H), 7.27-7.22 (m, 2H), 5.17 (d, J = 12.0 Hz, 1H), 5.02 (d, J = 12.0 Hz, 1H), 4.95 (d, J = 12.0 Hz, 1H), 3.70 (dd, J = 12.0, 7.2 Hz, 1H), 3.29 (q, J = 7.2 Hz, 1H), 2.50 (quint, J = 6.8 Hz, 1H), 2.07-1.80 (m, 4H), 1.68-1.57 (m, 1H); IR (KBr, cm⁻¹) 3300-1900, 1730, 1620; HRMS (DART, m/z) Calcd. for C₂₂H₂₃NO₄ • H ([M+H]⁺): 366.1705, found 366.1717; Anal. Calcd. for C₂₂H₂₃NO₄: C, 72.31; H, 6.34; N, 3.83. Found: C, 72.23; H, 6.36; N, 3.72.


8. Kinetic resolution of *N*-acetyl α-amino acid

Preparation of *N*-acetyl α-amino acids (±)-12


To a solution of α -amino acid **3a** (100 mg, 0.558 mmol) in aq. NaOH (0.56 M, 1.0 mL) were added Ac₂O (69 µL, 0.730 mmol) and aq. NaOH (36%, 0.20 mL) at room temperature. After 1 h, Ac₂O (70 µL, 0.741 mmol) and aq. NaOH (36%, 0.20 mL) were added and the reaction mixture was stirred for 1 h. Then, the reaction mixture was acidified with aq. HCl (10%) to pH 1 and filtration of a precipitation afforded *N*-acetyl L-homophenylalanine [(±)-12a] (95.9 mg, 78%) as a white solid.

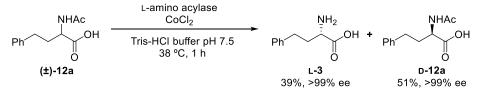
White solid; mp 117.5-118.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 2H), 7.22-7.15 (m, 3H), 6.09 (d, J = 7.6 Hz, 1H), 4.64 (td, J = 7.6, 5.6 Hz, 1H), 2.77-2.64 (m, 2H), 2.31-2.21 (m, 1H), 2.11-1.97 (m,1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 175.4, 173.4, 142.2, 129.5 (2C), 127.1, 53.3, 34.5, 33.1, 22.3; IR (KBr, cm⁻¹) 3345, 1714, 1597, 1545; HRMS (ESI, m/z) Calcd. for C₁₂H₁₅NO₃ • Na ([M+Na]⁺): 244.0950, found 244.0927.


To a solution of α -amino acid **3d** (23.1 mg, 0.0858 mmol) in H₂O (1.0 mL) was added aq. NaOH (10%, 127 µL) at room temperature. Then, Ac₂O (20.3 µL, 0.215 mmol) and aq. NaOH (10%, 127 µL, 0.343 mmol) were added at 0 °C. After the reaction mixture was stirred for 11 h at room temperature, it was acidified with aq. HCl (10%) to pH 1 and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to afford *N*-acetyl α -amino acid (±)-**12d** (25.4 mg, 95%) as a white solid.

F = (t) - 12dWhite solid; mp 173.9-175.4 °C; ¹H NMR (400 MHz, CD₃OD) δ 4.37 (dd, J = 9.2, 4.4 Hz, H), 2.92-2.78 (m, 2H), 2.24-2.14 (m, 1H), 2.05-1.92 (m, 1H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 174.6, 173.5, 146.6 (dm, J = 241.2 Hz), 141.2 (dm, J = 243.1 Hz), 138.8 (dm, J = 233.6 Hz), 115.5 (t, J = 16.2 Hz), 53.0, 31.6, 22.3, 19.8; IR (KBr, cm⁻¹) 3354, 1707, 1624 HRMS (ESI, m/z) Calcd. for C₁₂H₁₀F₅NO₃ · Na ([M+Na]⁺): 334.0479, found 334.0477.

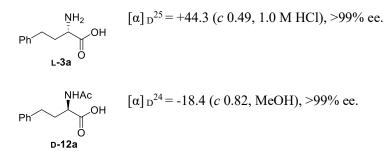
For the *N*-acetylation of α -amino acid **3f**, **3h**, and **3i**, the method using *in situ* prepared *N*-acetyl succinimide was employed.⁵

To a well-dried round-bottom flask charged with *N*-hydroxysuccinimide (8.1 mg, 0.070 mmol) and *N*,*N*-diisopropylethylamine (13.4 μ L, 0.0781 mmol) and dry THF (0.50 mL) was added AcCl (5.1 μ L, 0.072 mmol) dropwise at 0 °C. The solution was stirred for 3 h at room temperature. The solution was added to a solution of α -amino acid **3h** and NaHCO₃ (10.0 mg, 0.119 mmol) in H₂O (0.50 mL) at 0 °C. The reaction mixture was stirred for 2 h at room temperature. Then, it was acidified with aq. HCl (1 M) to pH 3 and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to afford *N*-acetyl α -amino acid (±)-12h (21.5 mg, 94%) as a white solid.


White solid; mp 95.1-96.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.01 (m, 2H), 7.55 (dt, J = 7.2, 1.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 2H), 6.33 (d, J = 7.2 Hz, 1H), 4.58 (ddd, J = 7.2, 4.8 Hz, 1H), 4.31 (t, J = 6.4 Hz, 2H), 2.05 (s, 3H), 1.93-1.82 (m, 1H), 1.79-1.64 (m,

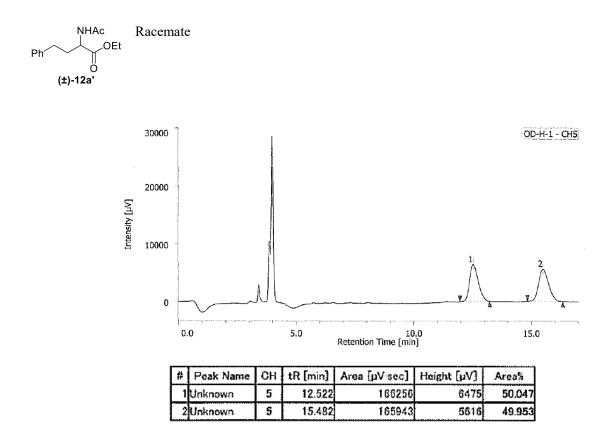
3H), 1.50-1.20 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 171.0, 166.8, 132.9, 130.4, 129.5, 128.3, 65.1, 52.4, 31.9, 29.1, 29.0, 29.0, 28.6, 25.9, 25.1, 22.9; IR (neat, cm⁻¹) 3500-3300, 1718, 1657, 1630, 1277; HRMS (ESI, m/z) Calcd. for C₁₉H₂₇O₅ • Na ([M+Na]⁺): 372.1787, found 372.1787.

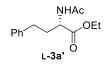
NHAC NC $(\pm)^{-12f}$ (±)-12f $(\pm)^{-12f}$ $(\pm)^{-12f}$ $(\pm)^{-12f$

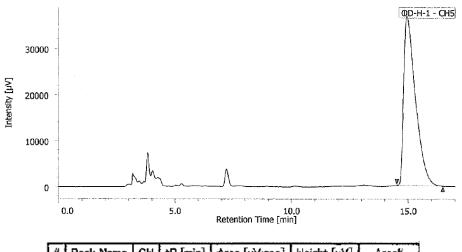

 $\begin{array}{l} \text{SO.8 mg (79\%); White solid; mp 88.2-90.0 °C ^{1}H NMR (400 MHz, CDCl_3) \delta 7.39-7.29} \\ \text{(m, 5H), 6.18 (d, J = 8.0 Hz, 1H), 5.11 (s, 2H), 4.57 (td, J = 8.0, 8.0, 5.2 Hz, 1H), 2.35 (t, J = 7.6 Hz, 2H), 2.05 (s, 3H), 1.93-1.82 (m, 1H), 1.74-1.57 (m, 3H), 1.40-1.20 (m, 8H); ^{13}C \\ \text{NMR (100 MHz, CDCl_3) } \delta 175.2, 173.9, 170.9, 136.0, 128.5, 128.2, 128.2, 66.2, 52.4, 34.2, 31.9, 28.8 (3C), 25.0, 24.8, 23.0; IR (neat, cm⁻¹) 3500-3300, 1731, 1651, 1628; HRMS (ESI, m/z) Calcd. for C₁₉H₂₇NO₅ • Na ([M+Na]⁺): 372.1787, found 372.1781. \\ \end{array}$

Typical procedure of kinetic resolution of N-acetyl α-amino acid using L-amino acylase

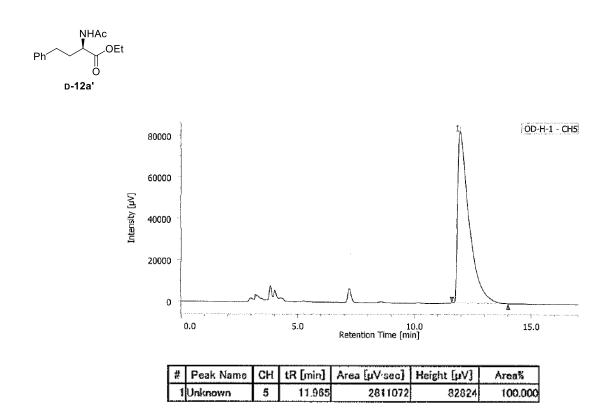
To a solution of *N*-acetyl homophenylalanine $[(\pm)-12a]$ (30.5 mg, 0.138 mmol) and aq. CoCl₂ (0.01 M, 17.2 µL, 172 nmol) in Tris-HCl buffer (1 M, pH 7.5, 1.4 mL) was added L-aminoacylase (10.2 mg) at room temperature. After the reaction mixture was stirred for 1 h at 38 °C, Et₂O (5 mL) was added. After 5 min, L-homophenylalanine (L-3) was precipitated. The precipitate was filtered, washed with Et₂O and water, and dried under reduced pressure. L-Homophenylalanine (L-3) (9.6 mg, 39%) was obtained. The filtrate was acidified with sodium phosphate buffer (1 M, pH = 2.1, 2.8 mL) and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to afford *N*-acetyl D-homophenylalanine (D-12a) (15.6 mg, 51%).

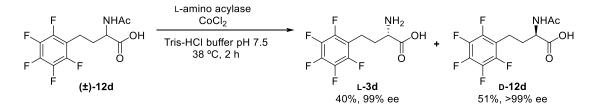

Enantiomeric excess was measured as the *N*-acetyl ethyl ester of homophenylalanine by chiral HPLC. The absolute configuration was determined by comparing optical rotations with a previous report.⁶

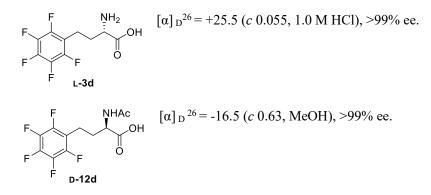


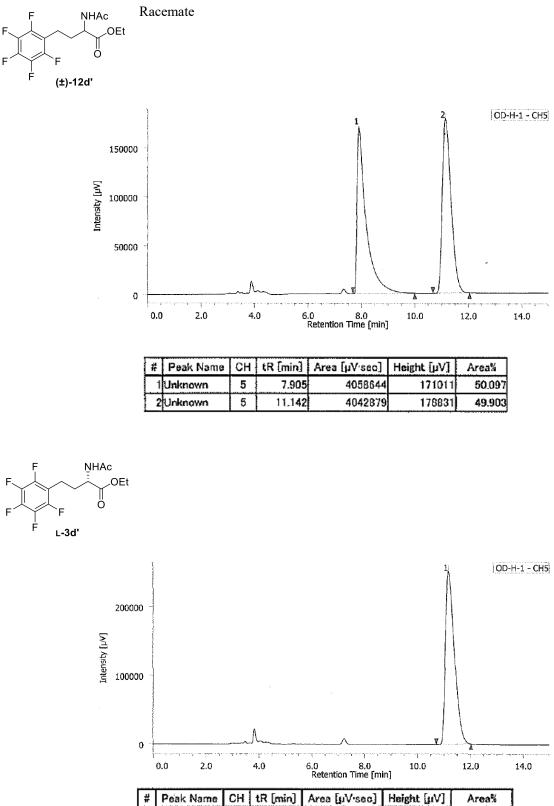

HPLC Conditions

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (90:10) Flow rate: 1.0 mL/min Detection: UV 230 nm


Retention time: D-isomer: 12.5 min, L-isomer: 15.5 min.




#	Peak Name	СН	tR [min]	Area [µV-sec]	Height [µV]	Area%
1	Unknown	5	14.947	1286540	36779	100,000


Kinetic resolution of *N*-acetyl α -amino acid (±)-12d (20.1 mg, 0.0646 mmol) was carried out according to the typical procedure. L-aminoacylase (5.0 mg) and aq. CoCl₂ (0.01 M, 8.1 µL, 81 nmol) were used.

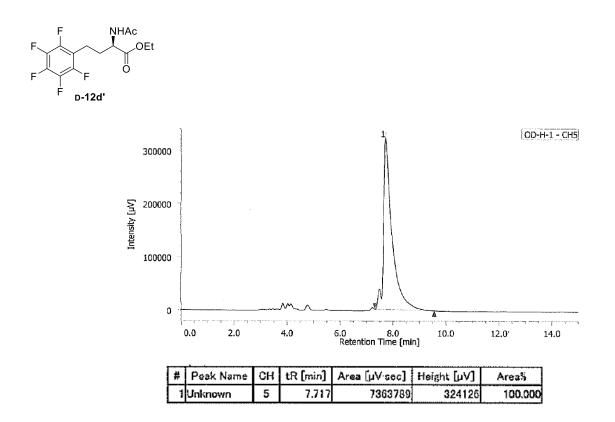
Enantiomeric excess was measured as the *N*-acetyl ethyl ester by chiral HPLC. The absolute configuration was determined by comparing optical rotations with a previous report.⁷

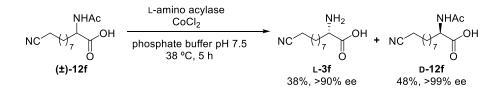
HPLC Conditions

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (90:10) Flow rate: 1.0 mL/min Detection: UV 230 nm Retention time: 7.9 min, 11.1 min.

- 7	4.0	6.0 Retention	8.0	10.0 າ]	12.0
I	tR [min]	Area [µV	/·sec]	Height [µV]	Area%

5958592


252543


100.000

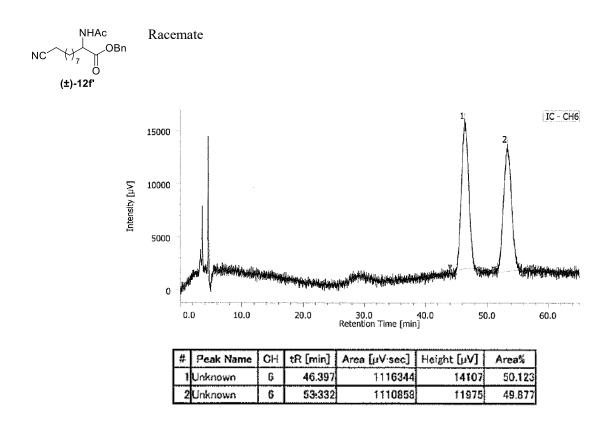
Unknown

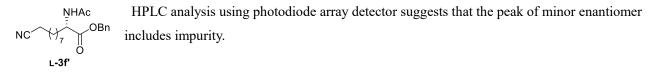
5

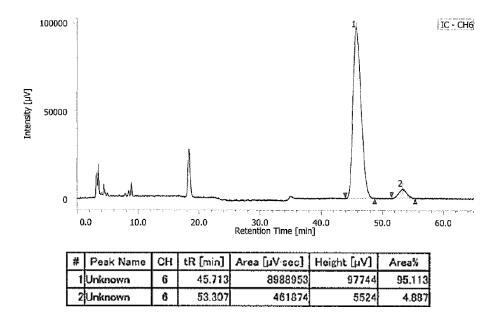
11.163

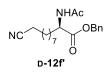
Kinetic resolution of N-acetyl α -amino acid (±)-12f was carried out according to the following procedure.

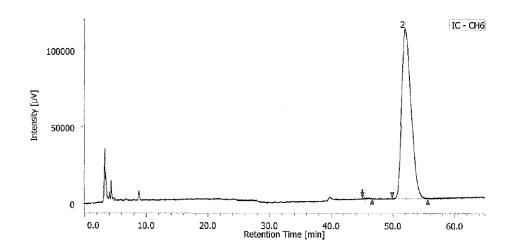
To a solution of *N*-acetyl α -amino acid (±)-12f (24.8 mg, 0.0975 mmol) and aq. CoCl₂ (0.01 M, 12.2 µL, 122 nmol) in phosphate buffer (1 M, pH 7.5, 0.98 mL) was added L-aminoacylase (15.0 mg) at room temperature. After the reaction mixture was stirred for 5 h at 38 °C, it was acidified with aq. HCl (1 M) and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to afford *N*-acetyl α -amino acid (D-12f) (11.8 mg, 48%). The resultant aqueous layer was basified with aq. NaOH (1 M) until pH 9 and charged on a cationic ion exchange chromatography (DOWEX 50W-8, 200-400 mesh). The product was eluted with aq. NH3 (3%). The eluent was concentrated by freezed-dry to afford α -amino acid L-3f (7.8 mg, 38%).

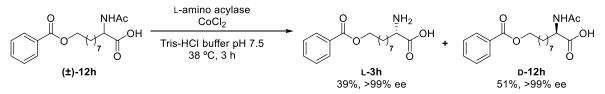

Enantiomeric excess was measured as the N-acetyl benzyl ester by chiral HPLC.

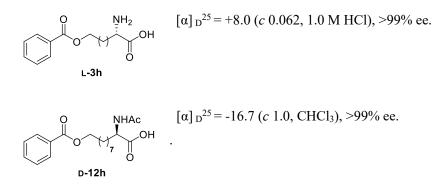

NC
$$(\alpha)_{7}^{\text{NH}_{2}}$$
 [α] $_{D}^{25}$ = +13.5 (*c* 0.21, 1.0 M HCl), >90% ee.
L-3f


NHAc
NC
$$(\alpha)_{D}^{D^{24}} = -21.8 \ (c \ 0.90, \text{CHCl}_3), >99\% \ \text{ee}^{-12f}$$

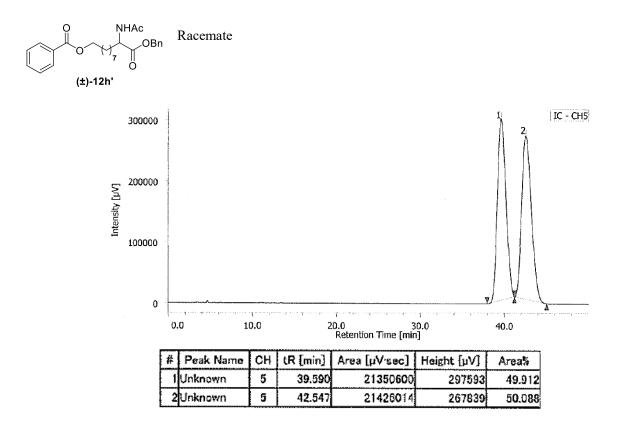

HPLC Conditions

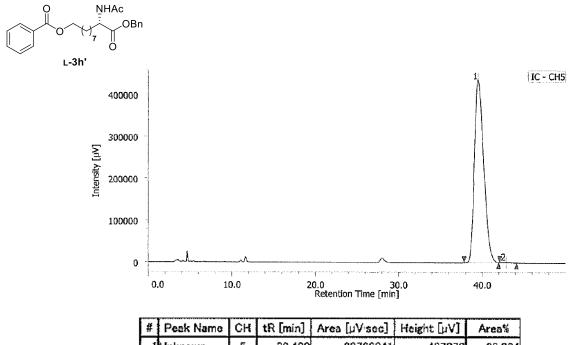

Column: Chiralcel IC, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (70:30) Flow rate: 1.0 mL/min Detection: UV 200 nm Retention time: 46.4 min, 53.3 min.

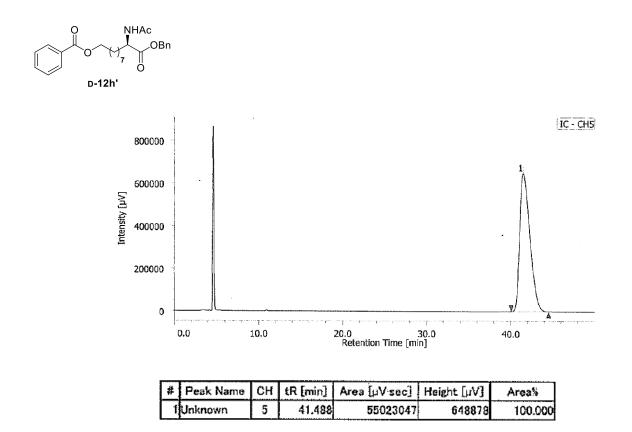


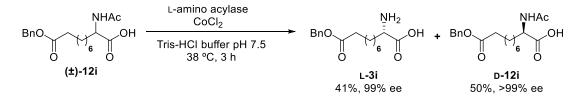


#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Ares%
1	Unknown	Ģ	45.495	6135	488	0.052
1	Unknown	6	51.992	11851979	111 299	99.948

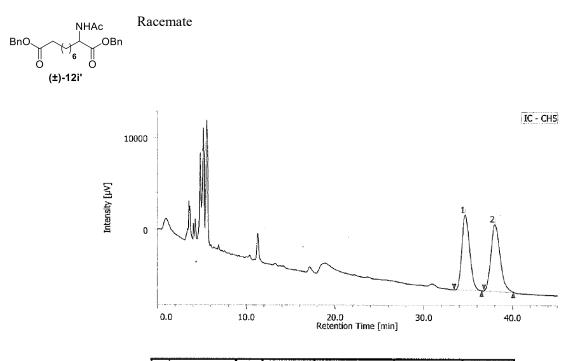



Kinetic resolution of *N*-acetyl α -amino acid (±)-12h (25.2 mg, 0.0721 mmol) was carried out according to the typical procedure. L-Aminoacylase (17.4 mg) and aq. CoCl₂ (0.01 M, 18.0 µL, 180 nmol) were used. Enantiomeric excess was measured as the *N*-acetyl benzyl ester by chiral HPLC.

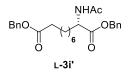

HPLC Conditions

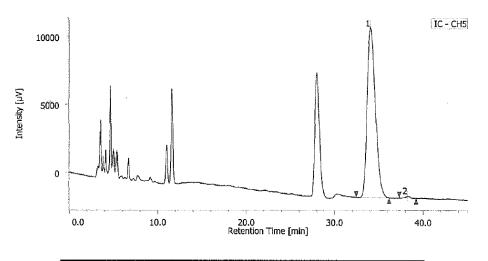

Column: Chiralcel IC, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (80:20) Flow rate: 1.0 mL/min Detection: UV 230 nm Retention time: 39.6 min, 42.5 min.

#	Peak Name	СН	tR [min]	Area [µV·sec]	Height [µV]	Area%
1	Unknown	5	39,480	33766041	437073	99.884
2	Unknown	5	42.847	39368	676	0.116

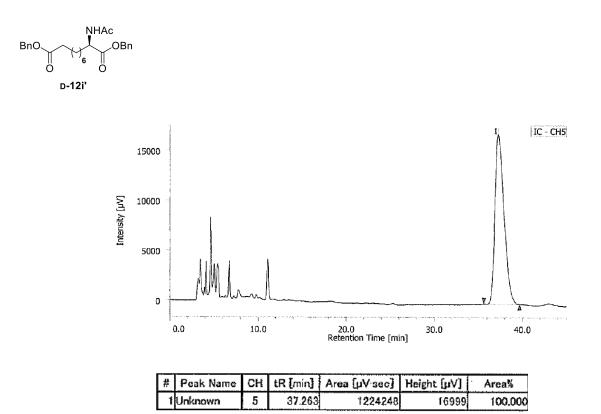


Kinetic resolution of *N*-acetyl α -amino acid (±)-12i (31.4 mg, 0.0899 mmol) was carried out according to the typical procedure. L-Aminoacylase (20.2 mg) and aq. CoCl₂ (0.01 M, 33.7 µL, 337 nmol) were used. Enantiomeric excess was measured as the *N*-acetyl benzyl ester by chiral HPLC.

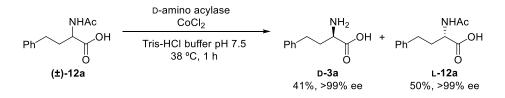

$$BnO \longrightarrow G OH \ C OH \ C O OH \ C O OH \ C O OH \ C O OH \ C OH \ C O OH \ C OH$$


HPLC Conditions

Column: Chiralcel IC, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (80:20) Flow rate: 1.0 mL/min Detection: UV 230 nm Retention time: 34.6 min, 38.0 min.



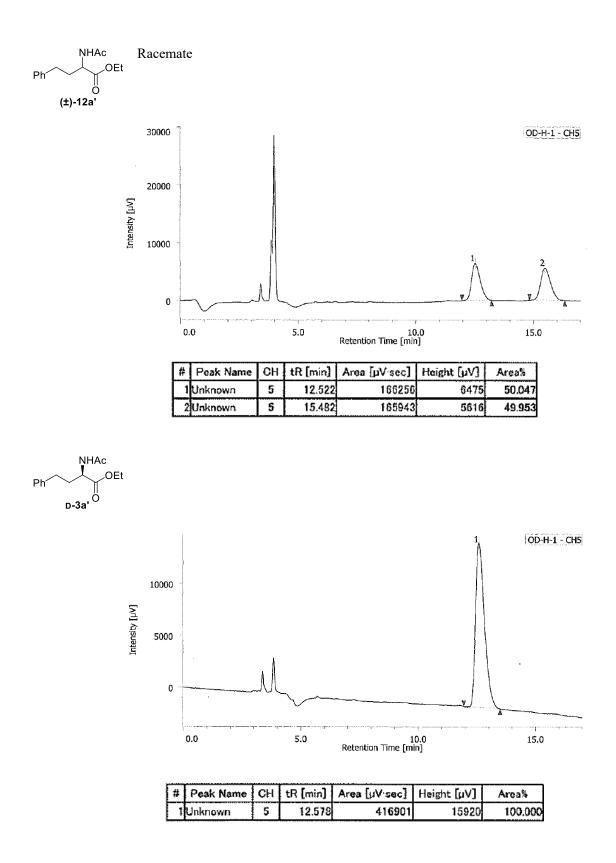
#	Peak Name	CH	tR [min]	Area [µV sec]	Height [µV]	Area%
1	Unknown	5	34,643	499836	8173	48.237
2	Unknown	5	37.982	536363	7328	51.763

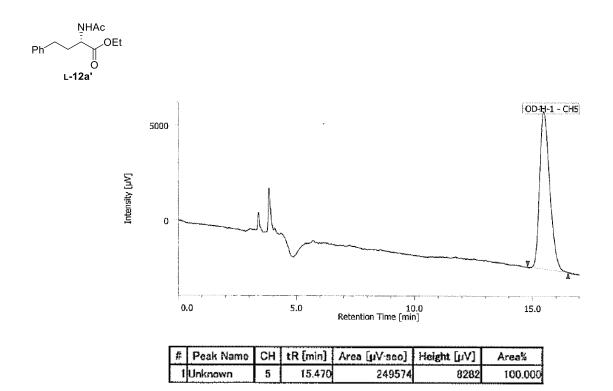


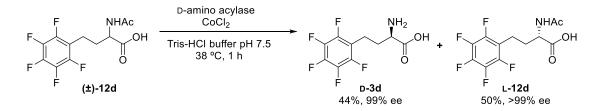
#	Peak Name	ĊH	tR [min]	Area [µV sec]	Height [µV]	Area%
1	Unknown	5	34.037	802409	12560	99.412
2	Unknown	5	38.255	4747	147	0.588

Typical procedure of kinetic resolution of N-acetyl α-amino acid using D-aminoacylase.

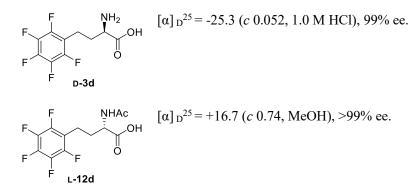
To a solution of *N*-acetyl homophenylalanine $[(\pm)-12a]$ (102 mg, 0.461 mmol) and aq. CoCl₂ (0.01 M, 57.6 µL, 576 nmol) in Tris-HCl buffer (1 M, pH 7.5, 4.6 mL) was added D-amino acylase (3.52 mg) at room temperature. After the reaction mixture was stirred for 1 h at 38 °C, Et₂O (5 mL) was added. After 5 min, D-homophenylalanine (**D-3a**) was precipitated. The precipitate was filtered, washed with Et₂O and water, and dried under reduced pressure. D-Homophenylalanine (**D-3a**) (33.5 mg, 41%) was afforded. Then, the filtrate was acidified with sodium phosphate buffer (1 M, pH = 2.1, 4.6 mL) and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to afford *N*-acetyl L-homophenylalanine (**L-12a**) (50.7 mg, 50%).

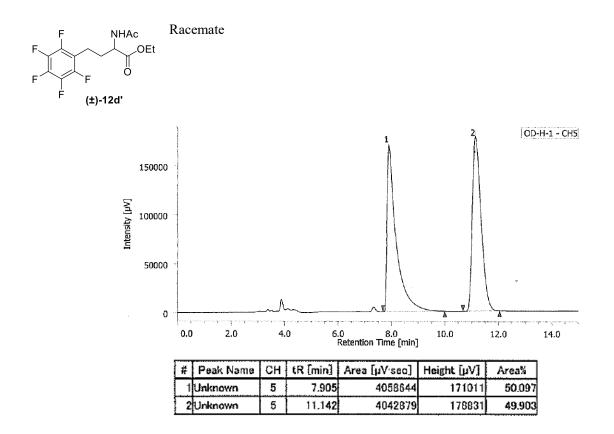

$$[\alpha]_{D}^{25} = -45.2 \ (c \ 0.60, \ 1.0 \ M \ HCl), >99\% \ ee.$$


$$Ph \underbrace{\qquad }_{D-3a}^{NHAc} \qquad [\alpha]_{D}^{25} = +19.1 \ (c \ 1.0, \ MeOH), >99\% \ ee.$$

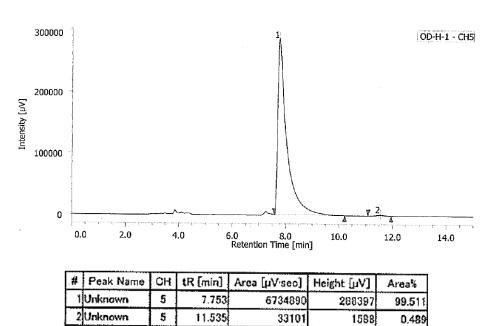

$$Ph \underbrace{\qquad }_{O}^{HAc} \qquad [\alpha]_{D}^{25} = +19.1 \ (c \ 1.0, \ MeOH), >99\% \ ee.$$

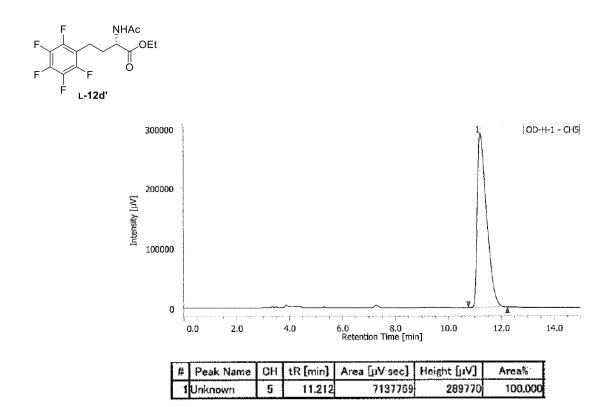
HPLC Conditions

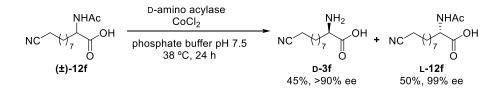

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (90:10) Flow rate: 1.0 mL/min Detection: UV 230 nm Retention time: D-isomer: 12.5 min, L-isomer: 15.5 min.




Kinetic resolution of *N*-acetyl α -amino acid (±)-12d (24.7 mg, 0.0794 mmol) was carried out according to the typical procedure. D-Aminoacylase (0.65 mg) and aq. CoCl₂ (0.01 M, 9.9 µL, 99 nmol) were used.

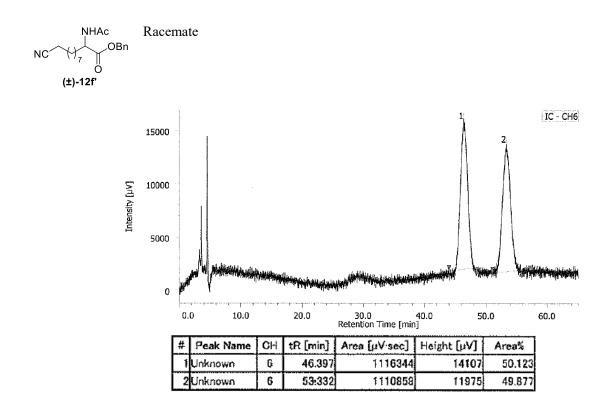


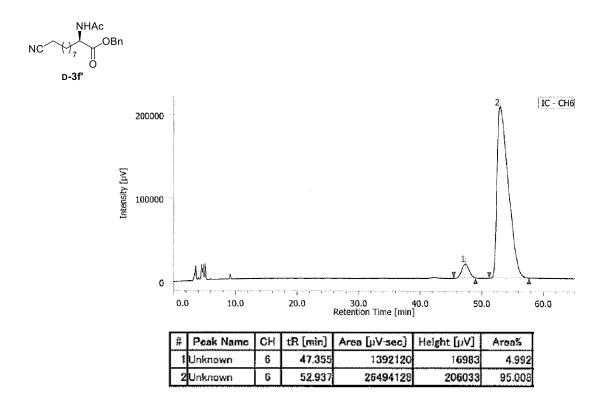

HPLC Conditions

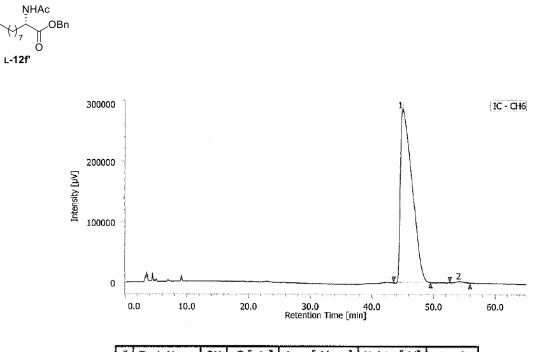

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (90:10) Flow rate: 1.0 mL/min Detection: UV 230 nm Retention time: 7.9 min, 11.1 min.

Kinetic resolution of N-acetyl α -amino acid (±)-12f was carried out according to the following procedure.

To a solution of *N*-acetyl α -amino acid (±)-12f (30.1 mg, 0.118 mmol) and aq. CoCl₂ (0.01 M, 14.8 µL, 148 nmol) in phosphate buffer (1 M, pH 7.5, 1.2 mL) was added D-aminoacylase (0.90 mg) at room temperature. After the reaction mixture was stirred for 24 h at 38 °C, it was acidified with aq. HCl (1 M) and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to afford *N*-acetyl α -amino acid (L-12f) (15.1 mg, 50%). The resultant aqueous layer was basified with aq. NaOH (1 M) until pH 9 and charged on a cationic ion exchange chromatography (DOWEX 50W-8, 200-400 mesh). The product was eluted with aq. NH3 (3%). The eluent was concentrated by freezed-dry to afford α -amino acid **D-3f** (11.3 mg, 45%).

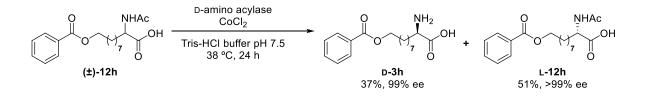

$$NC \xrightarrow{\text{NH}_{2}}_{O} OH \qquad [\alpha]_{D}^{24} = -13.6 \ (c \ 0.30, \ 1.0 \ \text{M HCl}), >90\% \ \text{ee.}$$

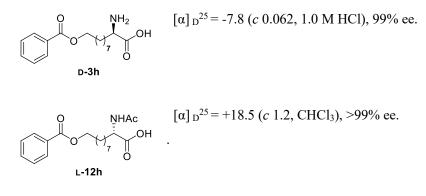

$$NC \xrightarrow{\text{NHAc}}_{O} OH \qquad [\alpha]_{D}^{25} = +22.5 \ (c \ 1.1, \ \text{CHCl}_{3}), 99\% \ \text{ee.}$$


$$L-12f$$

HPLC Conditions

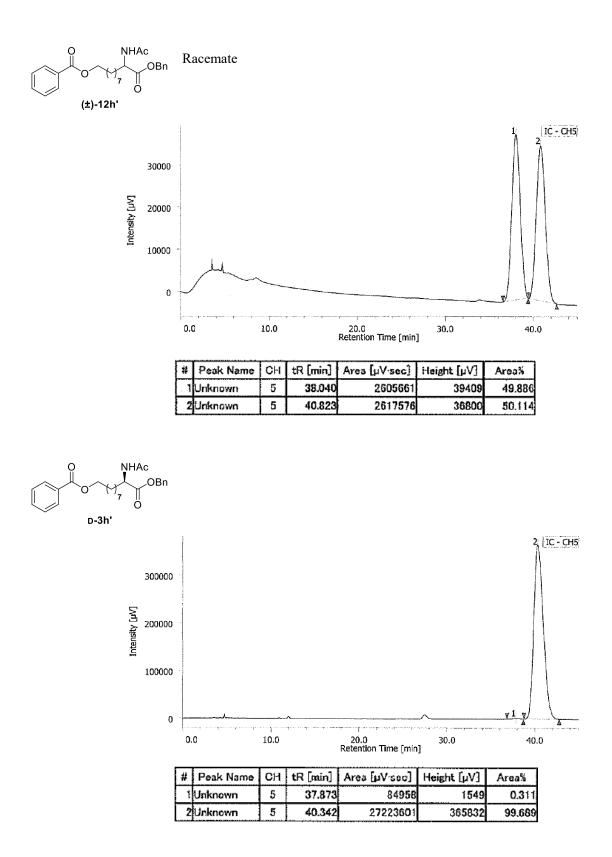
Column: Chiralcel IC, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (70:30) Flow rate: 1.0 mL/min Detection: UV 200 nm Retention time: 46.4 min, 53.3 min.

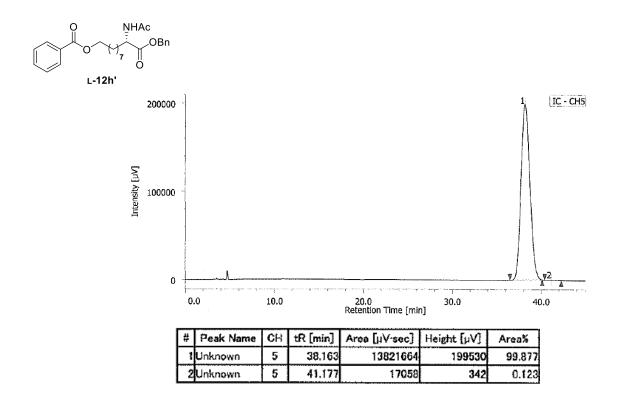


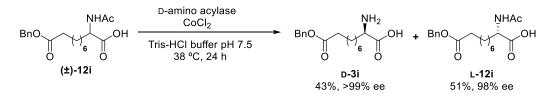


NC

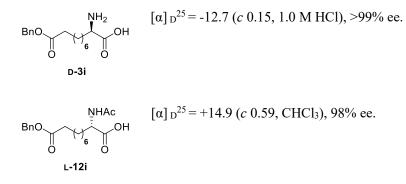
#	Peak Name	СH	tR [min]	Area [µV sec]	Height [µV]	- Area%
	Unknown	6	45.020	37585530	287471	99.459
2	Unknown	6	54.487	204573	2662	0.541



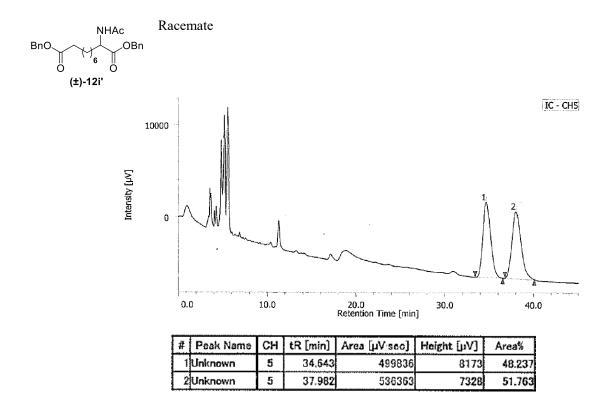

Kinetic resolution of *N*-acetyl α -amino acid (±)-12h (36.7 mg, 0.105 mmol) was carried out according to the typical procedure. D-Ainoacylase (2.41 mg) and aq. CoCl₂ (0.01 M, 26.3 µL, 263 nmol) were used.

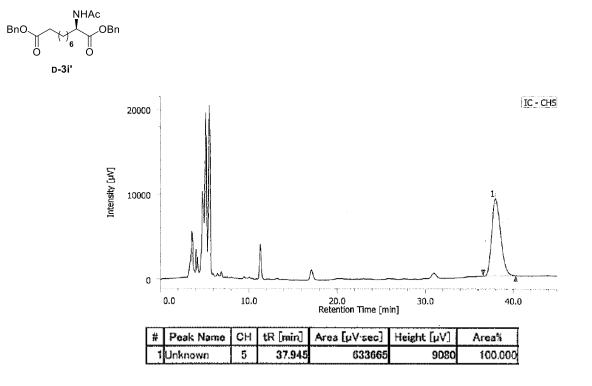


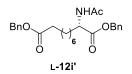
HPLC Conditions

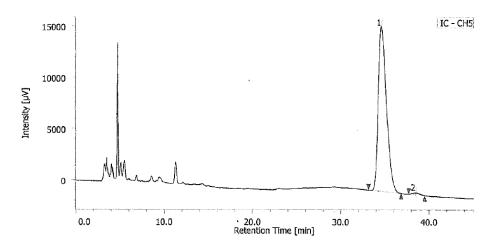

Column: Chiralcel IC, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (80:20) Flow rate: 1.0 mL/min Detection: UV 230 nm Retention time: 38.0 min, 40.8 min.

Kinetic resolution of *N*-acetyl α -amino acid (±)-12i (20.9 mg, 0.0598 mmol) was carried out according to the typical procedure. D-Aminoacylase (1.44 mg) and aq. CoCl₂ (0.01 M, 22.4 µL, 224 nmol) were used.


HPLC Conditions


Column: Chiralcel IC, Daicel Chemical Industries, Ltd. Eluent: hexane/isopropanol (80:20)


Flow rate: 1.0 mL/min

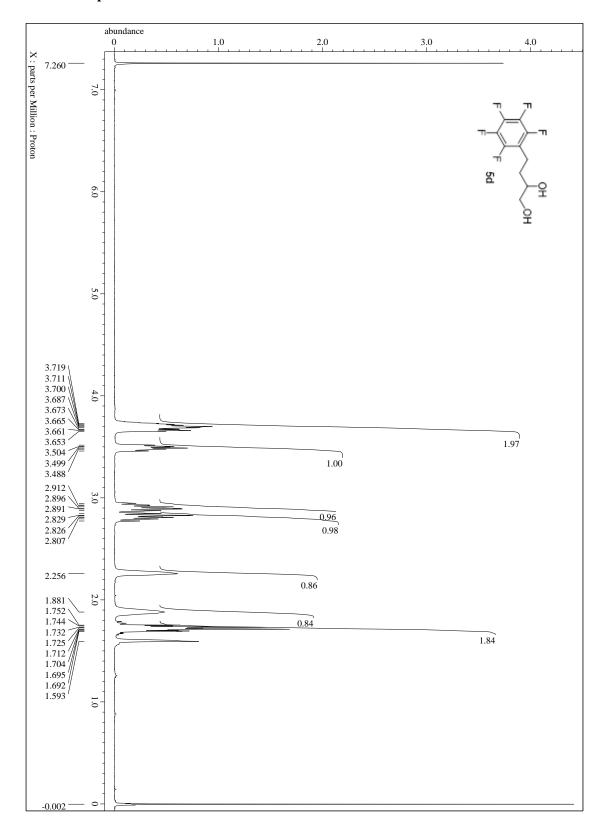

Detection: UV 230 nm

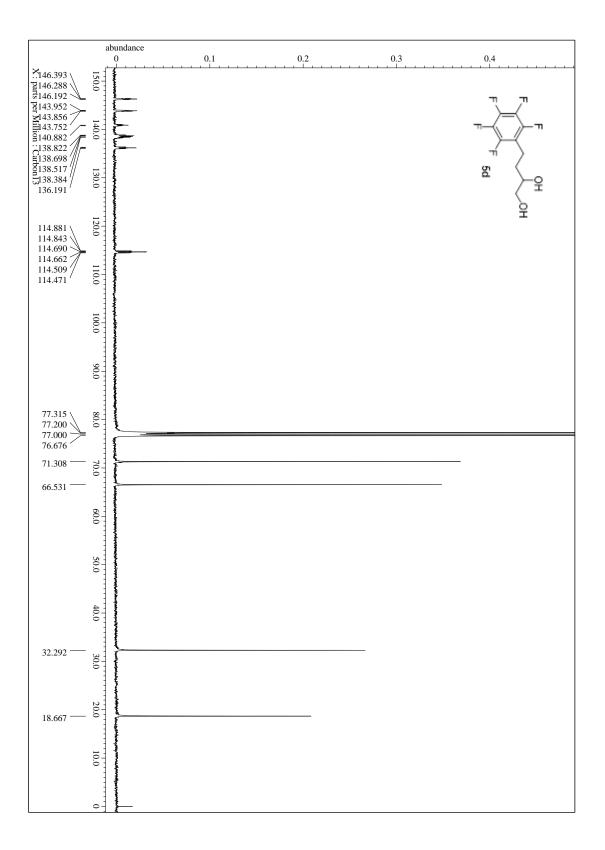
Retention time: 34.6 min, 38.0 min.

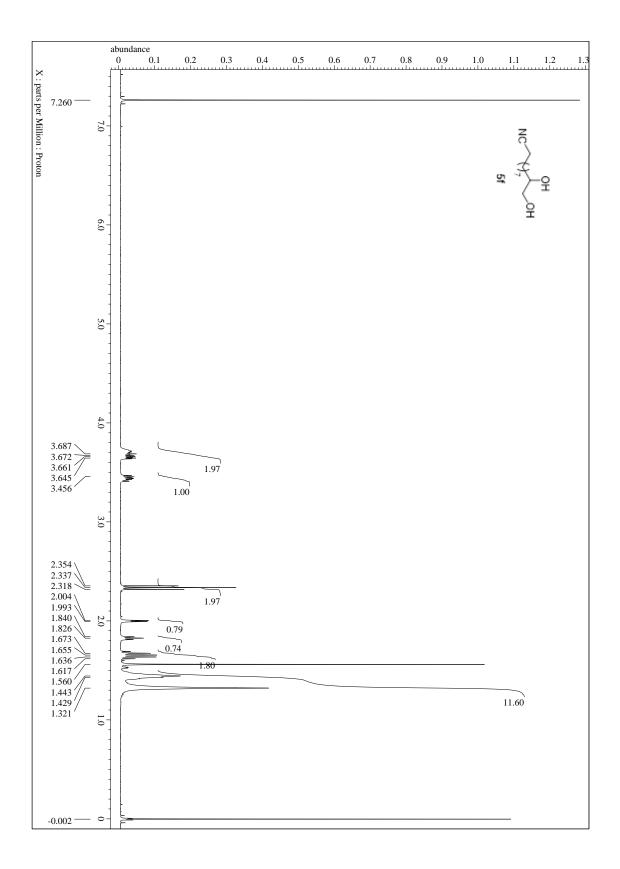
	#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%
[1	Unknown	5	34.595	1047251	16133	98.990
I	2	Unknown	5	38.507	10683	215	1.010

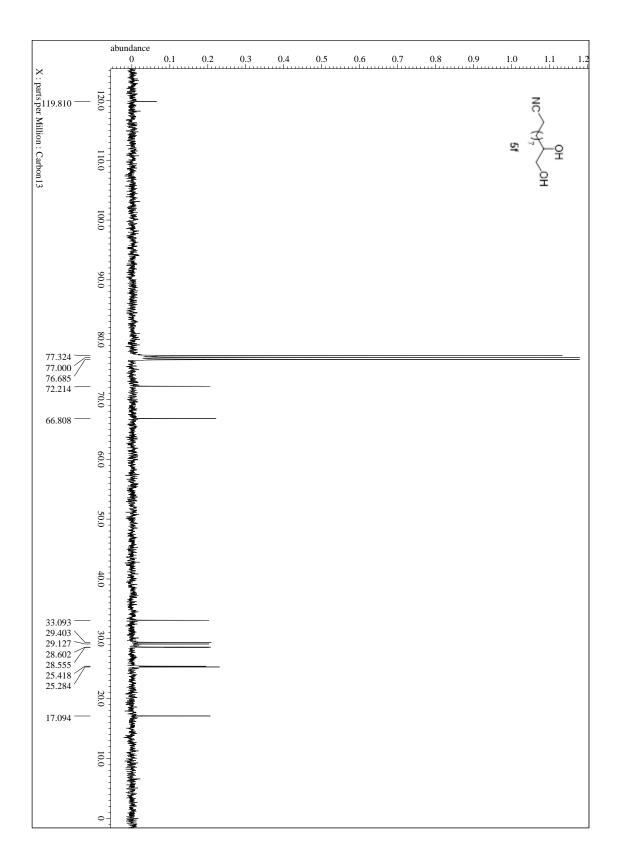
9. Single crystal X-ray diffraction study

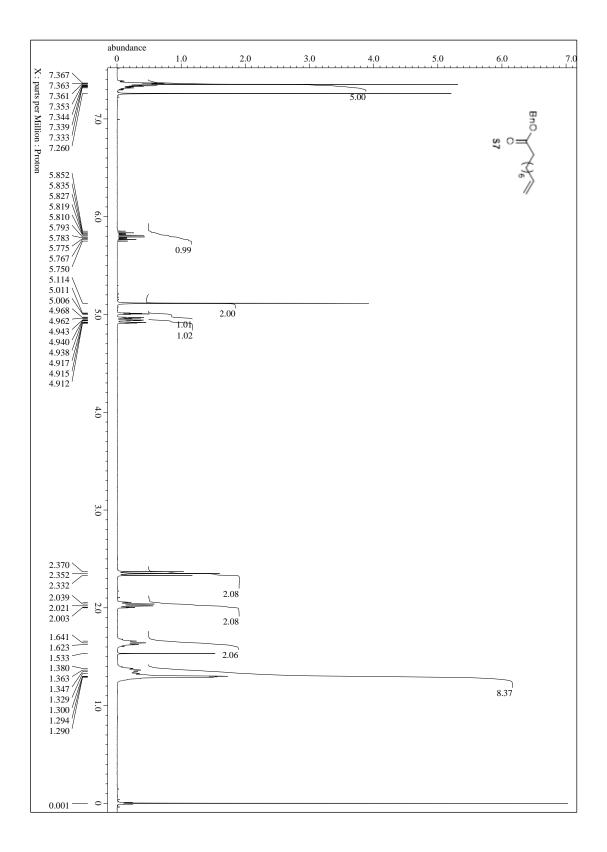
A single crystal of **9** was mounted on a glass fiber, and diffraction data were collected in θ ranges specified in Table S2 at 93 K on a Brucker D8 QUEST diffractometer with graphite monochromatized Mo Ka radiation (1 = 0.71073 Å). The absorption correction was made using SADABS. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 by using SHELXL-2013.⁸ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions. Final refinement details are compiled in Table S2. The supplementary crystallographic data for this paper (CCDC 1872155) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

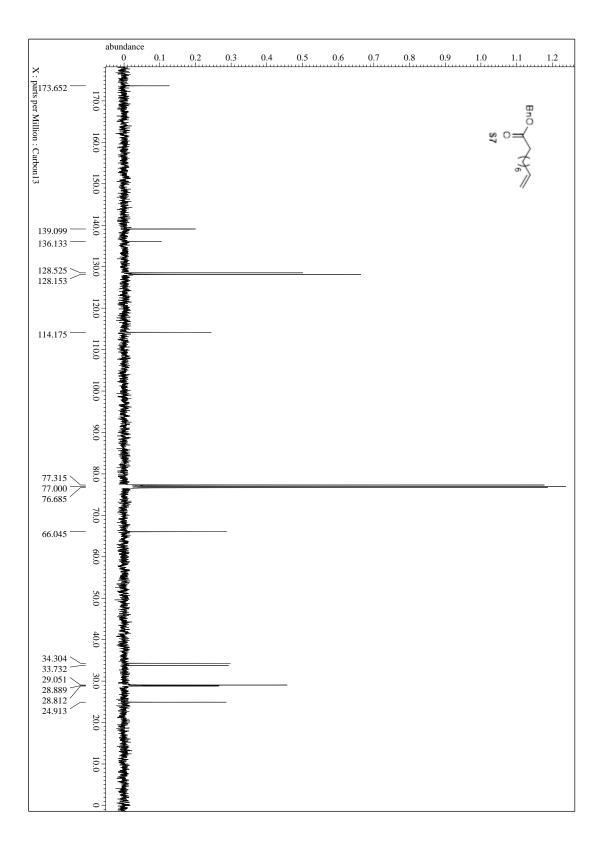

formula	C ₂₃ H ₂₄ BrNO ₄
fw	458.34
crystal system	orthorhombic
space group	P 21 21 21
<i>a</i> , Å	6.1363(5)
b, Å	14.6139(10)
<i>c</i> , Å	21.9016(15)
volume, Å ³	1964.0(2)
Ζ	4
D (calcd), Mg m ⁻³	1.550
μ, mm ⁻¹	2.124
F(000)	944
crystal size, mm	0.1 x 0.1 x 0.25
heta range for data collection, deg	2.32 to 25.07
index ranges	-7≤h≤7, -17≤k≤17, -26≤l≤25
reflections collected	12617
independent reflections [R(int)]	3327 [R(int) = 0.0283]
coverage of independent reflections	99.6%
max. and min. transmission	0.8160/0.6190
data / restraints / parameters	3327 / 0 / 264
goodness-of-fit on F^2	1.126
$R_1, wR_2 [I > 2\sigma(I)]/$	0.0227, 0.0625
R_1, wR_2 (all data)	0.0231, 0.0627
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0173P)^2 + 1.3957P]$
	Where $P = (F_o^2 + 2F_c^2)/3$
largest diff. peak and hole, e Å ⁻³	0.570 and -0.433

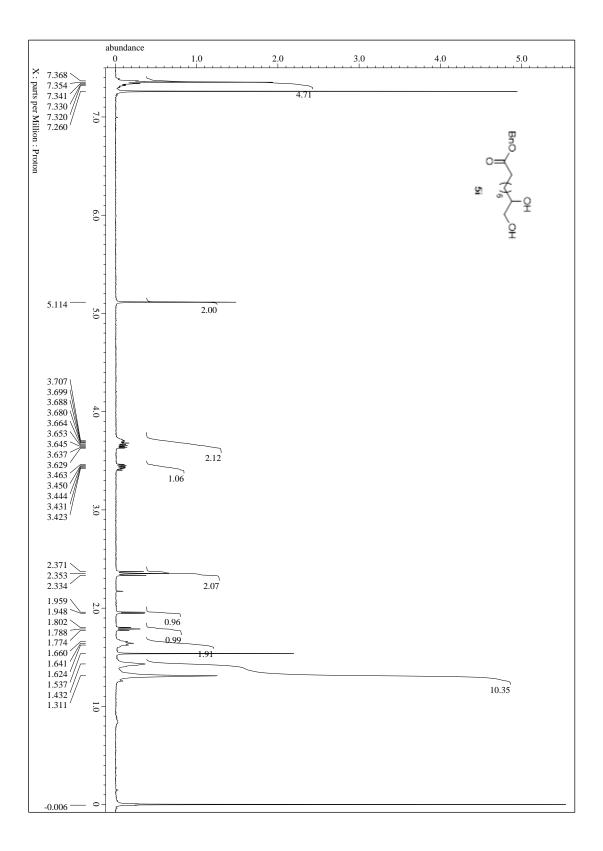

Table S3. Selected crystallographic data and collection parameters for 9

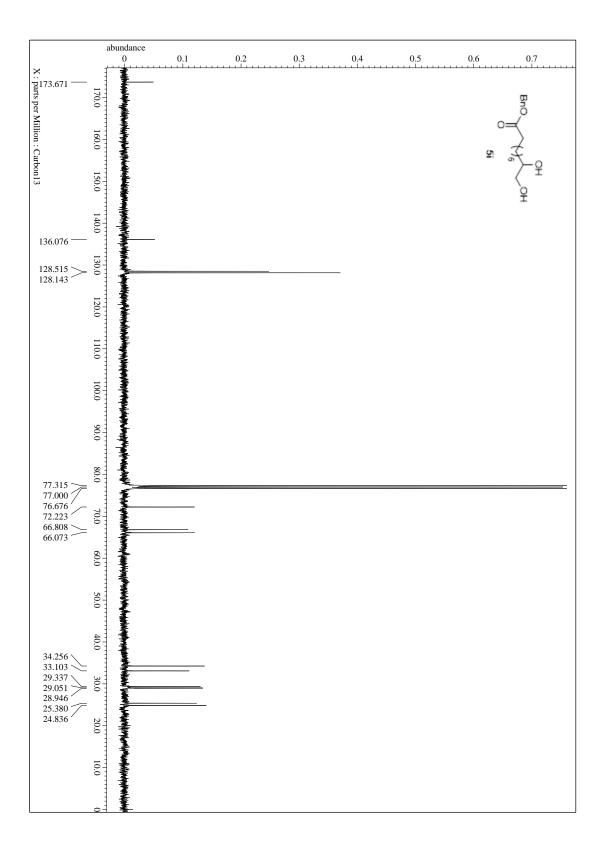

10. References

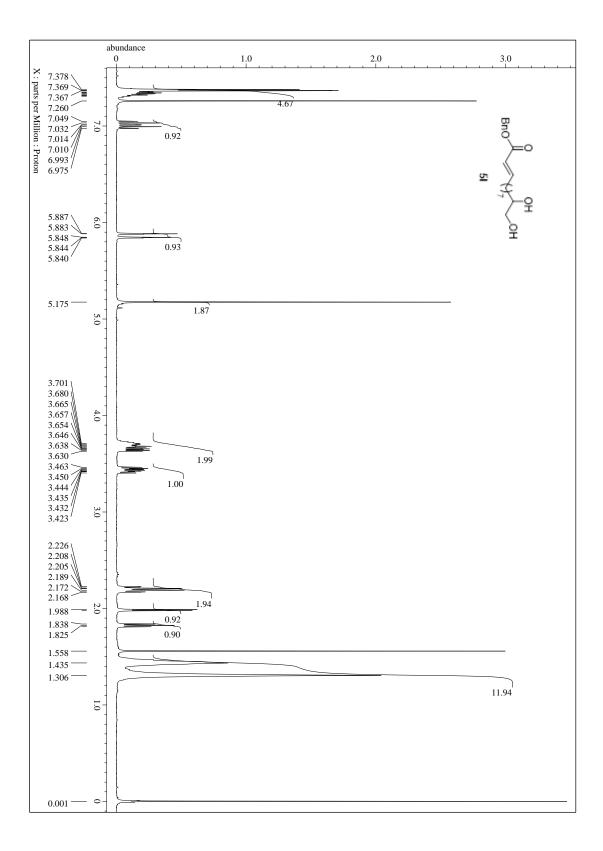

- ¹ K. Furukawa, H. Inada, M. Shibuya, Y. Yamamoto Org. Lett. 2016, 18, 4230.
- ² a) A. Bonet, C. Pubill-Ulldemolins, C. Bo, H. Gulyás, E. Fernández Angew. Chem. Int. Ed. **2011**, 50, 7158. b) T. P. Blaisdell, T. C. Caya, L. Zhang, A. Sanz-Marco, J. P. Morken J. Am. Chem. Soc. **2014**, 136, 9264.
- ³ K. Furukawa, M. Shibuya, Y. Yamamoto Org. Lett. 2015, 17, 2282.
- ⁴ K. Ando J. Org. Chem. **1997**, 62, 1934.
- ⁵ T. Zhang, W. Song, J. Zhao, J. Liu Ind. Eng. Chem. Res. 2017, 56, 11697.
- ⁶ C. W. Bradshaw, C.-H Wong, W. Hummel, M.-R. Kula Bioorg. Chem. 1991, 19, 29.
- ⁷ I. R. Babu, E. K. Hamill, K. Kumar J. Org. Chem. **2004**, 69, 5468.
- ⁸ Sheldrick, G. M. SHELXL-2013, Bruker AXS Inc., Madison, Wisconsin, 2013.

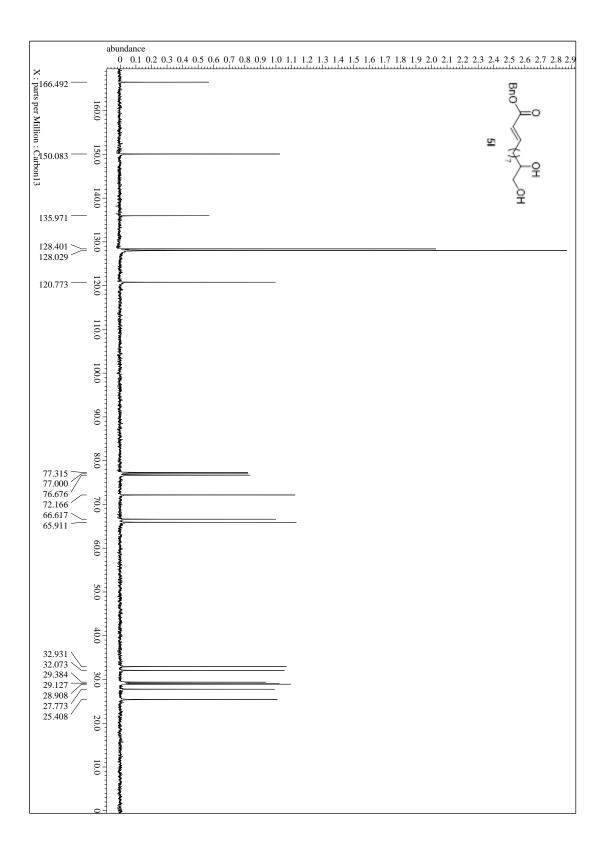

11. NMR spectra

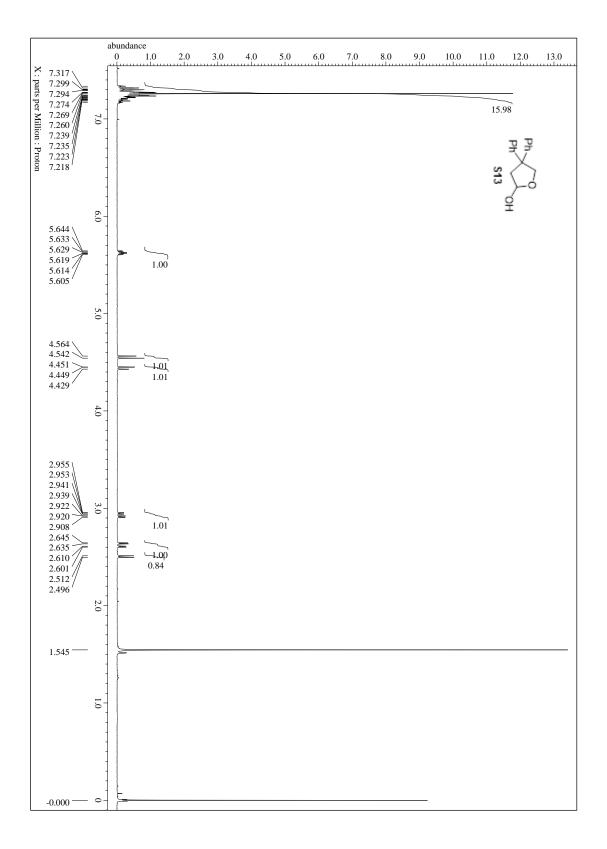


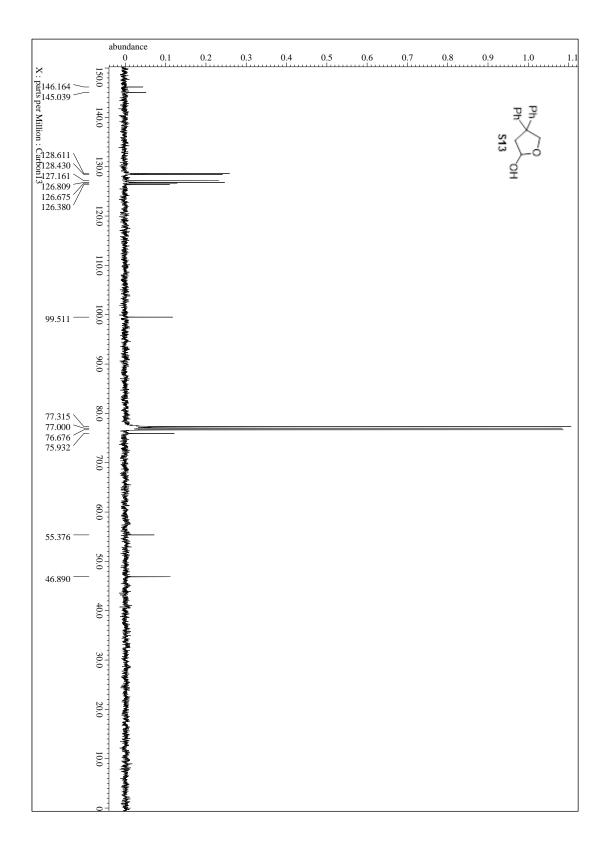


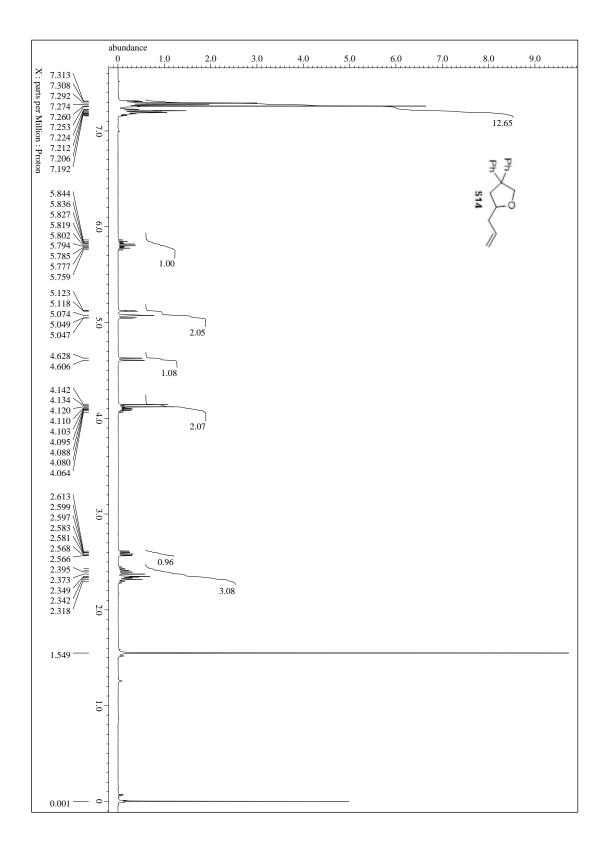


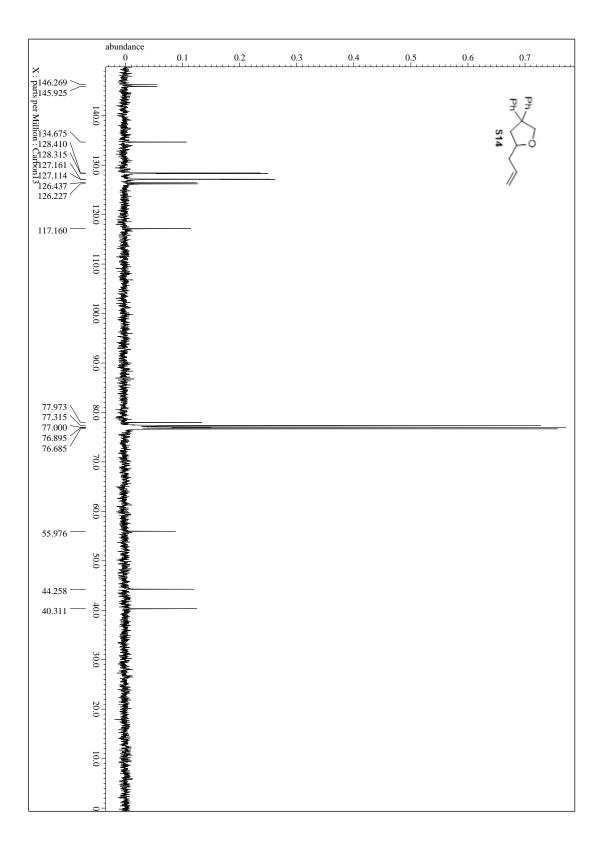


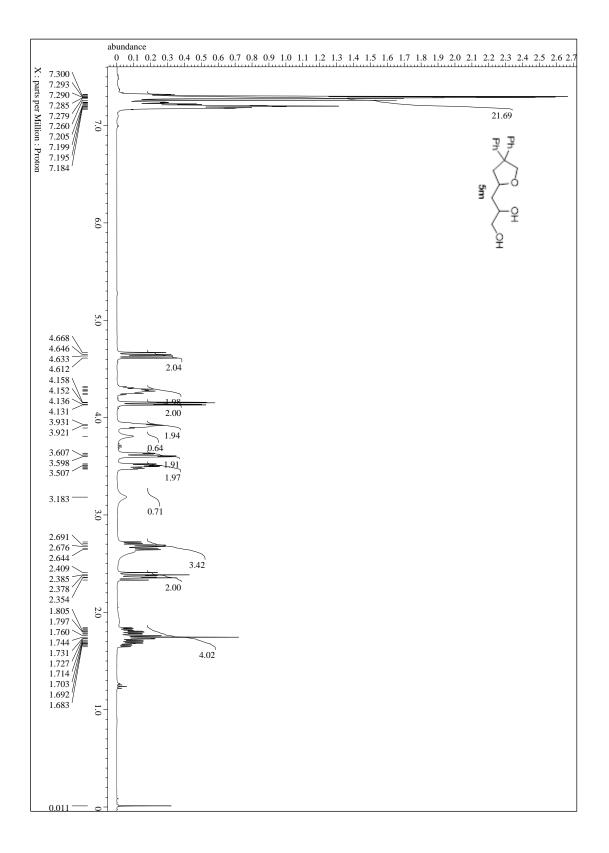


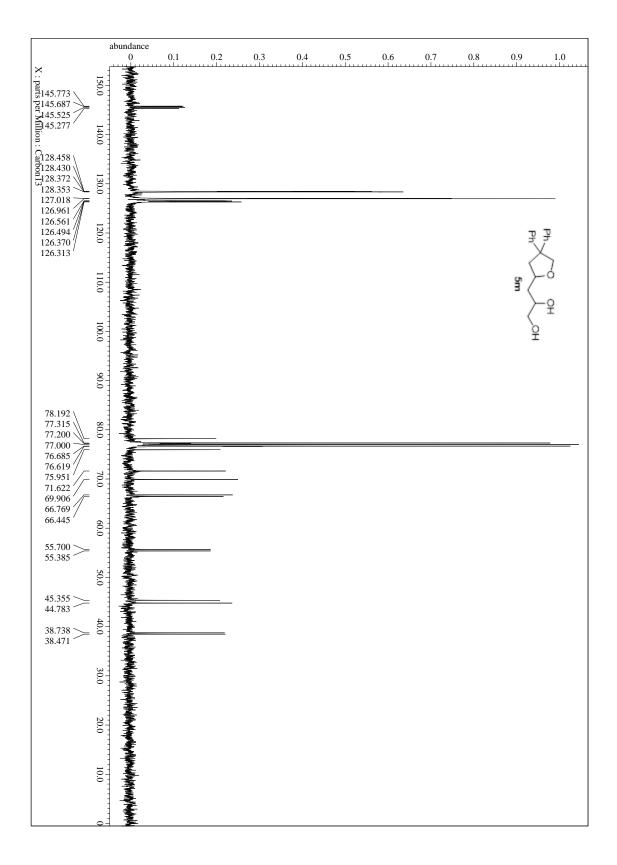


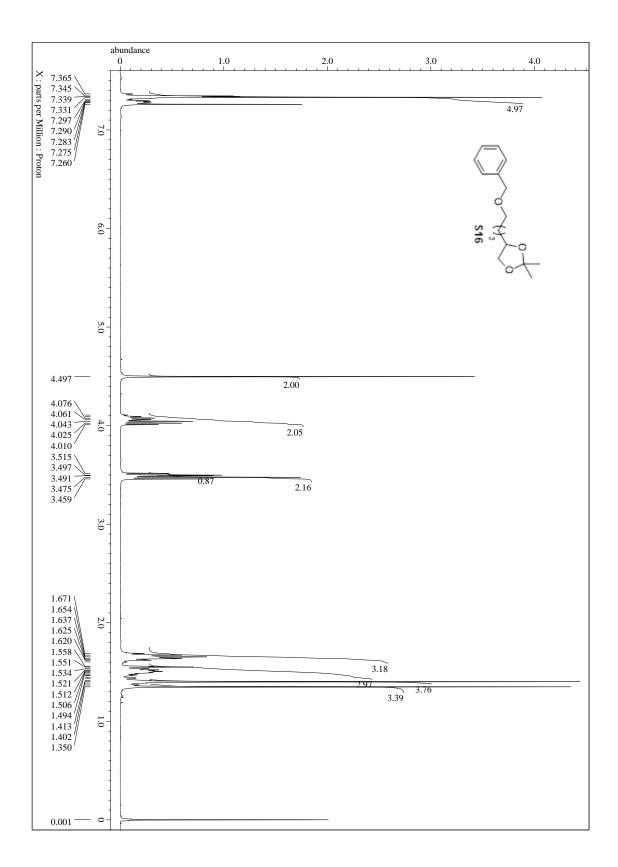


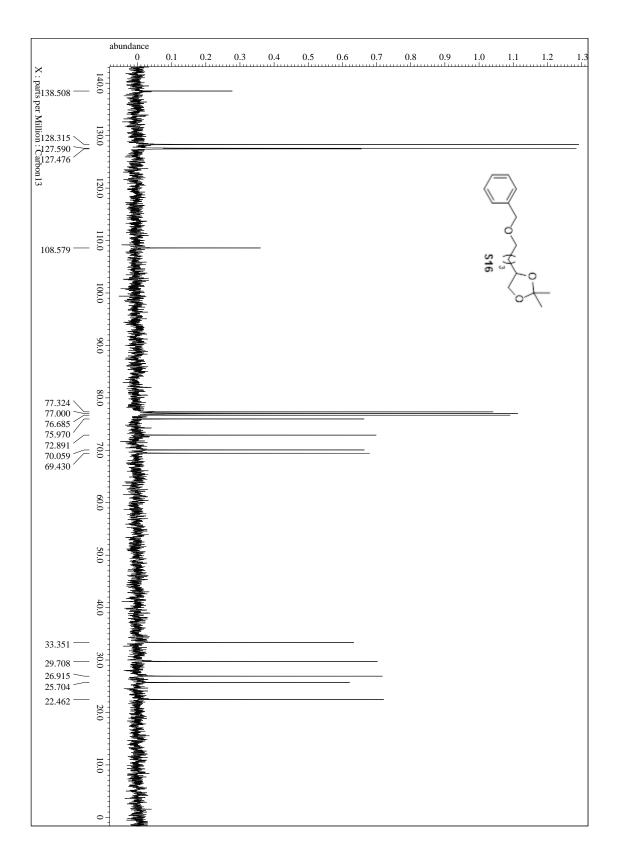


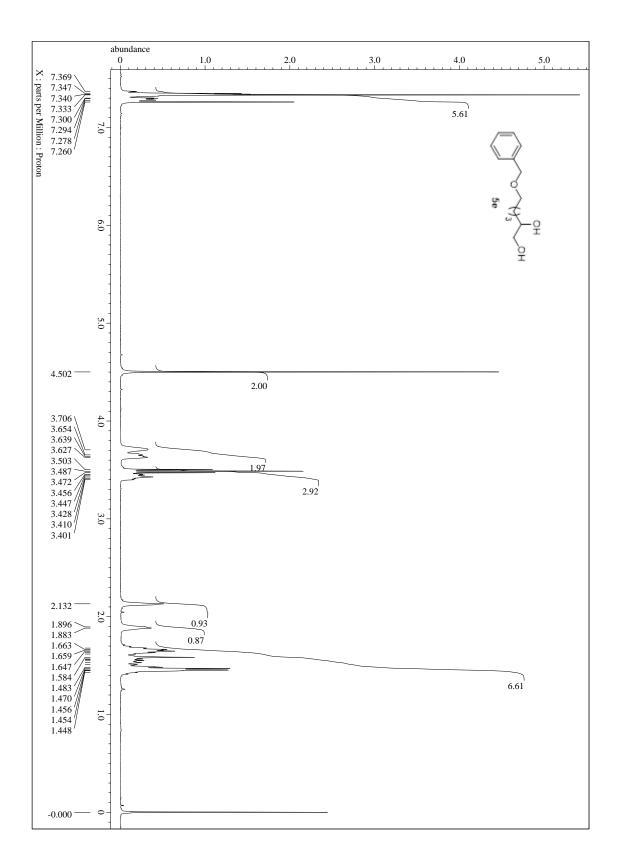


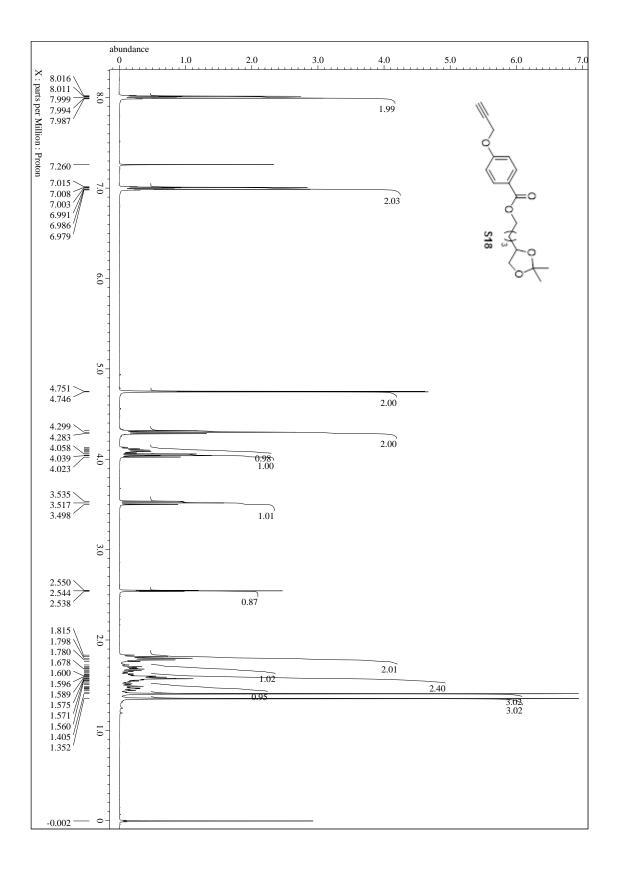


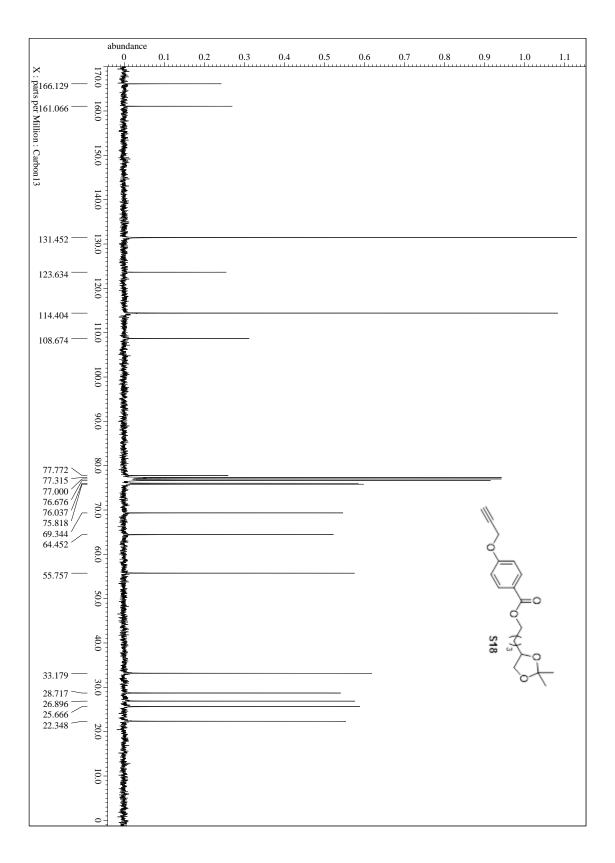


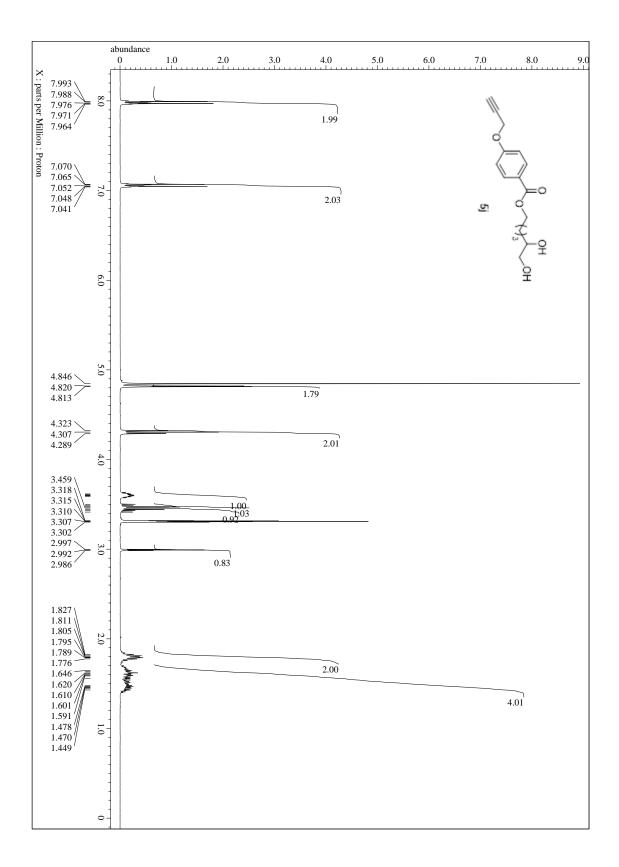


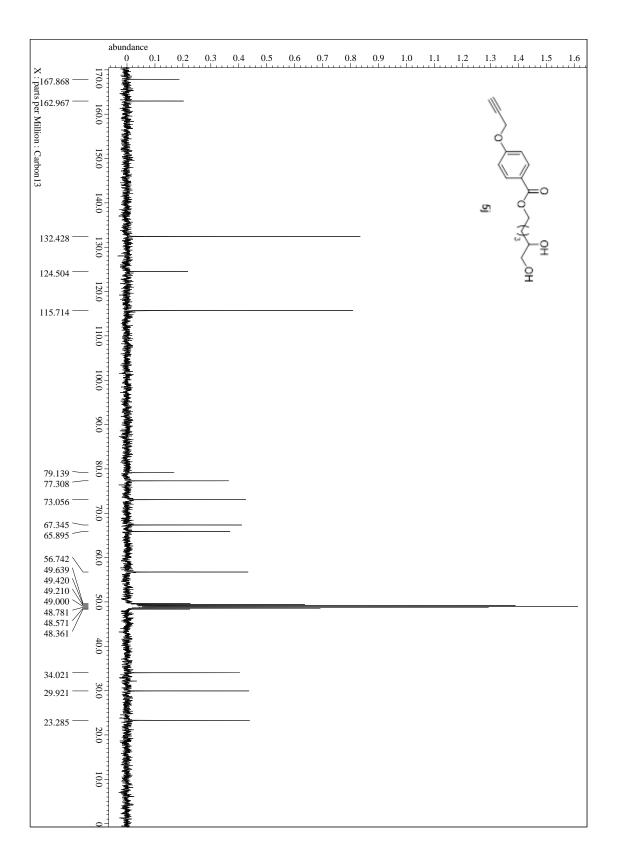


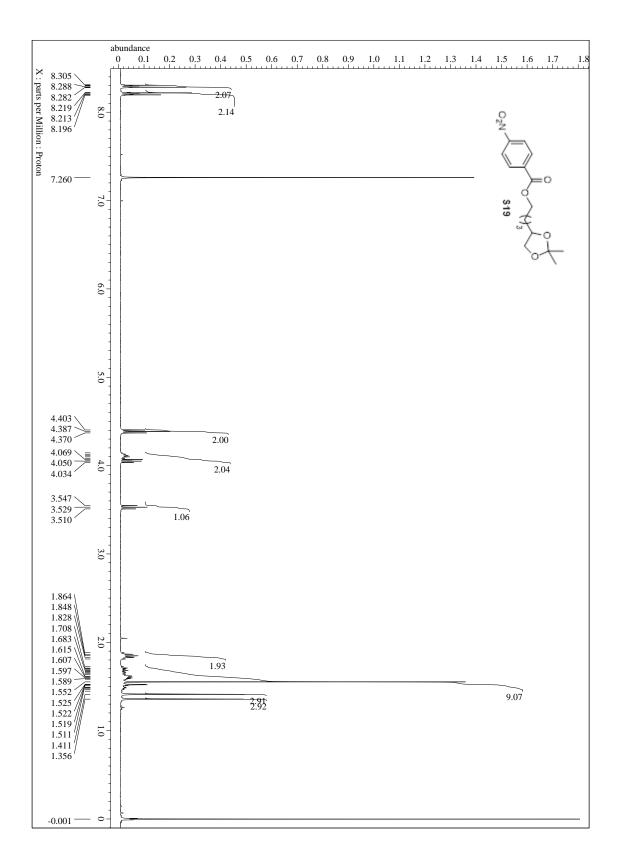


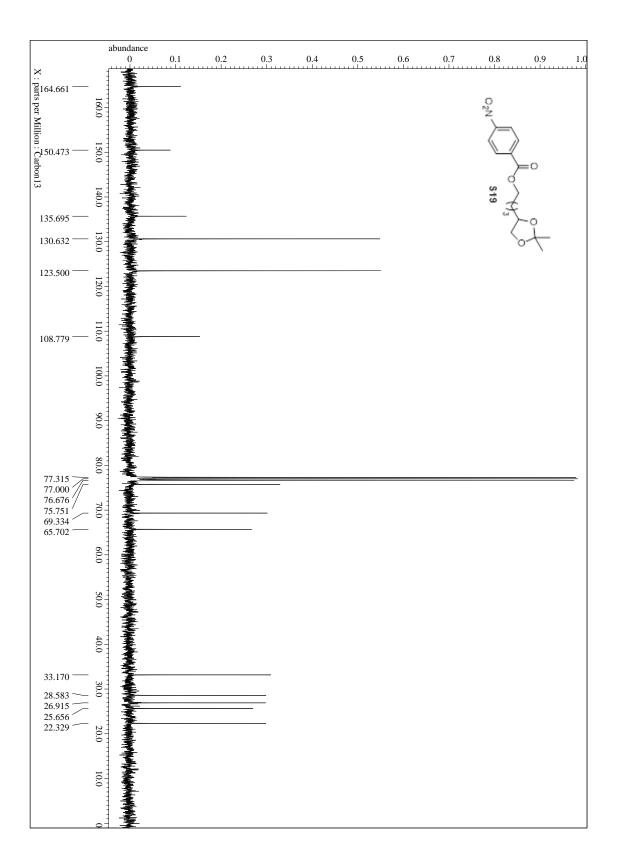


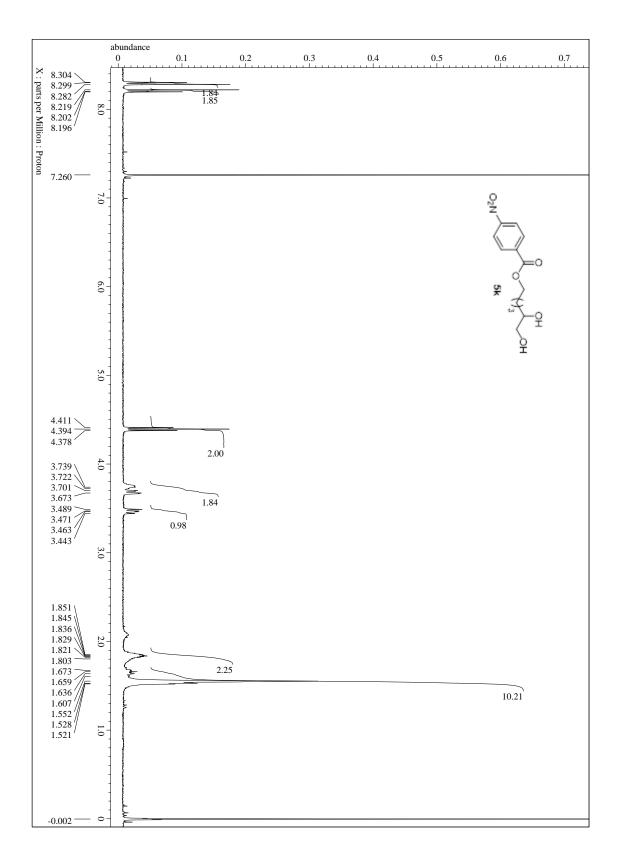


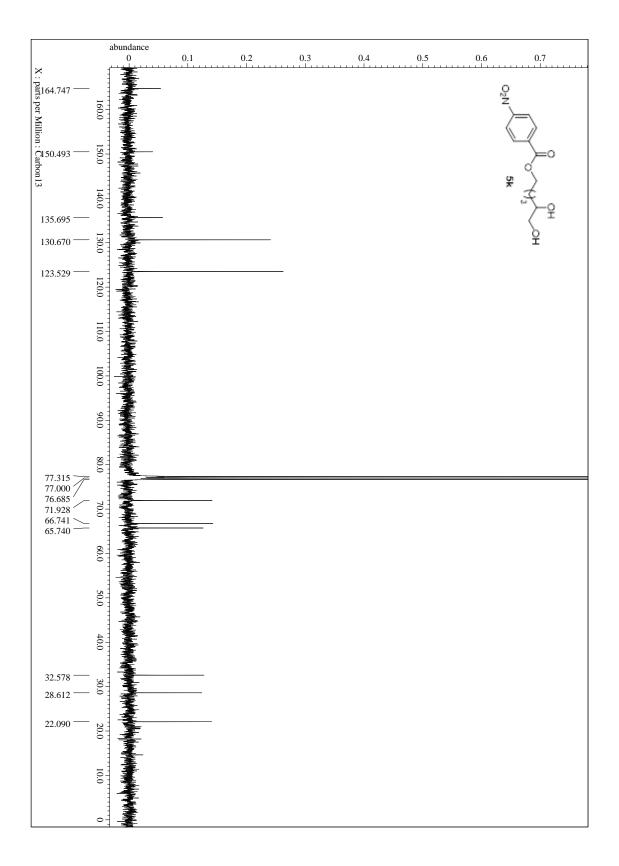


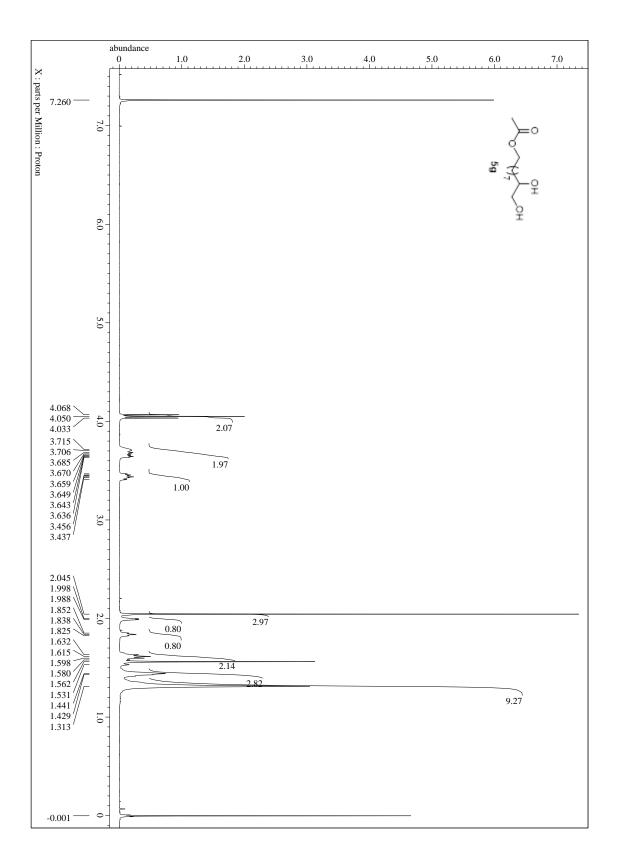


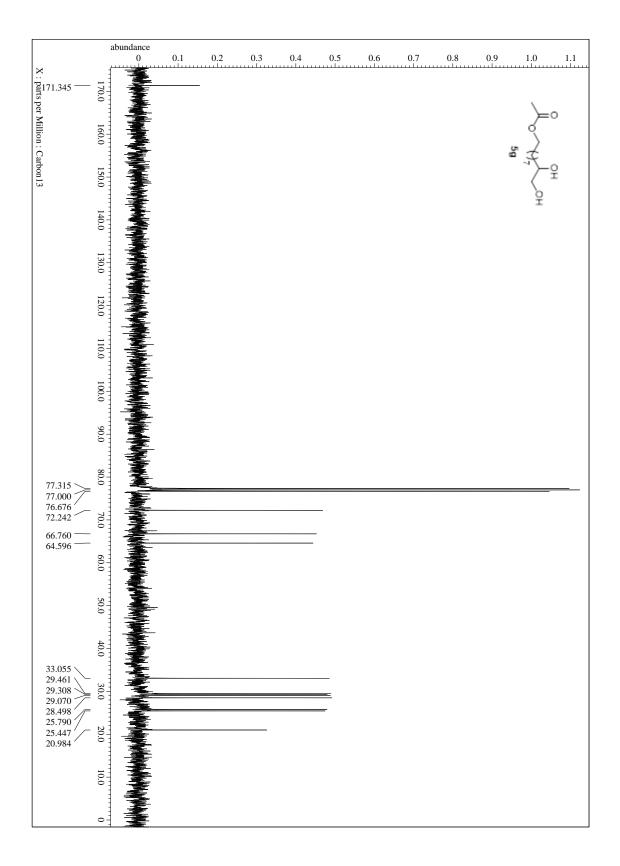


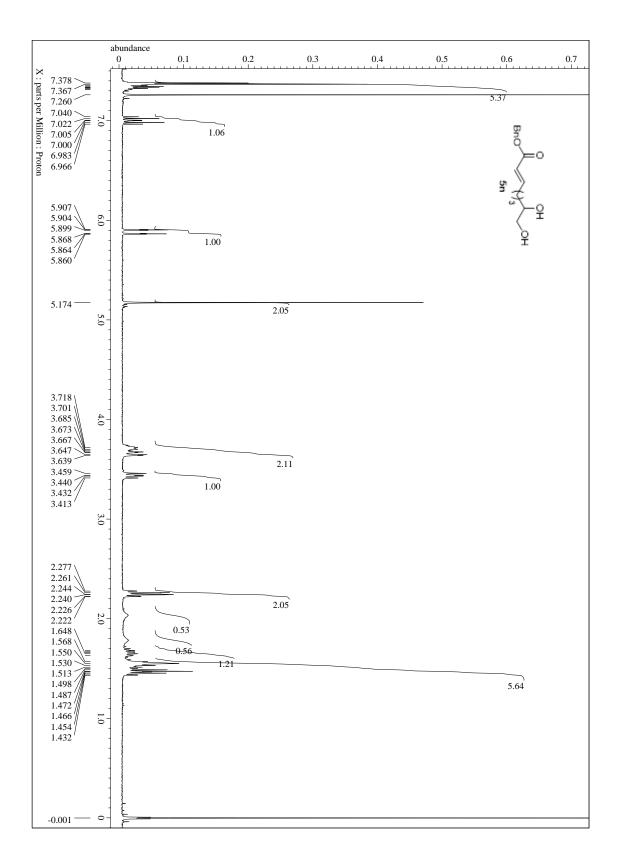


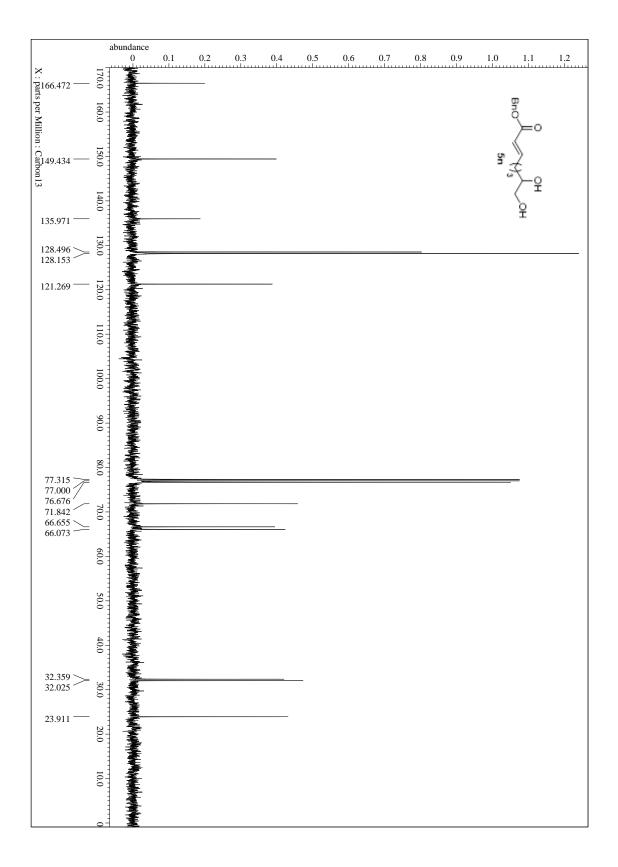


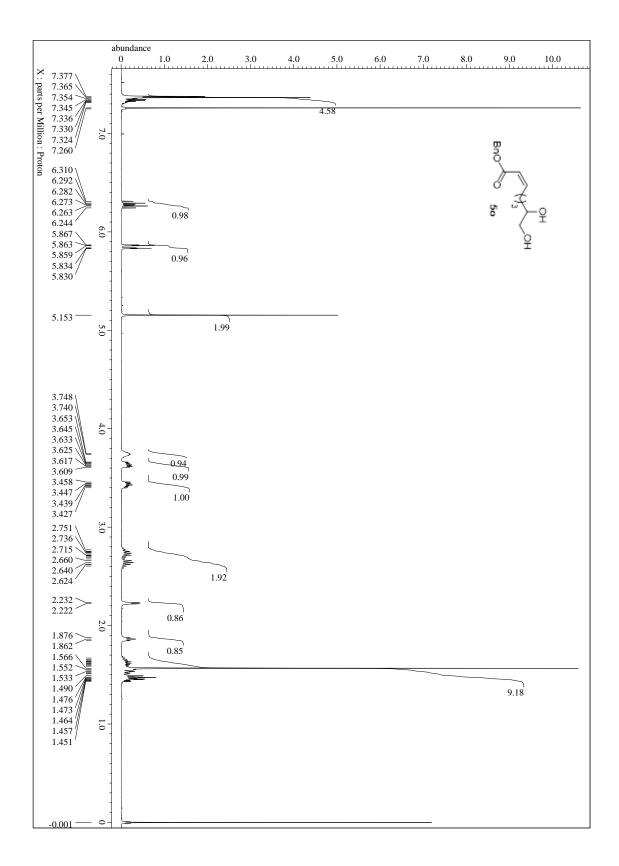


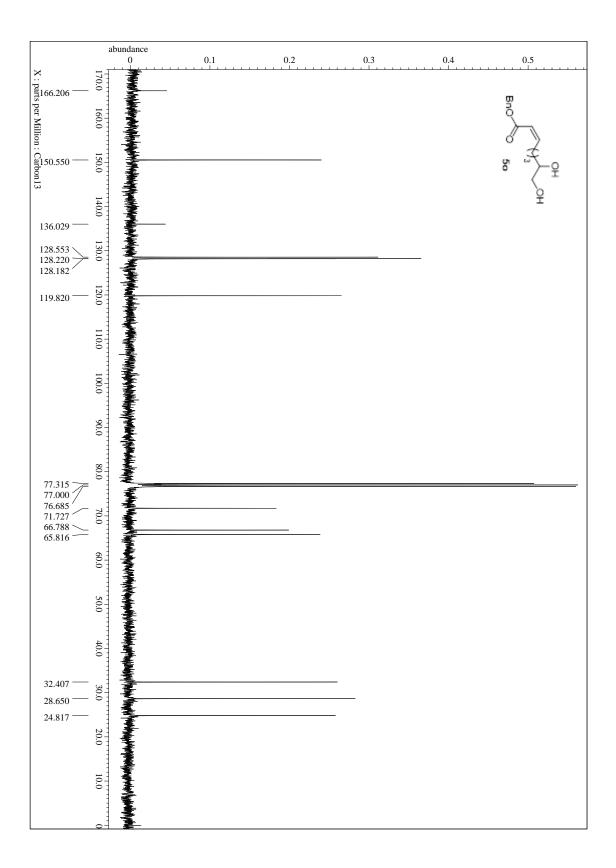


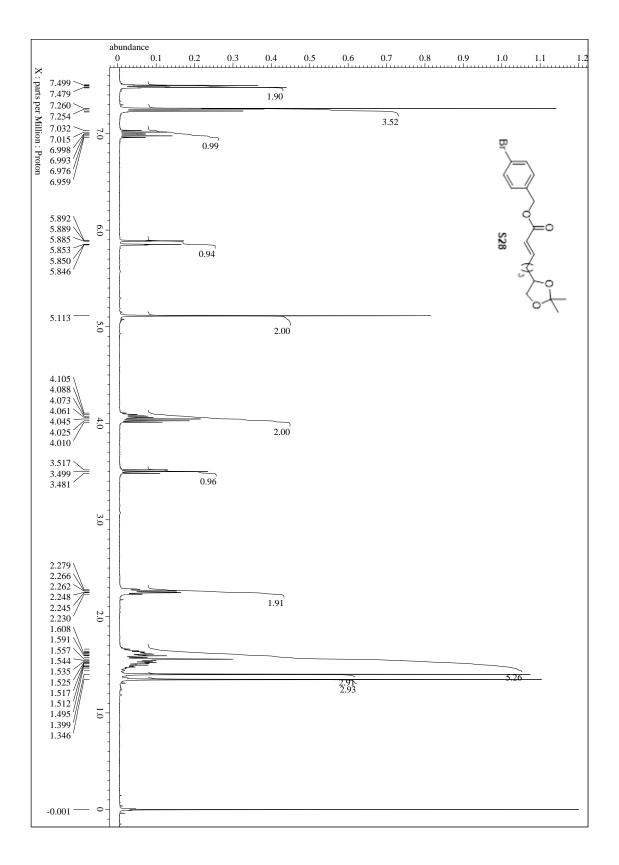




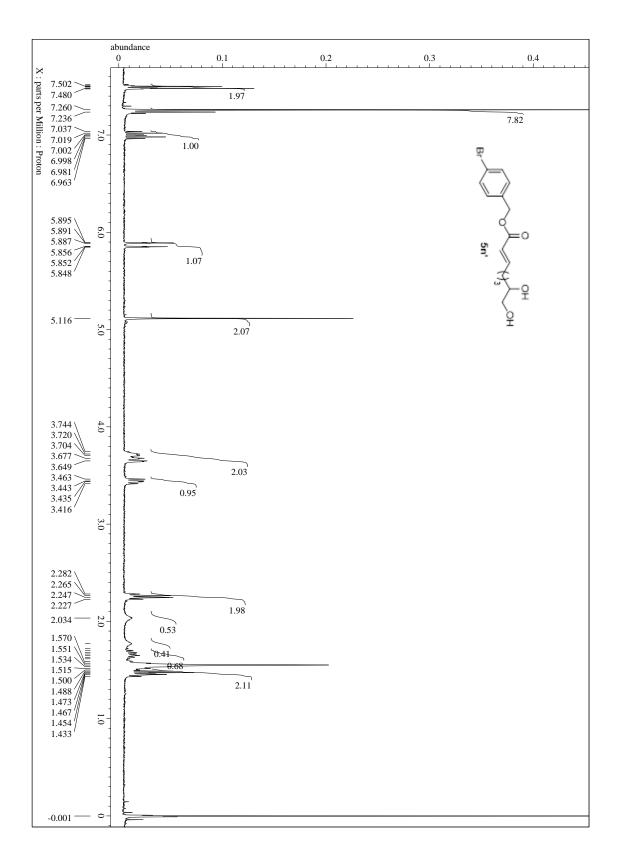


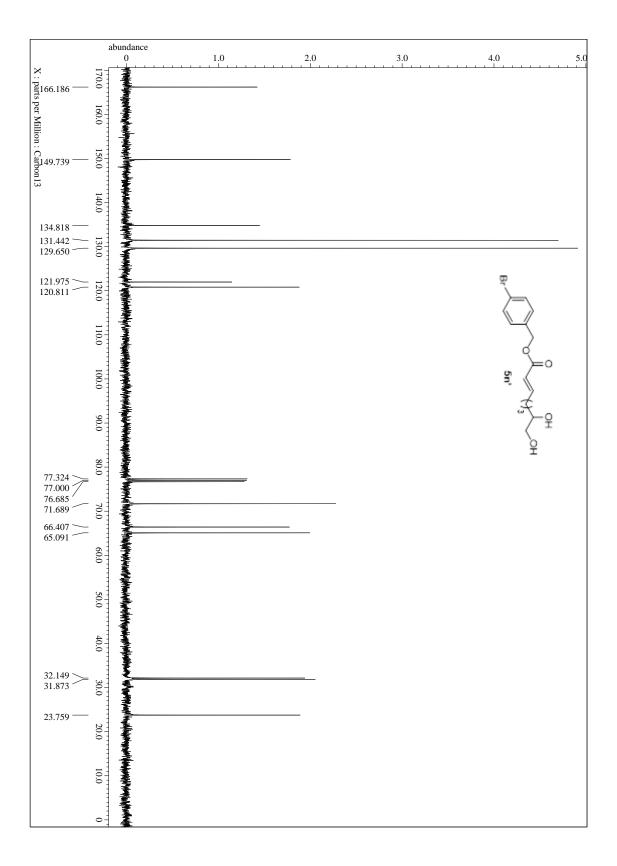


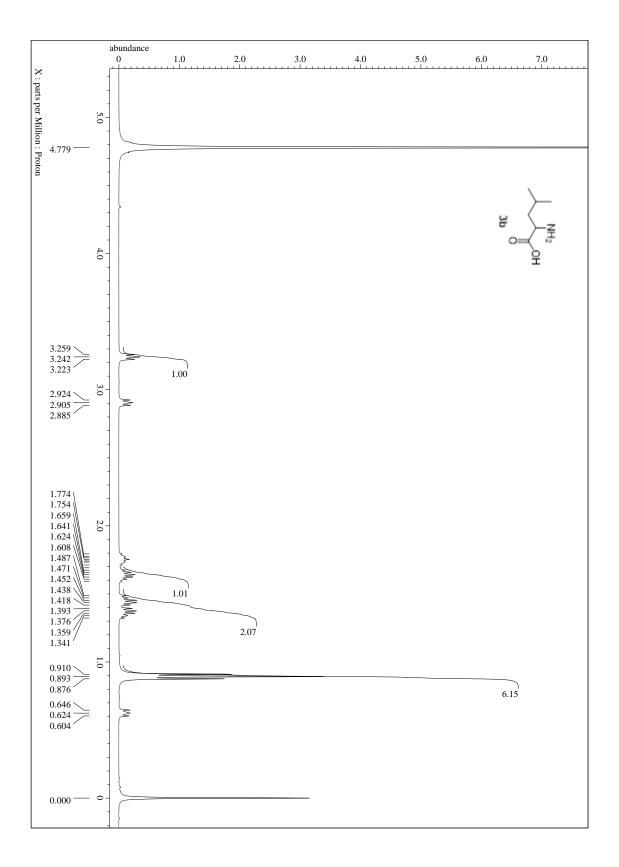


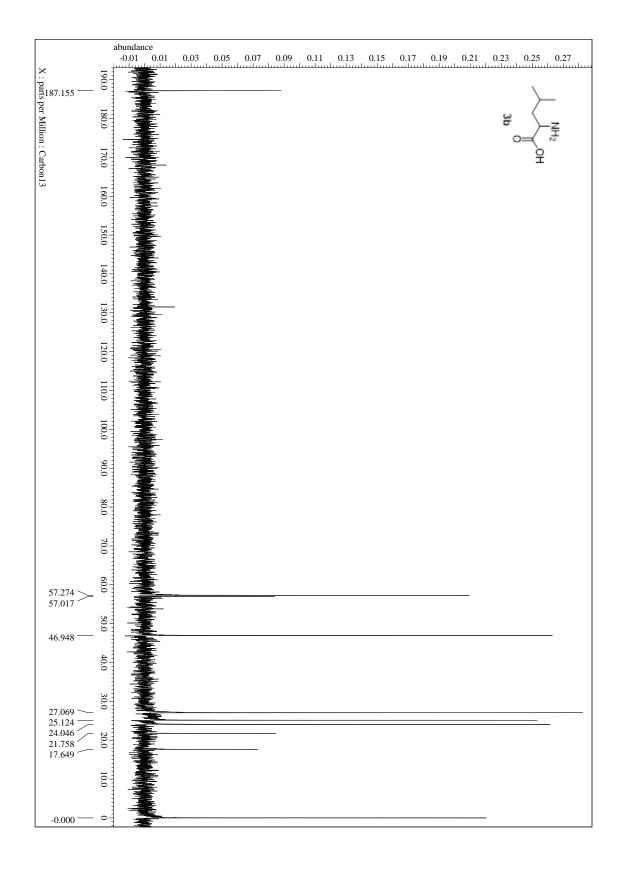


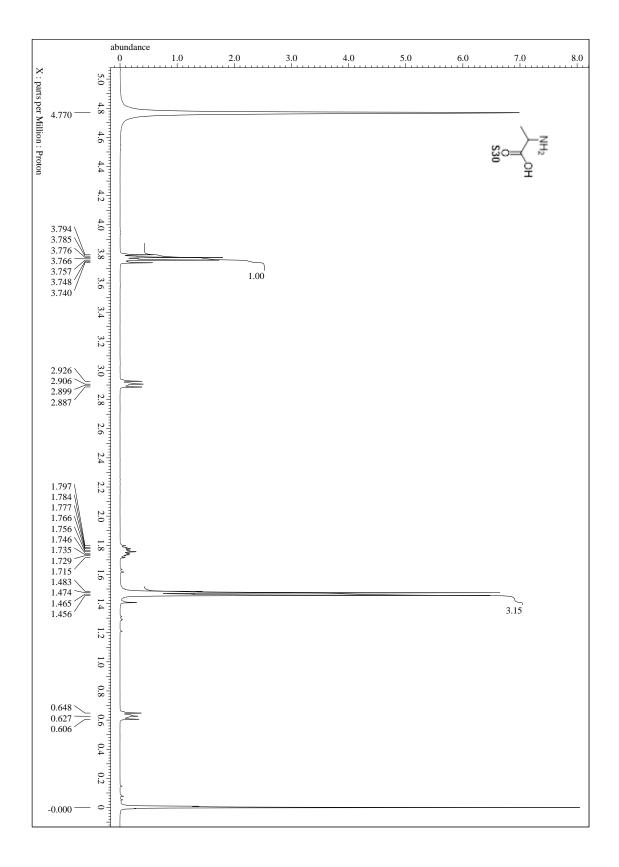


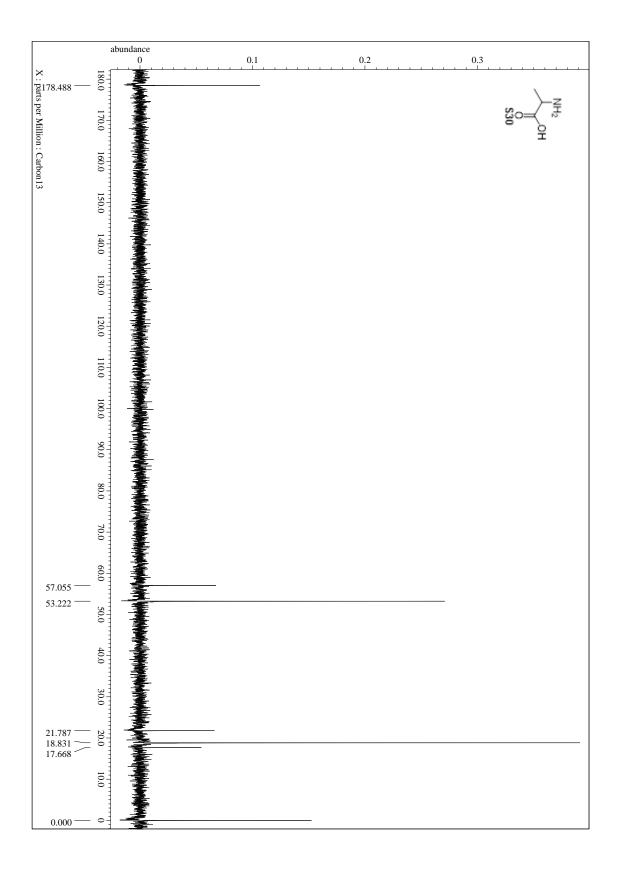


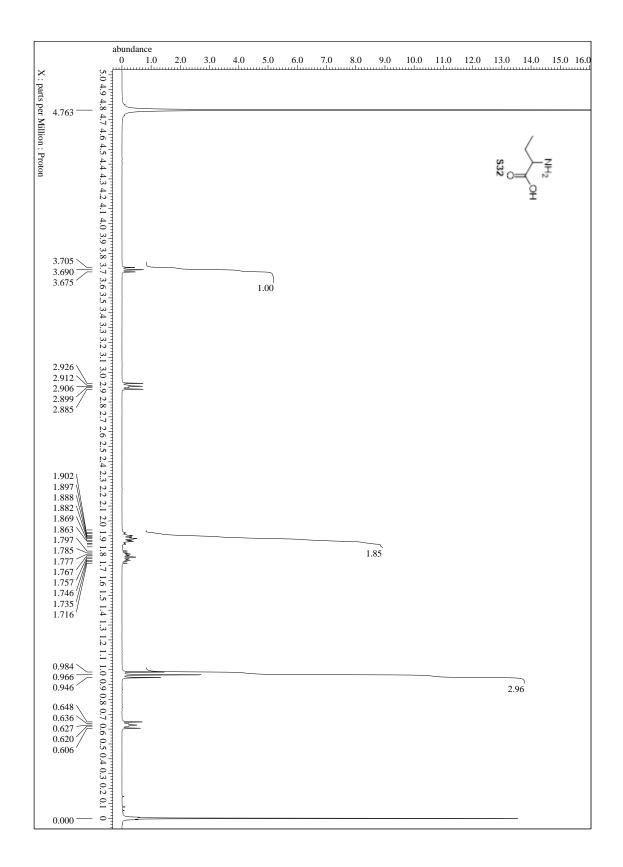


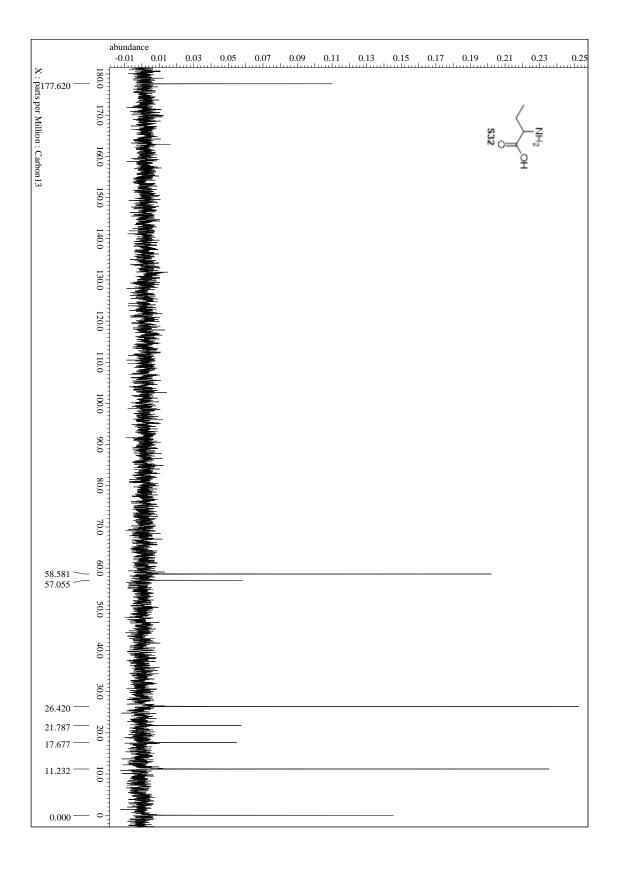


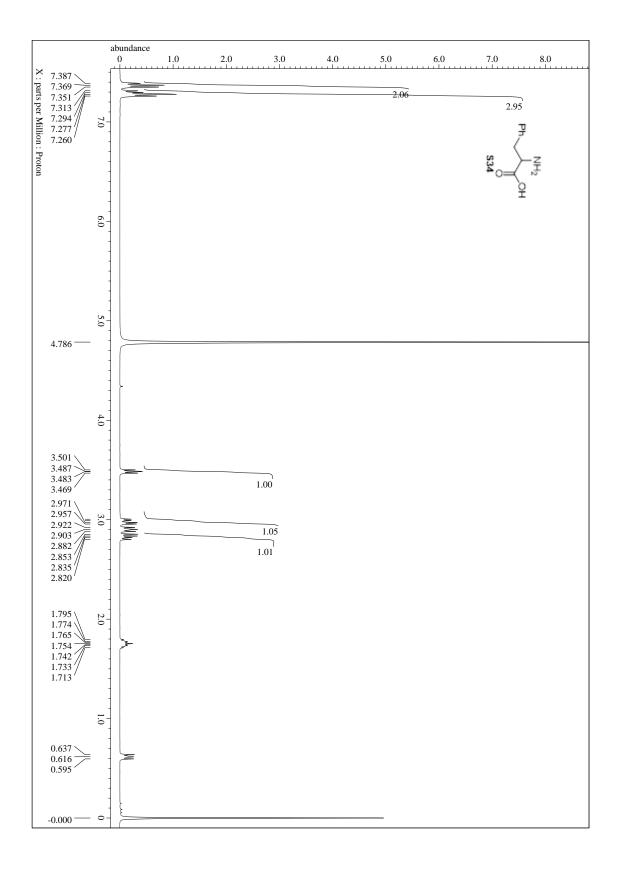


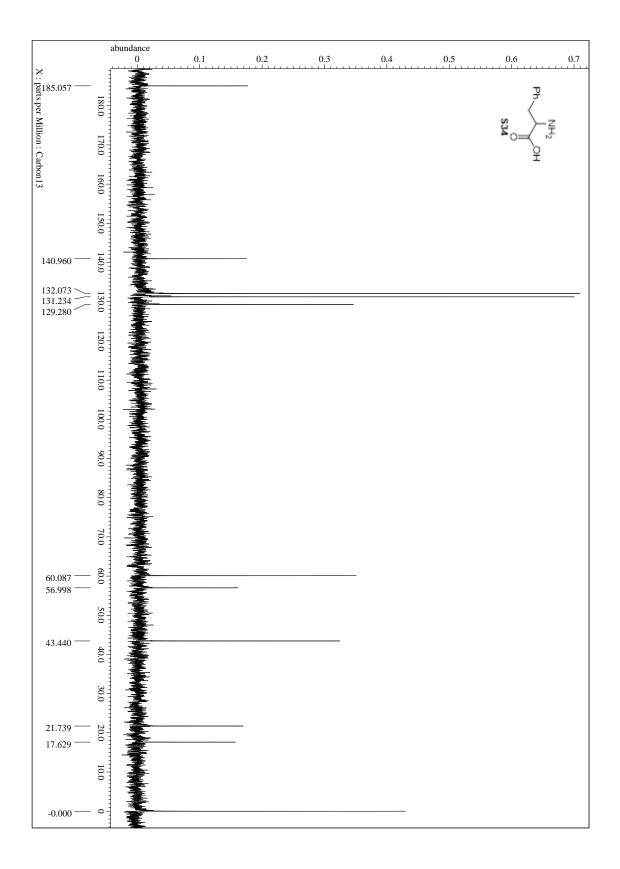


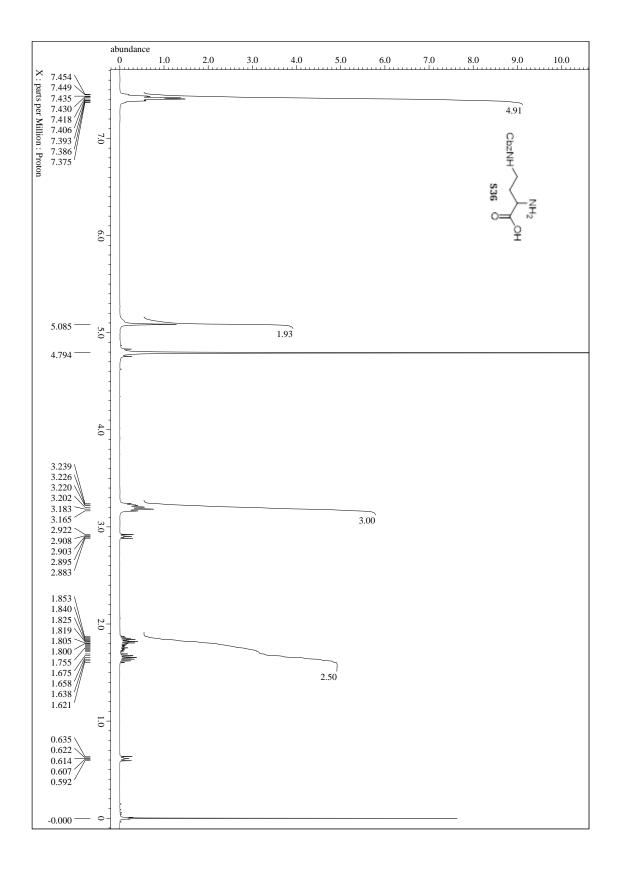


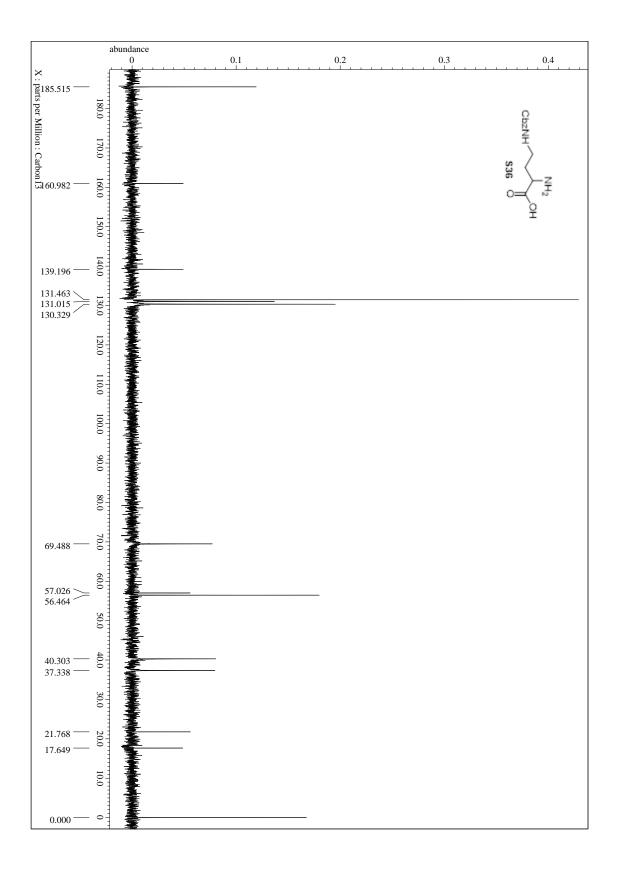


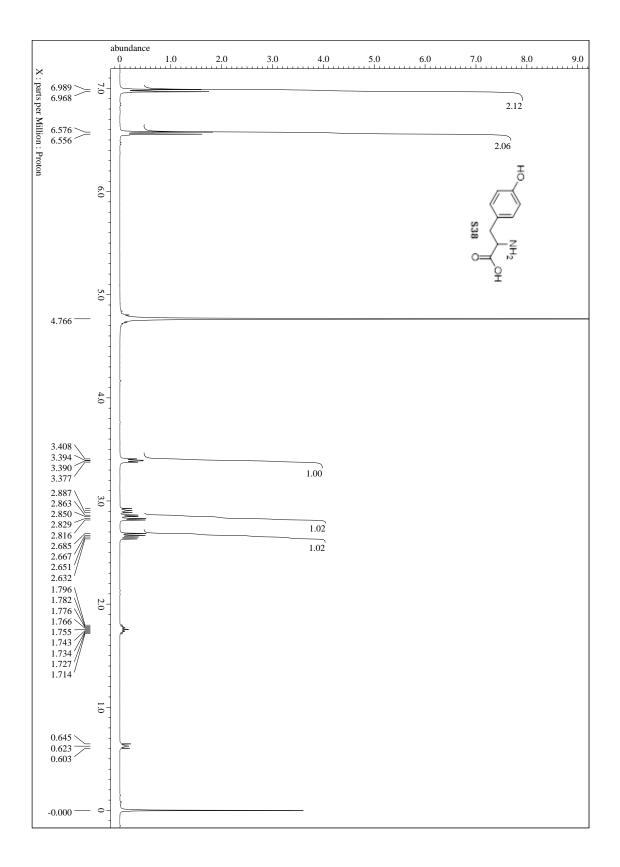


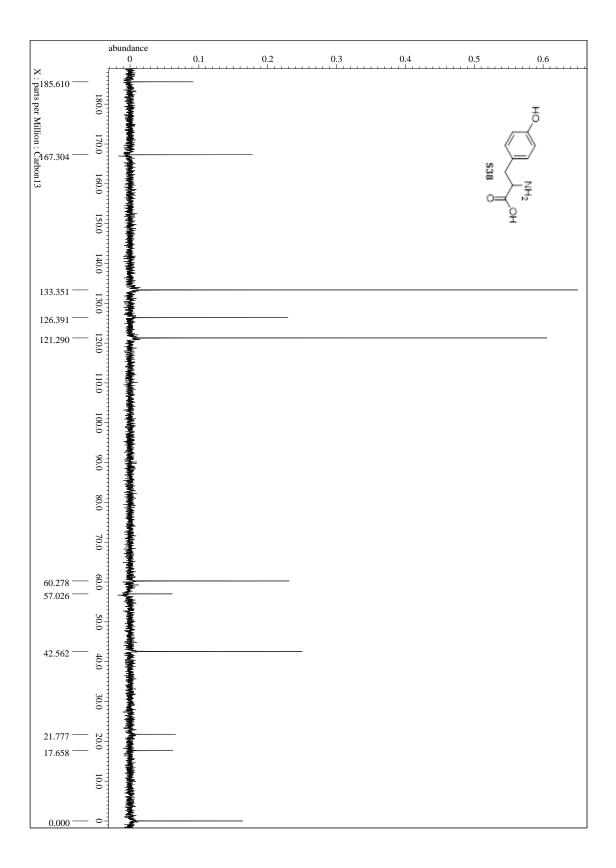


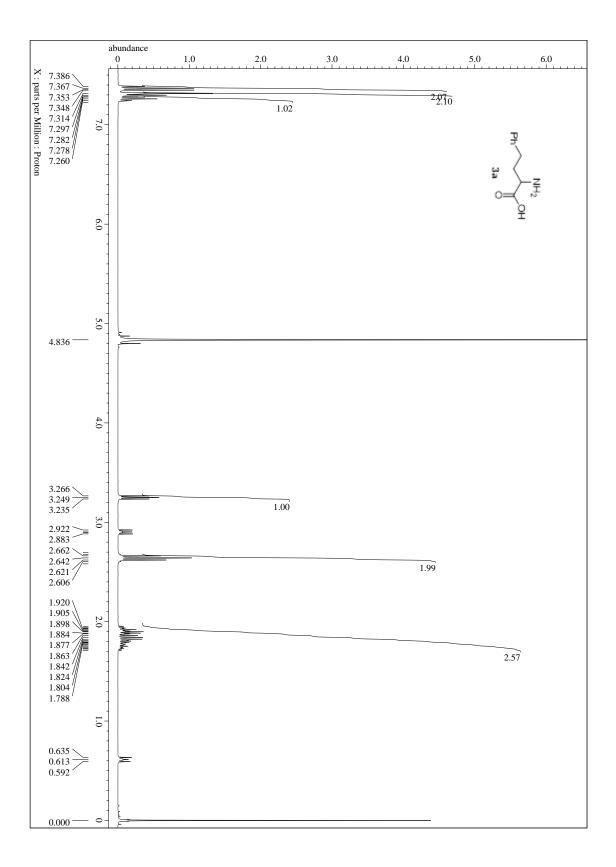


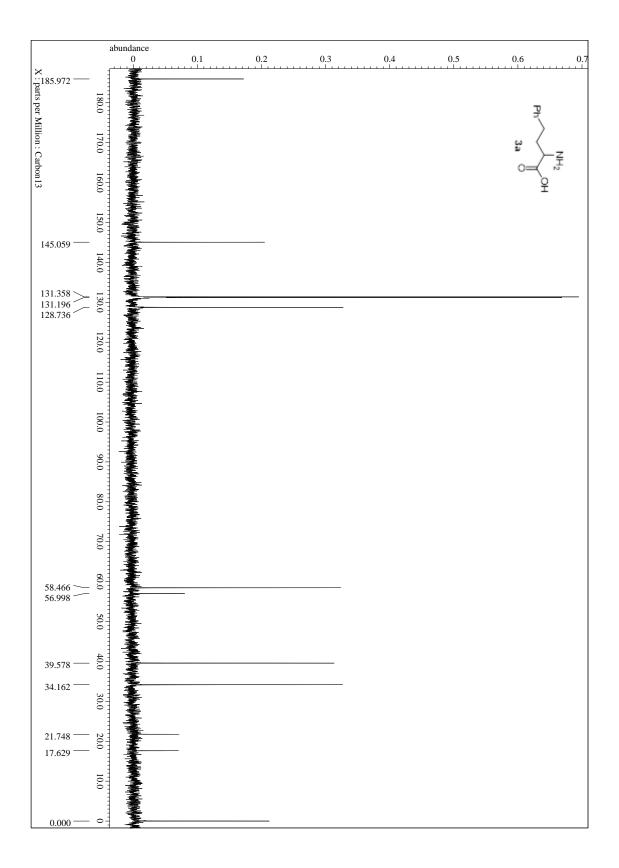


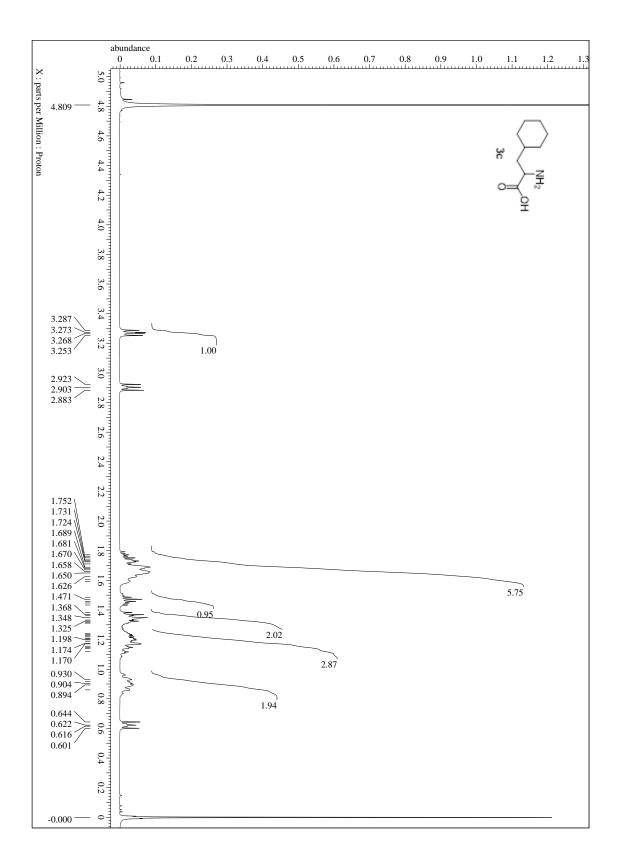


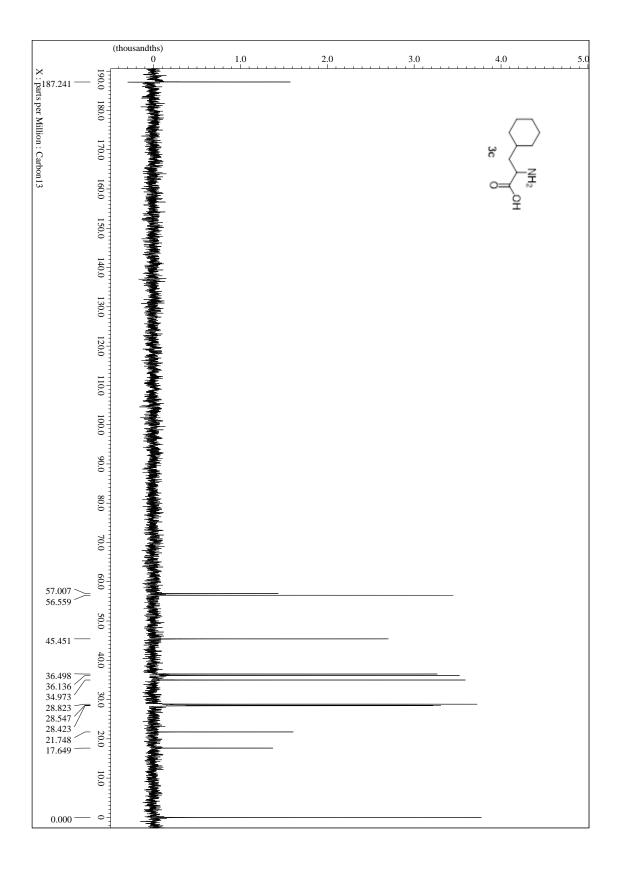


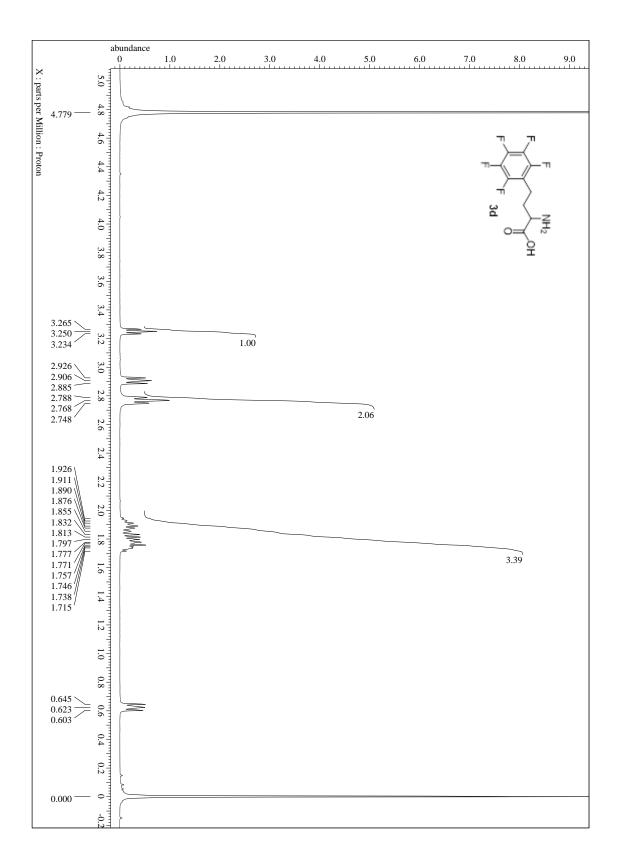


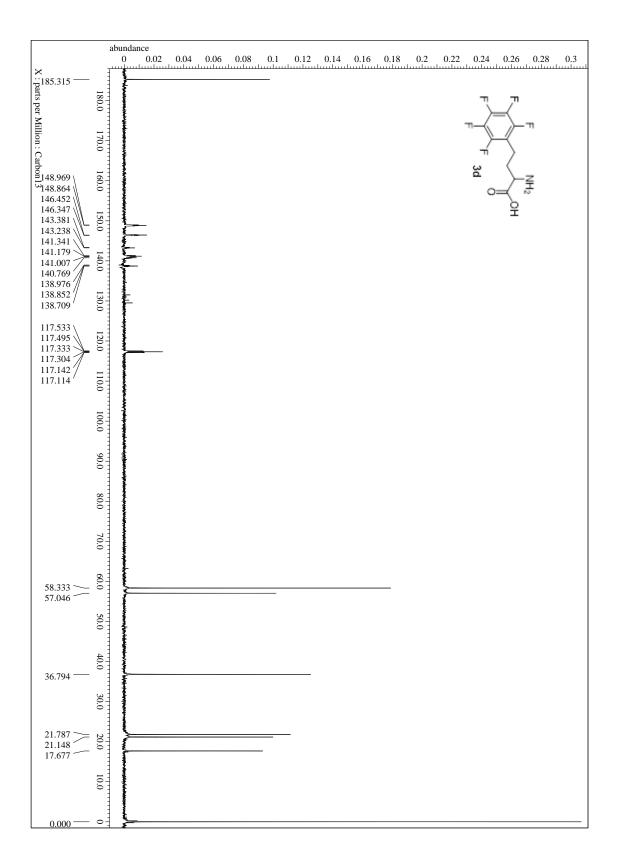


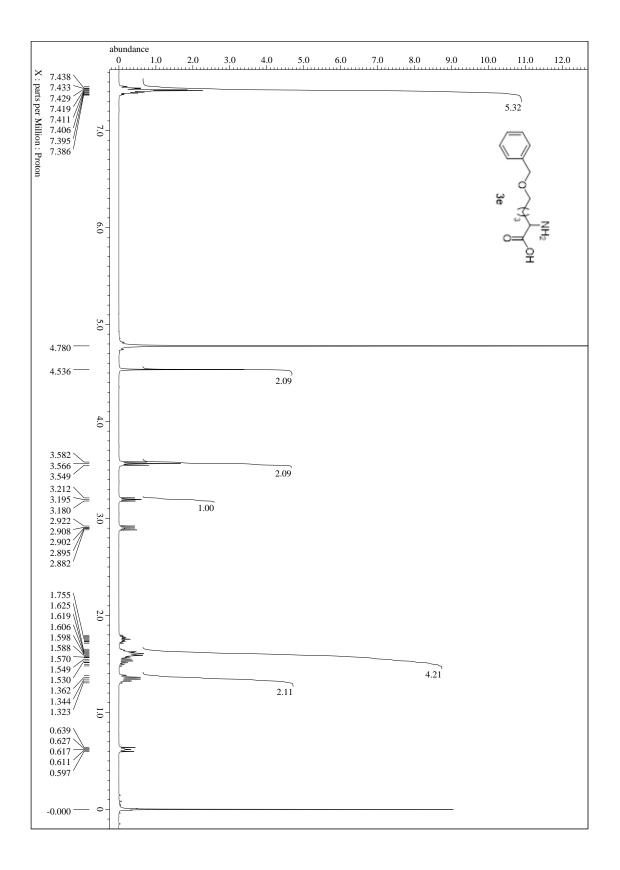


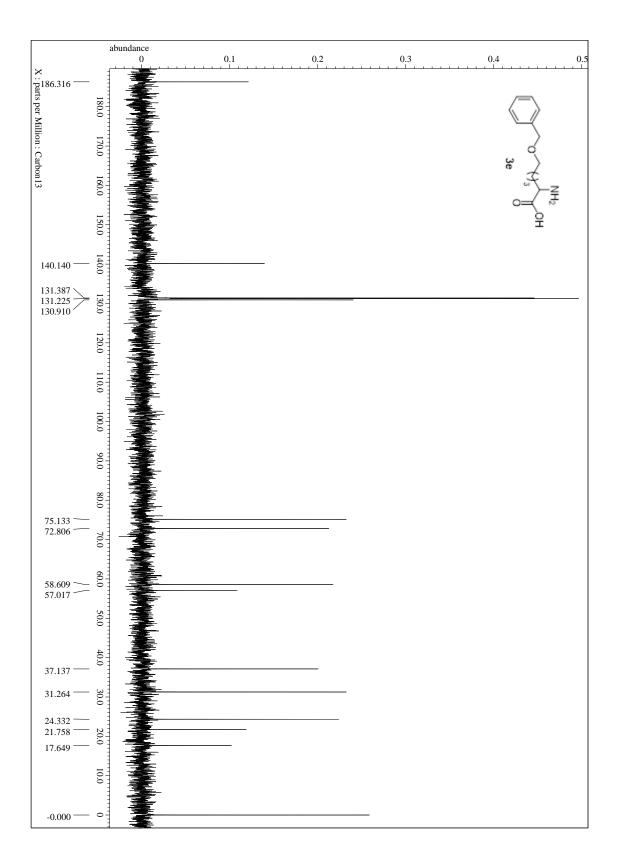


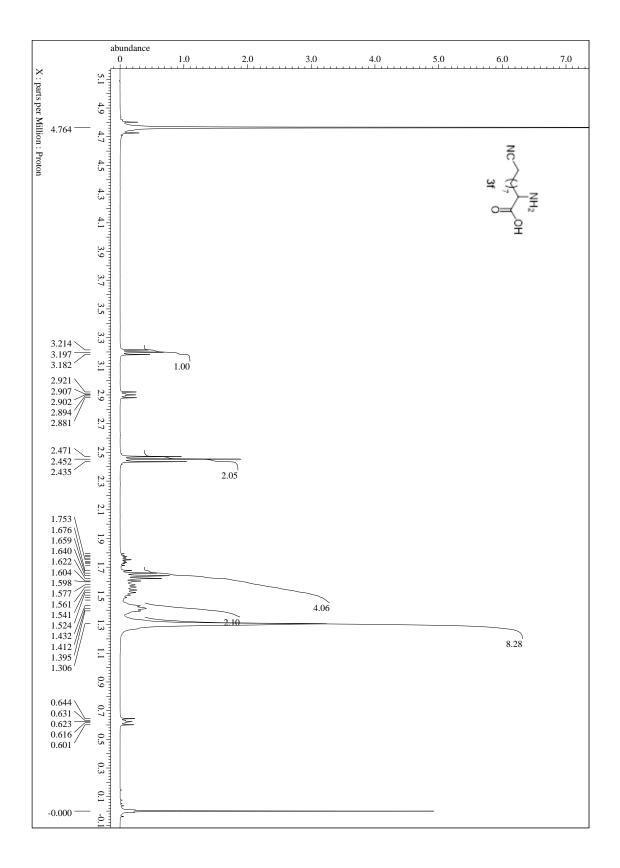


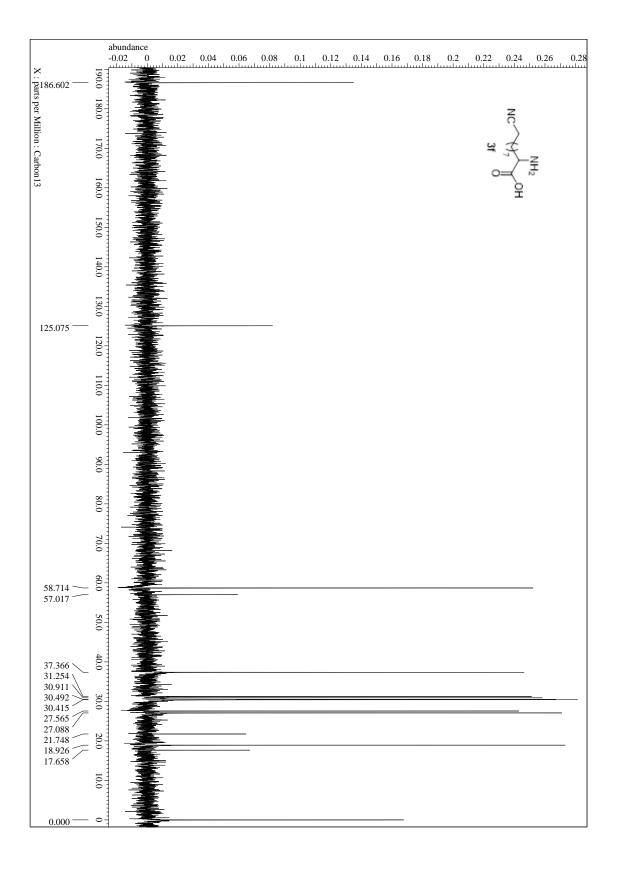


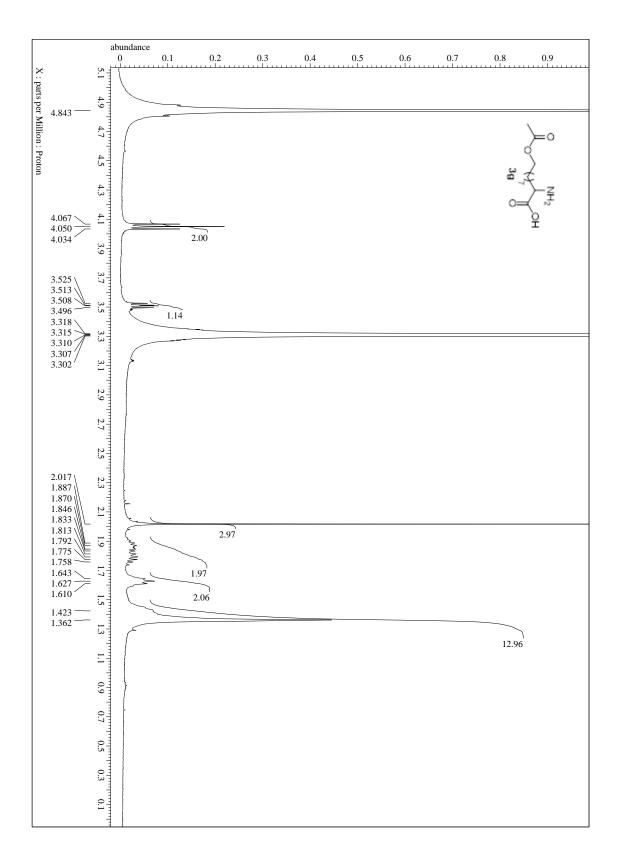











S117

