Catalyst-Free Annulation of 2-Pyridylacetates and Ynals with Molecular Oxygen: an Access to 3-Acylated Indolizines

Zhengwang Chen, ${ }^{* a, b}$ Pei Liang, ${ }^{a}$ Xiaoyue Ma, ${ }^{a}$ Haiqing Luo, ${ }^{\text {a }}$ Guohai Xu, ${ }^{\text {a }}$ Tanggao
Liu, ${ }^{a}$ Xiaowei Wen, ${ }^{\text {a }}$ Jing Zheng, ${ }^{a}$ Hui Ye* ${ }^{\text {b }}$
${ }^{\text {a }}$ Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou, 341000, China.
b Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, China.

Table of contents

Table of contents. S1
Preparation of starting materials: S2
GC-MS spectra of 3 a and $3 \mathrm{a}-\mathrm{O}^{18}$ S4
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra S5
X-Ray Crystallographic Data S59

Preparation of starting materials:

The Route toward Substituted 2-Pyridylacetates:

The Route toward Substituted Aryl Substituted Propiolaldehydes:

2a
Commercially available

$2 e$

2b

2c

2d

$2 f$

$2 g$

2h

2i

2j

2k

21

2m

2n

20

2q

2p

2r
2s

$2 t$

2u

2v

2w
Commercially available

GC－MS spectra of 3a and 3a－O ${ }^{18}$

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 2,2,2-trifluoroethyl 2-(pyridin-2-yl)acetate (1e)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of furan-3-ylmethyl 2-(pyridin-2-yl)acetate (1f)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of hept-1-en-3-yl 2-(pyridin-2-yl)acetate (1h)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of cyclohex-3-en-1-yl 2-(pyridin-2-yl)acetate (1i)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of but-3-yn-1-yl 2-(pyridin-2-yl)acetate (1j)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of hex-3-yn-1-yl 2-(pyridin-2-yl)acetate (1k)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of pent-4-yn-1-yl 2-(pyridin-2-yl)acetate (11)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3-(3,5-difluorophenyl)propiolaldehyde (2m)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3-(3,4-difluorophenyl)propiolaldehyde (2n)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-methylbenzoyl)indolizine-1-carboxylate (3b)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(2-methylbenzoyl)indolizine-1-carboxylate (3d)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(2-ethylbenzoyl)indolizine-1-carboxylate (3e)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-(tert-butyl)benzoyl)indolizine-1-carboxylate (3f)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(3,5-dimethylbenzoyl)indolizine-1-carboxylate
(3g)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl

3-([1,1'-biphenyl]-4-carbonyl)indolizine-1-carboxylate (3h)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(1-naphthoyl)indolizine-1-carboxylate (3i)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-methoxybenzoyl)indolizine-1-carboxylate
(3j)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-fluorobenzoyl)indolizine-1-carboxylate (3k)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(3-fluorobenzoyl)indolizine-1-carboxylate (31)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(3,4-difluorobenzoyl)indolizine-1-carboxylate (3n)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-chlorobenzoyl)indolizine-1-carboxylate (30)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-bromobenzoyl)indolizine-1-carboxylate (3p)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl
3-(3-(trifluoromethyl)benzoyl)indolizine-1-carboxylate (3q)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-acetylbenzoyl)indolizine-1-carboxylate (3r)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl

3-(4-(methoxycarbonyl)benzoyl)indolizine-1-carboxylate (3s)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-cyanobenzoyl)indolizine-1-carboxylate (3t)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-(4-nitrobenzoyl)indolizine-1-carboxylate (3u)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl 3-formylindolizine-1-carboxylate (3w)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of ethyl

3-((trimethylsilyl)carbonyl)indolizine-1-carboxylate (3x)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of methyl 3-benzoylindolizine-1-carboxylate (4a)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of tert-butyl 3-benzoylindolizine-1-carboxylate (4b)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of tert-pentyl 3-benzoylindolizine-1-carboxylate (4c)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 2,2,2-trifluoroethyl 3-benzoylindolizine-1-carboxylate (4d)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of furan-3-ylmethyl 3-benzoylindolizine-1-carboxylate (4e)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of allyl 3-benzoylindolizine-1-carboxylate (4f)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of hept-1-en-3-yl 3-benzoylindolizine-1-carboxylate ($\mathbf{4 g}$)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of cyclohex-3-en-1-ylmethyl 3-benzoylindolizine-1-carboxylate (4h)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of but-3-yn-1-yl 3-benzoylindolizine-1-carboxylate (4i)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of hex-3-yn-1-yl 3-benzoylindolizine-1-carboxylate (4j)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of pent-4-yn-1-yl 3-benzoylindolizine-1-carboxylate (4 k)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of but-3-yn-2-yl 3-benzoylindolizine-1-carboxylate (41)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 2-methylbut-3-yn-2-yl

3-benzoylindolizine-1-carboxylate (4m)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of methyl 3-hexanoylindolizine-1-carboxylate (4n)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of methyl 3-benzoyl-6-bromoindolizine-1-carboxylate (40)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of methyl

6-bromo-3-(3,5-difluorobenzoyl)indolizine-1-carboxylate (4q)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of methyl 3-benzoyl-6-methylindolizine-1-carboxylate (4r)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of methyl

6-methyl-3-(3-(trifluoromethyl)benzoyl)indolizine-1-carboxylate (4t)

X-Ray Crystallographic Data

The ORTEP diagram of $\mathbf{3 r}$ (thermal ellipsoids are shown at 30% probability)

Sample Preparation: A crystalline solid was obtained via slow evaporation of compound $3 \mathbf{r}$ in EA: hexane= 1:4 at room temperature.

Crystal data and structure refinement for compound 3r (CCDC: 1874168)

Table 1 Crystal data and structure refinement for 3r.

Identification code	3 r
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{4}$
Formula weight	335.35
Temperature/K	296.15
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/ $/ \AA$	7.5751(6)
b/Å	15.3923(12)
c/Å	14.2928(13)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.148(8)
$\gamma{ }^{\circ}$	90
Volume/ \AA^{3}	1666.5(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.337
μ / mm^{-1}	0.094
$\mathrm{F}(000)$	704.0
Crystal size/mm ${ }^{3}$	$0.22 \times 0.2 \times 0.18$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	7.548 to 52.744
Index ranges	$-9 \leq \mathrm{h} \leq 9,-19 \leq \mathrm{k} \leq 19,-17 \leq 1 \leq 17$
Reflections collected	13541
Independent reflections	$3407\left[\mathrm{R}_{\text {int }}=0.0293, \mathrm{R}_{\text {sigma }}=0.0275\right]$
Data/restraints/parameters	3407/0/228
Goodness-of-fit on F^{2}	1.046
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0549, \mathrm{wR}_{2}=0.1247$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0733, \mathrm{wR}_{2}=0.1368$
Largest diff. peak/hole / e \AA^{-3}	0.17/-0.24

