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S1. Estimation of sensitivity factor

It is possible to analyze the XPS spectra and determine the Fe:C ratio by using peak area and peak height 

sensitivity factors. However, the peak sensitivity factors vary depending on many parameters such as 

light source, photon energy, and electron analyzer. Therefore, we have used a calibration sample to check 

the sensitivity factors for carbon and iron signals at Matline, ASTRID2 synchrotron. 

Figure S1 (a) Image of the calibration sample. The two small cylinders are cut from rod materials of Fe 

and C used for e-beam evaporators. (b,c) XPS spectra used for sensitivity factor calibration. The Fe3p 

spectrum was acquired with a PE of 150 eV, the C1s spectrum at 380 eV.

The calibration sample is made of two small cylinders cut from rod materials of Fe (99.99%, Goodfellow) 

and C (99.997%, Goodfellow) used for e-beam evaporators. The as-cut cross sections were made as flat 

as possible and the heights and surface areas of the two cylinders were kept the same. They were fixed 

on a piece of plate, which was soldered onto the sample holder (Figure S1a). Cycles of sputtering and 

annealing were used to remove impurities and oxide layer on the surfaces. The purity was checked by 

XPS. The data acquisition parameters such as energy window and step size were kept the same as for the 

actual XPS experiments, and so were the photon energies (150 and 380 eV for Fe and C, respectively). 
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The kinetic energies of the photoelectrons were almost the same for both peaks, as shown in Figure S1b 

and c, indicating that the inelastic mean free paths of the electrons are comparable.

The ratio of the sensitivity factors for Fe and C can be derived from the measured peak areas as:

𝑆𝐹𝑒

𝑆𝐶
 =  

𝐴𝐹𝑒

𝐴𝐶
 = 7.5 ± 0.5 ,

where A is the peak area and S is the sensitivity factor. (Note the different scales in Figure S1b and c.) 

Before integrating the peak areas, linear backgrounds were subtracted in both regions. Therefore, the 

Fe:C ratio in the iron carbide sample can be calculated as:

𝑛𝐶

𝑛𝐹𝑒
 =  

𝐴𝐶,𝑐𝑎𝑟𝑏𝑖𝑑𝑒

𝑆𝐶
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=
𝐴𝐶,𝑐𝑎𝑟𝑏𝑖𝑑𝑒

𝐴𝐹𝑒,𝑐𝑎𝑟𝑏𝑖𝑑𝑒

𝑆𝐹𝑒

𝑆𝐶
 

where A is the integrated peak area for carbide carbon or iron. For the Fe3p peak area integration, a linear 

background and the Au5f peak are subtracted from the Fe3p signal. For the carbide peak area estimation, 

only the carbidic carbon component is used. 

For estimating the C deposition rate, the C coverage is back-calculated by using the sensitivity factor 

ratio and the known Fe coverage. Since the total amount of C should be calculated, the sum of carbidic, 

sp2 and sp3 carbon peak areas are sued for AC. 
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S2. The influence of the Fe films thickness on ethylene decomposition

Figure S2. (a-b) XPS spectra show the C1s signal change after C2H4 exposure to 1 ML and 2 ML Fe 

films supported on Au(111). The gray spectra reflect the state before C2H4 exposure, while the black 

spectra correspond to the state after exposure. After the same dosage of C2H4, only the C1s spectrum for 

the 2 ML Fe/Au(111) film exhibits a significant increase in the intensity, indicating C2H4  decomposition 

occurs on this surface.  (c-d) STM images of Fe films on Au(111) with coverage of 1 ML and 2 ML, 

respectively. The appearance of the third-layer structure is the onset of the phase transformation from 

fcc(111) to bcc(110) according to the literature.1, 2

In order to explore the C2H4 decomposition on Fe/Au(111) films, XPS measurements were performed to 

monitor the C species change in the sample after C2H4 exposure. Figure S2a and b show XPS spectra of 
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the C1s region acquired before (gray) and after (black) C2H4 exposure (3×10-6 mbar, RT, 10 min) of 1 

ML  (S2a) and 2 ML (S2b) Fe/Au(111) films. The small carbon signal from the metallic Fe films before 

C2H4 exposure is due to carbon-containing contaminations under UHV conditions. As shown in Figure 

S2a, C2H4 exposure of 1 ML Fe/Au(111) films causes no significant changes in the C1s signal. In 

contrast, in case of 2 ML Fe/Au(111), the carbon intensity is increased significantly after exposure, 

indicating that C2H4 decomposition occurs on this surface. 

STM measurements were performed in order to correlate the Fe film topography with the C2H4 

decomposition reactivity. As illustrated in Figure S2c and d, the structure changes with increasing 

thickness of the Fe films.  For 1 ML Fe film (Figure S2c), there are mainly two atomic layers of Fe 

involved in the growth, which increases to three at the coverage of 2 ML (Figure S2d). The third layer 

structure indicates a phase transformation from fcc(111) to bcc(110) occurring on Fe/Au(111) films.1, 2 

We therefore correlate the C2H4 decomposition with the emergence of bcc structure in the Fe films.
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Table S1. Literature reports of C1s binding energies for sp3, sp2 and carbidic carbon in iron carbide 

samples.

Reference sp3 (eV) sp2 (eV) Carbide (eV)

3, 4 285 284.3-284.9 283.3

5 - - 282.1

6 285.4 284.2 283.4

7 - - 283.5

8 285.4 284.65 285.37

9, 10 - 284.9 283.4

11 - 284.6 283.5

12 - 284.5 283.2

13, 14 285.1 284.2 283.4

15 - - 282.7
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Figure S3. (a) Large-scale STM image showing the same region with Figure 6b. (b) Additional atom-

resolved STM image shows the top facet of one carbide patch, exhibiting the perturbed (2×2) 

reconstructed structure.

Figure S4. Line profile of the STM image in Figure 6b. The distance between two protrusions along the 

long edge is ~5.7 Å.
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