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S1. Analysis of the conventional (symmetric) Hanle precession measurements 
 

S1.1. Standard model 

To extract the spin transport parameters of the pristine graphene channel and determine the spin 

injection efficiency of the ferromagnetic (FM) electrodes, we have performed conventional 

symmetric Hanle precession experiments in the pristine graphene region. These are performed by 

measuring the nonlocal resistance of the reference graphene lateral spin valve (LSV) while having a 

parallel (  ) or antiparallel (   ) orientation of the FM electrode magnetizations and applying a 

magnetic field in the   direction (  ) (i.e., perpendicular to the easy axis of the FM), as shown in 

Figure S1a for the case of Sample A at 10 K. Finally, the spin transport parameters have been 

obtained from fitting to the following equation
1
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Here,     
       is the product of the injector and detector spin polarization respectively,   is the 

angle between the contact magnetization and the easy axis [see Figure S1b],    
  

 is the square 

resistance of the graphene channel,   
  
 √  

  
  
  

 is the spin relaxation length,   
  

 is the spin 

diffusion coefficient,   
  

 is the spin lifetime,     is the channel width,           is the Larmor 

frequency,     is the Landé factor,    is the Bohr magneton, and   is the reduced Plank constant. 

Finally,            accounts for a small remanescensefrom the magnet and    is the 

background signal. Equation S1 assumes that spin transport is 1D and the contact resistances are 

much higher than the channel spin resistance 
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Figure S1. (a) Conventional Hanle precession data in the parallel and antiparallel contact magnetization configurations 

for sample A at 10 K. (b) Angle between the contact magnetization and the easy axis extracted from the Hanle data in a) 

as described in the text below. (c) Spin signal calculated using        from the Hanle data in (a) with the 

corresponding fit using Eq. S1 and extracted parameters.      is the spin polarization obtained using the model with an 

extra arm described in Section S2 and the fit parameters as inputs. 

 

Since    is applied perpendicular to the easy axis of a FM, it pulls its magnetization by an angle   in 

the field direction
3
. To determine  , we use the fact that the measured nonlocal resistance 

[FigureS1a] does not include only the precessing component described above, but also includes a 

signal which is generated by the spins which are injected parallel to the   direction as the contact 

magnetizations are pulled. This term is proportional to     ( )  and appears in both    and     with 



the same sign. Because the precessing component has opposite sign for    and    ,        is 

proportional to     ( ). To obtain the data plotted in Figure S1b, we have normalized      
     , and taken the arcsine of its square root to obtain   as a function of the magnetic field. 

Finally, to guarantee that the extracted   at      is zero and that it reaches     at high  , we have 

renormalized the result of this operation. At       T, we see a jump in  , which we attribute to a 

switch of one of the magnetizations. To prevent this step from affecting our analysis, we have used 

only the negative   result for the fits, such as the one shown in Figure S1c where the spin signal 

       is fit to Eq. S1. The obtained fit parameters are shown in the blue rows of Table S1 

(sample A) and Table S2 (sample B).  

 

In the case of sample A, the reference graphene LSV has two extra arms (the Hall bar) connected to 

the main channel, which implies that spins are also diffusing towards these arms. To account for the 

effect of the arms on the spin polarization we have assumed that spin propagation is 1D and the arms 

are much longer than the spin relaxation length. As a consequence, the shape of the Hanle curve 

(determined by   
  and   

  ) is not affected within our model by the presence of the extra arms and 

only the spin injection and detection efficiencies have to be adjusted. The spin transport parameters 

extracted from the fit are used as inputs to the three-arm model described in Section S1.2 to 

determine a better estimate of the contact spin polarization, which we call      .  
 

For Sample B, the symmetric Hanle curves were taken in a reference LSV without any cross between 

spin injector and detector, hence,    is extracted directly from the fit of             to Eq. S1. 

 

S1.2. Three-arm model 
The original geometry we want to model for the reference graphene LSV used in Sample A is shown 

in Figure S2a. 

 

 
Figure S2. (a) 1D approximation of the reference device geometry for Sample A. (b) Simulated device geometry. The 

width of the top arm is two times the width of the arms in the device and in (a) and the white numbers correspond to the 

different modelling regions (see discussion below). 

 

However, because we are interested in the spins that diffuse towards the middle arm and the spin 

transport is fully diffusive, the two arms can be simplified down to one with twice the width [see 

Figure S2b]. The most important assumptions here are 1D spin transport and non-invasive contacts. 

The left contact is the injector and the right one the detector. 

 

To calculate the spin signal, one needs to define the spin accumulation, which is a solution of the 

Bloch equations considering a magnetic field applied in the   direction
4
: 

 

  
   

   
   

 
  

  
          



  
   

   

   
 
  

  
         

 

Note that here we have considered that the magnetic field is applied in the   direction for analogy 

with the conventional Hanle precession, but we are applying a magnetic field along  . We have done 

this because the solution for    is the same in both cases for an isotropic system such as pristine 

graphene. The general solution for    for each region can be written as: 

 

  
 
   

 

  
  √      

  

   

 

  
  √      

  

 

   
 
   

 

  
  √      

  

   

 

  
  √      

  

   
  
 

  
  √      

  

   
  
 

  
  √      

  

 

    
 
   

  
 

  
  √      

  

   
  
 

  
  √      

  

 

   
 
   

  
 

  
  √      

  

   
  
 

  
  √      

  

 

 

From the Bloch equations we obtain an expression for   : 

 

    
  
  

 

    

   
 

  

   
   

 

which results, at the different regions, 
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To determine the spin accumulation in the system we need to determine the coefficients    . This 

is done by applying the following boundary conditions. First, we impose the continuity of    and 

  at     (intersection point between regions I and II) and      (intersection point between 

regions II, III, and IV). From these conditions, we obtain 6 equations. Second, we define the spin 

current as   
    

   

    
  
   

 

  
 where   refers to the spin polarization direction of the spin accumulation 

(  or  ).  Next, we impose the continuity of    
  and   

 
 at      and the continuity of   

 and 

discontinuity of   
 

 of     , where   is the injector polarization and    the applied current, at    . 

This gives the 4 equations that we are missing. 

 

Finally, the solution for the spin signal is: 
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In the final solution, both   and   are proportional to    and, hence, the spin signal is proportional to 

          
 .  

 

Here, we use the above equation together with the spin transport parameters in the pristine graphene 

region obtained from the fit to Eq. S1 and the magnitude of the measured spin signal to obtain      , 
that is the average spin polarization of the ferromagnetic contacts.  

 

S2. Analysis of the (antisymmetric) Hanle precession measurements with spin Hall 

detection 
 

 

 
Figure S3. Sketch of the measured geometry with the positive magnetic field and the “up” direction of the magnetization 

indicated with arrows. The green area is covered by a TMD and is where the spin-to-charge conversion takes place. 

 

When a spin current density        enters a region with high spin-orbit coupling, it generates a 

transverse charge current density   
         

      
       via the inverse spin Hall effect, here     

is the spin Hall angle and     the length of the high spin-orbit coupling region (see Figure S3). This 

generates a transverse voltage     

 

   
      

 
  
 

   
 
   
      

  
   

      
   
      

        

   
 

 

where       
      

        is the resistance for the transverse current that determines the 

conversion from an induced current to a voltage. Note that    
      

 is the square resistance of the 

TMD-covered graphene region. Therefore, 

 

    
   
     

      
        

      
    

     
      

   

 

To obtain the spin currents propagating in our device, we assume that it is homogeneous and 

isotropic, and the propagation is 1D. Because the transport properties of the TMD-covered region are 

not the same as those of the pristine graphene region, we will extract effective parameters (  
   

, 

  
   

, and   
   

) from the homogeneous fit. These parameters are an average for both the pristine and 

the TMD-covered graphene regions. 

 



The out-of-plane (  direction) spin accumulation (  ) at a distance   from the spin injector, which 

induced by spin precession around a magnetic field applied in the   direction is written as 
4,5

.  
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Here,    the spin injection efficiency of the injector,    the bias current. The   corresponds to the up 

and down direction of the injector magnetization defined as in Figure S3. 

 

The spin current is defined as: 
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Then the signal induced by this spin current is: 
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However, in our geometry, we have a cross with a width     (Figure S3) that is comparable to the 

spin relaxation length. Therefore,    needs to be replaced by the average spin current   ̅  
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. The result from this operation is: 
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To remove any signal which does not come from the  -component of the injector magnetization in 

our measurement we subtract both injector configurations to  
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where    
  and    

 correspond to the spin Hall component of the nonlocal resistance of the 

graphene/TMD lateral device (Figure S3) while orienting the FM injector along the   and    

direction, respectively, and applying B in the   direction, which leads to antisymmetric Hanle 

precession curves. The measured signal with these injector configurations is called    
  and    

 . Note 

that we have also added the term     ( ) to account for the effect of the magnetic field on the 

magnetization direction of the FM injector. Equation S2 has been used to fit to the antisymmetric 

Hanle precession curves such as the ones shown in Figure S4. From the fit we obtain the effective 
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 and       of the channel, which are averaged over the pristine graphene and TMD-

covered regions. Note that       √     
      

 depends on both the injector spin polarization    and 

the spin Hall angle    
      

. To determine    
      

 we assume that          for Sample A and 

        for sample B obtained from the symmetric Hanle curve (Section S1). The fitted 

parameters are shown in the orange rows of Table S1 (Sample A) and Table S2 (Sample B).  
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Figure S4. (a) Antisymmetric Hanle precession measurements for the two different orientations of the FM injector for 

Sample A at 10 K. Note that we have called    
  and    

 the signals measured with the magnetization of the spin injector 

aligned in the    and    direction respectively. (b)     and its fit to Eq. S2 with the extracted parameters. 

 

S3. Measurement of spin Hall signals obtained with the spin injector placed at the right 

and left side of the Hall cross 
 

Since the spin signal is induced by the spin current, which points in the graphene plane, it should 

change sign when the spin injector is changed from the right to the left side of the Hall cross. Note 

that, if the spin signal would be induced by spin absorption in the TMD, it would not change sign. 

This control experiment has been performed in sample B, where the two measurements shown in 

Figure S5 confirm that the signal is induced by the spin current propagating in the graphene plane. 
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Figure S5. Antisymmetric Hanle curves obtained by subtracting the measurements obtained for both magnetic 

configurations of the FM injector at 10 K in sample B, for the (a) left and (b) right spin injectors. 

 

We see that, as expected, the spin transport parameters (     and     ) extracted from both Hanle 

curves are very similar. However, because the magnitude of the spin signals is different, the spin 

polarizations extracted from both curves show a discrepancy of almost a factor of two. This is caused 

by the fact that, in both cases we are using different spin injectors which have different efficiencies. 



In Table S2, this has consequences on the determination of    
      

. To avoid this discrepancy, we 

rely on the measurements performed using the right injector, in which the spin injector is the same as 

for the reference Hanle curves. 

 

S4. Analysis of the 𝝁 -induced spin-to-charge conversion signal 
 

S4.1. Extraction of the signal 

As explained above, when a magnetic field    is applied perpendicular to the easy axis of a FM 

electrode, its magnetization rotates an angle  in the direction of the field. In our geometry, this 

results in the injection of spins in the direction of the magnetic field independently of the initial 

magnetization direction and, therefore, this component can be extracted calculating      (   
  

   
 )  . The result from this operation is shown in Figure S6 for the case of Sample A at 10 K. 

 

 
Figure S6.   -induced spin-to-charge conversion signal      obtained by averaging the antisymmetric Hanle precession 

curves measured for both magnetic configurations of the FM injector at 10 K for Sample A [Figure S4a]. The magnitude 

of the spin-to-charge conversion signal (     ) is quantified by calculating the zero-field extrapolation using linear 

fittings to the spin signal at high positive and negative fields. 

 

The S-shaped signal saturates at around  240 mT, which is the saturation field for the magnetization 

of the FM injector [see Figure S1b]. This result indicates that the source of this signal depends on the 

  component of the spin accumulation (  ). Because there is a background which has different slope 

for positive and negative magnetic fields, we extrapolate the high   data to      to extract the 

magnitude of this component. As discussed in the main manuscript, this means that it can be caused 

either by the Rashba-Edelstein effect in the graphene layer or the spin Hall effect in the MoS2 

semiconducting channel after spin absorption. 
 

 
Figure S7.    signal at 10 K for Sample B measured with spins injected by a FM electrode placed on (a) the right and 

(b) the left side of the TMD-covered region. 
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We have performed the same operation on the measurements obtained from Sample B and the results 

at 10 K are plotted in Figure S7. In contrast with the left injector, the right one does not show any   -

induced spin-to-charge conversion feature. 

 

S4.2. Quantification of the Rashba-Edelstein effect 

For the Rashba-Edelstein case, a spin accumulation in the x direction (  ) induces a charge current 

density in the y direction   
    

      with an efficiency   that is the conversion efficiency: 
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average spin accumulation at the cross, which is defined as     
       

      
  
   

    
 
  

 

  
   

 where + 

and – correspond to the positive and negative magnetization directions of the spin injector 

corresponding to positive and negative magnetic field respectively. 
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We also want to quantify the Rashba-Edelstein effect using a dimensionless parameter. For this 

purpose, we assume that the spin currents are the source of the transverse charge currents and not the 

spin accumulations. For this, we use the formula derived inRef. 6. 
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Finally, to obtain an estimation for   and    , we assume that the entire observed signal arises from 

Rashba-Edelstein effect, i.e.,           . The extracted parameters from these operations are 

shown in the green rows of Table S1 for Sample A. For Sample B we did only see a clear signal for 

one of the configurations at 10 K. 

 

S4.3. Quantification of the spin Hall effect in MoS2 

Because of the reduced spin lifetime of the MoS2-covered graphene region it is not straightforward to 

determine the spin current which is absorbed by the semiconductor. However, we can estimate an 

upper limit of the signal expected if the spin current diffusing from the graphene channel into the 

MoS2 is converted to a charge current due to the spin Hall effect in the MoS2 channel. 



 
 

 
Figure S8. Sketch of the modeled geometry. The spin injector is grey, the Ti/Au contact is yellow, the graphene channel 

is blue, and the MoS2 is green. The thickness of the graphene is assumed to be zero. 

 

To evaluate the effect of spin absorption in a 1D approach which we can solve analytically, we 

assume that the width of the MoS2 flake is significantly smaller than the spin relaxation length in the 

graphene channel (      
  

). We also ignore the role of the cross and assume that the graphene 

channel is 1D through all its length. With these assumptions, the modeled geometry is shown in 

Figure S8. 

 

To model for this geometry, we break the device into different regions: I. The right side of the spin 

injector. II. From     to     , III. MoS2, from     to        , and IV. Graphene for 

    . We write the spin accumulation in the different parts of the sample as follows: 

 

     
  
 

  
  

 

      

 

  
  

   
  
 

  
  

 

       

 

  
    

   
  

 

  
    

 

      

 

  
  

 
 

where   
     is the spin relaxation length at the MoS2 and we have imposed that   (    )   . 

To obtain the spin accumulation in the system we need to determine the coefficients    . For this 

purpose, we need 6 equations. We obtain three of them from imposing the continuity of     at     

and     . 

 

To obtain the other 3 equations, we need to define the spin currents in the graphene and MoS2 

channels respectively: 

 

  
  
  

   

    
  

   
  

  
 

  
      

      

      

   
    

  
 

 

Here,       is the resistivity of the MoS2 channel, and     is the width of the MoS2 flake in Figure 

S8. By imposing the discontinuity of   
  

 at    , which is of      as discussed in section S2, the 

continuity of   
  

 and   
     at    , and   

    (       )   , that guarantees that there is no spin 

current leaving the MoS2 flake, we obtain the remaining 3 equations. 

 

From the derivation above, we obtain the spin currents and accumulations in the MoS2 channel. 

However, we still need to convert them into voltages to determine the measured signal. A spin 



current density in the MoS2 channel (  
     

  
    

      
) induces a transverse charge current density 

  
  

  
 

        
    

      
    

      
 where    

     is the spin Hall angle of the MoS2.  

 

Because we are measuring the voltage in an open circuit configuration, we use:    
       

     , 

where      is the effective resistance of the MoS2 and graphene. Because the resistance of the MoS2 

is considerably higher than that of the graphene channel, we need to take the effect of shunting by 

the graphene into account to determine     . We assume that the system behaves like if the MoS2 

channel would be connected in parallel with the graphene: 
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Because the spin current is not constant along the MoS2 thickness we replace   
     in the equation 

above by: 
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Using the two equations above, we determine the voltage induced by the spin Hall effect in MoS2, 

which we divide by the current applied to the spin injector to obtain the nonlocal resistance: 
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As explained above, the sign of    
     changes with the magnetization direction. Because our 

definition of the spin-to-charge conversion signal is           
      

 , we define     
     

    
    . The inputs of our model are   

    ,     , and    
     and are unknown to us, while the 

output is     
     and we know its value. To give an estimate for    

    , we assume that   
        

nm, as estimated in Ref.7, we leave       as a free parameter and extract the    
     that gives a 

signal    
          . The results from this model are shown in Figure S9 for sample A at 10 K. 

Because of the effect of shunting and the reduction of the spin currents which get absorbed by the 

MoS2 as       increases,    
     presents a maximum value of      mΩ at             

   Ωm. 

This helps us to give an estimate of the best-case scenario for spin absorption that requires the lowest 

   
     to achieve the measured signal. We have adjusted    

     so that the maximum    
     

corresponds to the measured signal. From this process we conclude that the minimal spin Hall angle 

required to achieve       at 10 K in sample A is 3.3%. To estimate the temperature dependence of 

   
     for sample A, we have performed the same analysis described above assuming that the spin 



relaxation length in MoS2 does not depend on the temperature, which is the case if the Dyakonov-

Perel mechanism is the dominant source of spin relaxation
8
. The results are shown in Table S1. 

 

 
Figure S9. (a) Estimation of the spin signal induced by the spin Hall effect in the MoS2 channel as a function of the 

MoS2 resistivity using the parameters of Sample A at 10 K and by assuming    
         %. (b) Ratio between the spin 

current diffusing into the MoS2 (  
    ) and spin current entering the graphene-MoS2 junction in the model (  

     ). The 

ratio decreases as       increases. (c) Effective resistance of the MoS2 and graphene channel. As      increases,      

increases before saturating when the MoS2 resistance becomes significantly higher than that of the graphene channel. 

 

S5. Analysis of the measurements at different temperatures  
 

S5.1. Sample A 

Unlike the case of 10 K (Fig. 3a of the main text), we only have one magnetic injector configuration 

for the antisymmetric Hanle precession curves (   
 ) measured at 100 K, 200 K, and 300 K (Figure 

4a of the main text). Hence, we cannot quantify the spin Hall angle in graphene for Sample A at 

these temperatures. In contrast, the   -induced spin-to-charge conversion signals can be obtained 

from direct extrapolation of    
 from high fields, as explained in section S3.1. The extracted signal 

      is shown in Table S1. 

 

S5.2. Sample B 

For sample B, we have both magnetic configurations of the antisymmetric Hanle curves (   
  and 

   
 ) at 100, 200 and 300 K and, consequently,         

     
 can be fit to Eq. S2. The extracted 

parameters are shown in Table S2. However, no clear   -induced spin-to-charge conversion signal is 

observed at these temperatures. As an example, the measurements at 300 K are shown in Figure S10. 
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Figure S10. (a) Antisymmetric Hanle precession measurements for the two different orientations of the FM injector for 

sample B at 300 K. (b)      obtained as defined above by subtracting the components shown in (a) and its fit to Eq. S2 

with the extracted parameters. (c)     . In this case       is hard to extract because it is highly sensitive to the   field 

range selected for the extraction. However, it can be estimated to be between 3 and 5 mΩ. 
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S6. Extracted parameters for sample A and B 

 

Table S1. Extracted parameters for sample A.   
  

,   
  

, and      are extracted from fits to the symmetric Hanle 

precession data,   
   

,   
   

, and       are extracted from fits to the antisymmetric Hanle precession data, and       is 

extracted from fits to the S-shaped background of the antisymmetric Hanle precession data.   and     are obtained using 

      and Eqs. S3-S4 with the spin transport parameters extracted from the antisymmetric Hanle precession data. The 

uncertainty ranges here are obtained considering only the uncertainty in      . 
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Table S2. Extracted parameters for sample B. The “Left” and “Right” labels refer to the data obtained with the spin 

injector placed at the left and right sides of the TMD-covered region, respectively.  
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S7. Comparison between spin Hall effect in Pt and in TMD/graphene devices 

 

S7.1. TMD/graphene normalized conversion efficiency 

As shown in Section S2, the signal induced by the spin Hall effect in the case of TMD/graphene 

heterostructures is determined as: 

 

     
    
  

     
      

   
        ̅

  
 

 

We want to determine an efficiency factor which is a trans-resistance defined as follows:     
      

 

        where    is the spin current entering the TMD/graphene heterostructure and      

(   
     

 )   is the transverse voltage output measured as shown in Figure S3. Since the measured 

signal depends on   ̅, the average spin current at the region where the conversion takes place, we 

rewrite the equation above in the following way: 
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The efficiency factor is defined as follows: 
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To obtain     
      

we need to determine the correction factor   ̅   , which can be done by 

considering that the spin current entering the TMD-covered graphene region is:   ( )  

(     
     

   

)   and the average spin current at the region of interest reads: 

 

  ̅  
 

   
∫   ( )  
     

 

 
    
     

∫       
   

  
     

 

 
      

   

     
(      

   

   (     )   
   

) 

 

Now we can obtain the   ̅    factor: 
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which for sample A at 10 K is 0.3. Now we finally write the efficiency factor for the TMD/graphene 

case: 

 

    
      

 
    

      
   
      

  
   

   
(          

   

) 

 

This expression gives a numerical value of     
      

      Ω for sample A at 10 K. Note that, 

because we have measured with magnetic fields applied in the   direction, there is still a correction 

factor required to account for the diffusive broadening of the spin precession, which we have 

estimated to be of about      using Eq. S2. 



 

S7.2. Pt/graphene normalized conversion efficiency 

We would like to compare the expression obtained above for     
      

 with a properly normalized 

efficiency for Pt/graphene devices in which the spin Hall signal is determined by
9
: 
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Therefore, the efficiency factor can be obtained from this relation:  

   
   (

    
           

   

  ̅
  
)        

     
   

 

where,    is the spin current entering the Pt layer,    
   the spin Hall angle,     the resistivity, and     

the width of the Pt wire.       is a parameter that accounts for the parallel conduction channel 

provided by the graphene that can reduce the measured voltage. In the case of graphene, however, 

because its sheet resistance is higher than Pt,         . The   ̅   factor is 
9, 10

: 

 

  ̅
  
 
   
   

           

           
 

 

where    is the thickness of the Pt wire and     its spin diffusion length. Now we can write the 

efficiency for Pt as:  

 

    
     

 
    

           

   

   
   

           

           
 

 

We estimate     
     

      Ω using the following parameters from Ref. 9:    
       ,     

        ,        nm,          nm,         nm.  

 

The conversion efficiencies can now be directly compared by looking at the     
     

 and     
      

 

values. Since     
      

 is         
     

, we conclude that the TMD-covered graphene is 50 times 

more efficient than highly resistive Pt for spin detection despite the fact that the spin Hall angle in Pt 

is an order of magnitude higher than in TMD-covered graphene. Note that, accounting for the spin 

precession used in our measurement leads to,     
      

     
     

   , still a large difference. 

 

S8. Theoretical calculation of spin-to-charge conversion in TMD/graphene 

heterostructures 
 

To obtain a theoretical estimate to the magnitude of SHE and REE signals in our devices, we use a 

simplified model that captures the physics of a monolayer graphene/TMD heterostructure by using 

the following Hamiltonian
11-13

: 

 

           
where 

       (           )      

   (        )     



     (             ) 

 

with   ,    and     the Pauli matrices on the   direction acting on the pseudospin, valley and spin 

degrees of freedom, respectively.    represents the orbital part, which is described by the Dirac’s 

Hamiltonian with Fermi velocity   and a staggered potential with strength  , the latter appearing 

because of the broken sub-lattice symmetry of the TMD.    represents the intrinsic spin-orbit 

coupling of the heterostructure, modelled with a Kane-Mele term with strength   and a valley-

Zeeman coupling characterized by the parameter      both appearing because of the honeycomb 

structure and the broken sub-lattice symmetry. This term is responsible for the SHE, as we will show 

ahead. Finally,    represents the Rashba spin-orbit coupling arising from the interface between 

graphene and the TMD, with strength   . This last term is the source of the REE. In this model we 

are excluding the so-called pseudospin inversion asymmetry terms
13

, because they do not contribute 

to any of the effects of interest at low energy, and we use the tight-binding parameters from Ref. 13. 

 

S8.1. The spin Hall effect 

Despite the presence of the Rashba spin-orbit coupling, the origin of the spin Hall effect was traced 

back to the intrinsic spin-orbit coupling
11

, described in these heterostructures by a valley-Zeeman 

and Kane-Mele spin-orbit coupling, which interacts with the staggered potential for producing a net 

berry phase and, therefore, a finite SHE. For simplicity, we can neglect the Rashba spin-orbit 

coupling, and consider the spin-up and spin-down bands as independent. Moreover, if we also 

neglect intervalley scattering, the Dirac's cone can also be considered as independent, leading then to 

8 almost identical bands described by the dispersion relation 

 

 (     )       √ (   )      
 
, 

 

where            . Each of these bands will contribute the intrinsic spin Hall conductivity, and 

the calculation can be done following Refs. 14, 15, leading to the following result: 
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where   is the Heaviside function. The comparison between this model and the curve simulated by 

solving numerically the Kubo formula for graphene/MoS2 heterostructure is presented in Figure S11, 

where the small difference arises from the difference between the broadening functions used in the 

model (Lorentzian) and in the simulation (Lorentzian-like)
11

. Figure S12a shows the spin Hall 

conductivity over a range of Fermi energies for three different temperatures. At       one can see 

that the maximum of the spin Hall conductivity is achieved at two points at around   eV, changing 

sign when crossing the charge neutrality point (CNP). Therefore, a negative spin Hall angle (as 

found in the main text) would be an indication of the Fermi level being at the valence band of 

graphene but close to the CNP. In addition, the spin Hall conductivity maximum is highly 

susceptible to temperature effects, where we see a linear variation with        at low and high 

temperature (Figure S12b). In this sense, the maximum spin Hall conductivity achieved in this 

system at low temperature is 0.2    . This value is also suppressed by intervalley scattering
16

, so it 

is difficult to establish an exact value, but assuming weak intervalley scattering and using the square 

resistance (   
      

) extracted from sample A, one obtains a conversion efficiency in the range of 

   
      

       , which is consistent with the experimental observation. 

 



 

 
 
Figure S11. Comparison between the simulation of the spin Hall effect for graphene/MoS2 heterostructure and the model 

based on individual spin bands. We have introduced a gaussian broadening of 20 meV to match the intrinsic broadening 

of the Kernel Polynomial Method (KPM) simulations performed at Ref. 11. The small difference is due to the broadening 

which is not energy independent in the KPM method. 

 

 
 
Figure S12. (a) Spin Hall conductivity as a function of Fermi energy for three different temperatures and (b) the 

evolution of the maximum of the spin Hall conductivity computed as a function of temperature, both computed using Eq. 

S5. Both results are obtained at zero gaussian broadening. 

 
S8.2. The Rashba-Edelstein effect and its reciprocal 

The REE is a phenomenon where the combined effect of a momentum dependent spin texture, and 

an external electric field    produces a nonequilibrium spin density  (   ). It is usually described by 

the electrical spin susceptibility    , which under the linear response limit allow for writing the 

following constitute relation 

 

 (   )     (    ̂) ̂
(   ). 

 

The polarization of the spin density is perpendicular to both the external electric field and the out-of-

plane direction and is defined in units of a charge density. The REE is a dissipative effect and, as 

shown by Offidani et al.
17

, for pure Rashba-like systems this implies that the spin susceptibility is 

proportional to the DC conductivity (   ) 

 



   

   
 

 

   
, 

 

where     is a parameter with units of velocity characterizing the spin-to-charge conversion 

efficiency. There are different calculations of this parameter. We have, for instance, the 

phenomenological result of Dyrdal
14

 : 

 
  

   
 
 

 

   

   
 (   )  

 

    
 (   ), with        , 

 

the self-consistent and fully microscopic calculation performed by Offidani et al.
17

 which corrects the 

energy dependences to:  

 
   

   
  (   )     (  ) (   ), with        , 

 

where  (  ) is a dimensionless parameter that depends of the disorder, and the result of Garcia et 

al.
11

, which takes into account all the spin-orbit parameters leading to a higher spin density for high 

energies but to a small       due to the broadening effects present in the system, which will 

increase    close to the CNP. 

Figure S14. Figure of merit        of the Rashba Edelstein effect for graphene/MoS2 heterostructure considering a 

broadening of 5 meV. 

 

Using         as a figure of merit, it is possible to extract a conversion efficiency    by computing 

the transformation from spin density to spin current using Fick's law
1
: 

 

    
  
 

  
 

  
     

 

 

where    and    are the spin diffusion constant and the spin relaxation length of graphene. One 

should keep in mind that in this process there is no electric field affecting the spin current; therefore, 

the charge current density is obtained solely from the spin density. Using    and    obtained from 

sample A, one obtains a conversion efficiency     ~0.1% in the best-case scenario, decreasing down 

to ~0.01% at higher temperatures. One should also keep in mind that there is an additional 

suppression term which appears due to the averaging over the channel width, which will further 

suppress this value.  

 



The REE conversion efficiency    changes sign following the same trend as the spin Hall angle 

   
      

, because both effects originate from the proximity-induced spin-orbit coupling of graphene. 

Therefore, both     and    
      

have the same sign. This is not observed in our experiment, ruling 

out the REE as the origin of the in-plane spin-to-charge conversion signal.  

 

S9. Scanning electron and atomic force microscopy imaging of sample A 

 
After the electrical characterization we imaged our device with scanning electron microscopy 

(SEM), see Figure S15. We extracted the length and width of the graphene channels as well as the 

width of the ferromagnetic electrodes and their distances from these measurements. As the samples 

were in contact with air after the electrical characterization in vacuum, the Co electrodes are oxidized 

in the images.  

 

 
Figure S15. False-colored scanning electron microscopy image of Sample A. The width of the horizontal graphene (in 

blue) channel is 350 nm. The width of the MoS2 flake (in green) and the two vertical graphene channels are 0.9 µm and 

1.2 µm respectively.  

 

 

 
Figure S16. Atomic force microscopy characterization of Sample A. (a) Area scan showing the topography of the device. 

The scale bar is 2 µm long. (b) Line profile taken along the marked line in (a) across the graphene flake, where the 

thickness of the graphene flake is extracted to be roughly 5 nm, equivalent to around ten layers
19

. (c) Line profile taken 

along the marked line in (a) across the MoS2 flake, where the thickness of the MoS2 flake is between 35 and 75 nm. 

 



 After the electrical characterization and SEM imaging we measured the topography of device 

with an atomic force microscope (Agilent 5500) in tapping mode (Figure S16). The main result of 

this measurement is the height profile of the graphene/MoS2 stack, as we extracted all lateral 

distances from the SEM image. The thickness of the graphene flake was determined to be roughly 5 

nm. The MoS2 flake shows a ramp-like shape on top and is between 35 and 75 nm thick.  
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