Divergent Enantioselective Synthesis of (Nor)illudalane Sesquiterpenes via Pd^{0}-Catalyzed Asymmetric C(sp $\left.{ }^{3}\right)-\mathrm{H}$ Activation

Romain Melot, Marcus Craveiro, Thomas Bürgi and Olivier Baudoin*
University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland

E-mail: olivier.baudoin@unibas.ch
General Informations 2
Ligands preparation 3
Optimisation Studies - preliminary screening 4
Optimisation Studies - screening of chiral NHCs 5
Experimental procedures - preparation of model substrates 6
Experimental procedures $-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ arylation with model substrates 12
Experimental procedures - synthesis of russujaponol F, deliquinone and puraquinonic acid 17
Determination of configuration - VCD and NOESY 32
References 42
NMR Spectra and chromatograms 43

General Informations

Techniques:

All reactions involving air-sensitive material were carried out in pre-dried glassware under an argon atmosphere by using Schlenk techniques employing double-line argon-vacuum lines and working in an argon-filled glove box. Analytical thin layer chromatography (TLC) was performed using pre-coated Merck silica gel 60 F254 plates (0.25 mm). Visualization of the developed chromatogram was performed by UV absorbance (254 nm) or TLC stains (KMnO_{4} and Phosphomolybdic acid). Flash chromatography was performed using Silicycle SiliaFlash P60 (230-400 mesh) with the indicated solvent system, using gradients of increasing polarity in most cases.

Chemicals:

Anhydrous solvents were purchased from Acros Organics or Sigma-Aldrich. The solvents were degassed by three cycles of freeze-pump-thaw and storing in single-necked flasks equipped with a JYoung PTFE valve when necessary. Palladium complexes were purchased from Sigma-Aldrich or Strem. All other chemical reagents were purchased from Sigma-Aldrich, Acros Organics, Alfa Aesar Apollo scientific and Fluorochem and used as received without further purification unless otherwise stated.

Instrumentation:

GCMS analyses were performed with a Shimadzu QP2010SB GCMS apparatus on a Rtx ${ }^{\circledR}-5 m s-L o w-$ Bleed column lined with a mass (EI) detection system. HPLC analyses was performed using a Shimadzu Prominence system with SIL-20A auto sample, CTO-20AC column oven, LC-20AD pump system, DGU20A3 degasser and SPD-M20A Diode Array or UV/VIS detector. The following chiral columns from Daicel Chemical Industries were used: OJ-H (Chiralcel ${ }^{\circledR}$), IA (Chiralpak ${ }^{\circledR}$) in $4.6 \times 250 \mathrm{~mm}$ size. Melting points were obtained on a Büchi melting point $\mathrm{M}-565$, and are uncorrected. IR spectra were recorded on an ATR Varian Scimitar 800 and are reported in reciprocal centimeters (cm^{-1}). Nuclear magnetic resonance spectra were recorded on a Bruker Advance $400(400 \mathrm{MHz})$, Advance $500(500 \mathrm{MHz})$ and Advance $600\left(600 \mathrm{MHz}\right.$) in deuterated chloroform (residual peaks ${ }^{1} \mathrm{H} \delta 7.26 \mathrm{ppm},{ }^{13} \mathrm{C} \delta 77.16 \mathrm{ppm}$) unless otherwise noted. ${ }^{19} \mathrm{~F}$ NMR spectra were referenced to external CFCl_{3}. Data are reported in parts per million (ppm) as follows: chemical shift, multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t$, quint $=$ quintuplet, sept $=$ septuplet, $m=$ multiplet and brs = broad singlet), coupling constant in Hz and integration. High resolution mass spectra were recorded by Dr. H. Nadig, Dr. M. Pfeffer and S. Mittelheisser (Department of Chemistry, University of Basel) on a Bruker maXis 4G QTOF ESI mass spectrometer. Optical rotations were measured on a Perkin Elmer 341 Polarimeter in a 1 mL micro cuvette (cell length 100 mm) with NaD-Line ($\lambda=589 \mathrm{~nm}$). The concentration (c) was given in $\mathrm{g} / 100 \mathrm{~mL}$.

Ligands preparation

For C_{2} symetrical Herrmann-Kundig type NHCs:
L^{7} was graciously furnished by Pr. E. P. Kündig, L^{1} and $L^{8}-L^{12}$ were prepared as reported. ${ }^{1}$
For C_{2} symetrical and achiral IBiox-type NHCs:
$L^{2}-L^{3}$ and $L^{13}-L^{15}$ were prepared as reported. ${ }^{2}$
For Binepine ligand:
L^{4} was previously prepared in our group. ${ }^{3}$
For TADDOL phosphoramidite/phosphonite ligands:
L $^{5}-L^{6}$ were previously prepared as reported. ${ }^{4}$

Optimisation Studies - preliminary screening

PCy_{3}

L^{1}

L^{2}

L^{3}

L^{4}

$\mathrm{Ar}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}$
L^{5}

L^{6}

Condition	Ligand	Conversion (\%) ${ }^{[\text {a] }}$	Ratio of 8a (\%) ${ }^{[\text {a] }}$	e.r. (S):(R) ${ }^{[\mathbf{b]}]}$
A	PCy_{3}	100	90	$/$
B	L^{2}	100	95	$/$
B	L^{3}	100	93	$56: 44$
C	L^{4}	92	60	$49: 51$
B	L^{1}	100	100	$66: 34$
D	L^{5}	68	28	$51: 49$
D	L^{6}	61	14	$49: 51$

Table S1. Optimisation Studies - preliminary screening. [a] Based on GC/MS analysis. [b] Determined by HPLC on a chiral stationary phase

Conditions:
A: 7a (0.2 mmol), $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($2.5 \mathrm{~mol} \%$), PCy_{3} ($10 \mathrm{~mol} \%$), $\mathrm{PivOH}\left(30 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv) in xylenes $(2 \mathrm{~mL})$ at $140^{\circ} \mathrm{C}$ for 18 h .

B: 7a (0.2 mmol), $\left[\mathrm{Pd}(\pi-\mathrm{cin}) \mathrm{Cl}_{2}\right.$ ($5 \mathrm{~mol} \%$), $\mathrm{L}^{2}(10 \mathrm{~mol} \%), \mathrm{CsOPiv}\left(1\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.5$ equiv), in mesitylene (2 mL) at $160^{\circ} \mathrm{C}$ for 18 h .

C: 7a (0.2 mmol), $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(2.5 \mathrm{~mol} \%\right.$), L^{4} ($10 \mathrm{~mol} \%$), PivOH ($50 \mathrm{~mol} \%$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 equiv) in xylenes $(2 \mathrm{~mL})$ at $140^{\circ} \mathrm{C}$ for 18 h .

D: 7a (0.2 mmol), Pddba_{2} ($10 \mathrm{~mol} \%$), L^{5} ($20 \mathrm{~mol} \%$), $\mathrm{PivOH}\left(50 \mathrm{~mol} \%\right.$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 equiv) in xylenes (2 mL) at $140^{\circ} \mathrm{C}$ for 18 h .

Optimisation Studies - screening of chiral NHCs

Condition	Ligand	Conversion (\%) ${ }^{\text {[a] }}$	Ratio of $8 \mathrm{~g}(\%)^{[\mathrm{ab}}$	e.r. (S):(R) ${ }^{[b]}$
B	L^{1}	100	100	80:20
B	L^{7}	100	100	20:80
B	L^{8}	100	92	26.5:73.5
B	L^{9}	100	100	17:83
B	L^{10}	100	100	19:81
B	L^{11}	80	76	22.5:77.5
B	L^{12}	42	22	66.5:33.5
B	L^{3}	100	100	66:34
B	L^{13}	100	100	27:73
B	L^{14}	40	11	62:38
B	L^{15}	90	56	61:39

Table S2. Optimisation studies - preliminary screening. [a] Based on GC/MS analysis. [b] Determined by HPLC on a chiral stationary phase

Experimental procedures - preparation of model substrates

Scheme S2: route for preparation of substrates.

3-bromo-2-methylphenol (I):

3-bromo-2-methylphenol is a commercially available compound from different providers but quite expensive, so we modified an existing procedure ${ }^{5}$ to prepare large amount of this simple building block via a Sandmeyer Reaction. In a reactor equipped with a mechanical stirrer and a condenser, freshly distilated 3-bromo-2-methylaniline ($70 \mathrm{~g}, 376 \mathrm{mmol}$) was added to an aqueous 1 M solution of sulfuric acid ($451 \mathrm{~mL}, 451 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under vigorous stirring (formation of a white suspension of anilinium). Then a saturated solution of sodium nitrite ($31.1 \mathrm{~g}, 451 \mathrm{mmol}$) in water was added dropwise at $-5^{\circ} \mathrm{C}$. After stirring at $-5^{\circ} \mathrm{C}$ for 20 min (most of the solid is dissolve at this point), concentrated sulfuric acid ($14 \mathrm{~mL}, 258 \mathrm{mmol}$) was added and the solution was heated at $100^{\circ} \mathrm{C}$ for 1 h . The mixture was then diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried and concentrated to yield a black slurry. The residue was purified by sublimation under vacuum (0.1 mbar), and the obtained orange solid was recrystallize with cyclohexane to yield I as a white crystalline solid ($32 \mathrm{~g}, 171 \mathrm{mmol}, 46 \%$ yield).

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrO}$ Exact Mass: 185.9680
Molecular Weight: 187.0360
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.14$ (dd, $J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (td, $J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.71 (ddd, $J=8.0,1.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (s, 1H), $2.34(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 154.5,127.6,126.2,125.1$, 124.6, 114.2, 15.7

IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3283,1435,1241,998,762$
GCMS (EI): m / z for $\mathrm{C}_{7} \mathrm{H}_{7}{ }^{79} \mathrm{BrO}[\mathrm{M}]^{+\bullet}: 186$
$\mathbf{M p}=96-98^{\circ} \mathrm{C}$
$\mathbf{R f}=0.25$ in a 85:15 mixture of pentane and ethyl acetate

General procedure for preparation of 7a-7d:

O-alkylation:

3-bromo-2-methylphenol (I) was dissolved in DMF (2.5 mL per mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv) was added, the mixture was then stirred during 5 min at room temperature. After this period, alkyl iodide (Mel or ${ }^{i}$ Prl, 5 equiv) was added in one portion and the reaction was stirred at $50^{\circ} \mathrm{C}$ during 2 h . The reaction was then diluted with water, extracted with EtOAc and concentrated to yield the corresponding 2-bromo-6-alkyloxytoluene which was used in the next step without further purification.

Benzylic bromination:

A solution of 2-bromo-6-alkyloxytoluene, N -bromosuccinimide (1.05 equiv) and benzoyl peroxide (4 $\mathrm{mol} \%$) in CCl_{4} (2 mL per mmol) was heated to reflux and stirred overnight. The reaction mixture was then cooled to room temperature and filtered. The filtrate was diluted with DCM and washed successively with 2 M NaOH , water and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the corresponding benzyl bromide which was used in the next step without further purification.

Benzylation of alkyl isobutyrate:

A solution of LDA (1.05 equiv) in THF (2 mL per mmol) was prepared from diisopropylamine (1.05 equiv) and 2.5 M n -BuLi in hexane (1.05 equiv), stirred at $0^{\circ} \mathrm{C}$ during 15 min . To the LDA solution, isopropyl derivative (${ }^{\prime} \mathrm{PrCO}_{2} \mathrm{Me},{ }^{i} \mathrm{PrCO}_{2} \mathrm{tBu}$ or ${ }^{i} \mathrm{PrCN}, 1$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 45 min . Benzyl bromide (IIIa or IIIb, 1 equiv) in THF (1 mL per mmol) was added slowly to the solution always at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h with the ice bath warming to room temperature. Water was then add to the reaction at $0^{\circ} \mathrm{C}$. The mixture was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were washed with brine. The organic layer was dried over MgSO_{4}, filtered and then concentrated under vacuum to give the corresponding crude material, which was purified by column chromatography (Cy/AcOEt: 95/5 to 90/10).
methyl 3-(2-bromo-6-methoxyphenyl)-2,2-dimethylpropanoate (7a):
From IIla and ${ }^{i} \mathrm{PrCO}_{2} \mathrm{Me}$. Obtained as a colourless oil, which crystallize on standing ($21.4 \mathrm{~g}, 71 \mathrm{mmol}$, 75\% over three steps).

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3}$ Exact Mass: $\mathbf{3 0 0 . 0 3 6 1}$
Molecular Weight: 301.1800
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.16(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.3,159.1,128.4,127.4$, 127.3, 125.2, 109.3, 55.6, 51.8, 43.4, 39.3, 25.6 IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2980,1716,1265,1146,1029,771$
HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{79} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 323.0253$, found 323.0251
$\mathrm{Mp}=42-44^{\circ} \mathrm{C}$
$\mathbf{R f}=0.22$ in a 90:10 mixture of pentane and ethyl acetate

methyl 3-(2-bromo-6-isopropoxyphenyl)-2,2-dimethylpropanoate (7b):

From IIIb and ${ }^{\prime} \mathrm{PrCO}_{2}$ Me. Obtained as a colourless liquid ($410 \mathrm{mg}, 1.25 \mathrm{mmol}, 71 \%$ over three steps).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.12(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H})$,

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3}$ Exact Mass: 328.0674
Molecular Weight: $\mathbf{3 2 9 . 2 3 4 0}$ $7.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (sept, $J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.5,157.6,128.3,128.2$, $127.5,124.8,111.6,70.7,52.0,43.8,38.7,25.8,22.1$ IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2977,1729,1444,1258,1139,962$
HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{21}{ }^{79} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 351.0566$, found 351.0566
$\mathbf{R f}=0.40$ in a 90:10 mixture of pentane and ethyl acetate

3-(2-bromo-6-methoxyphenyl)-2,2-dimethylpropanenitrile (7c):

From IIIa and ${ }^{i} \operatorname{PrCN}$. Obtained as a colourless liquid ($494 \mathrm{mg}, 1.84 \mathrm{mmol}, 74 \%$ over three steps).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.19$ (dd, $\left.J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$,

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrNO}$
Exact Mass: 267.0259
Molecular Weight: $\mathbf{2 6 8 . 1 5 4 0}$ $7.10(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (dd, $J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.17 ($\mathrm{s}, 3 \mathrm{H}$), 1.45 ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 159.2,129.3,127.0,125.4$, 125.3, 125.3, 109.8, 55.6, 38.9, 33.9, 27.9

IR (neat): v (cm ${ }^{-1}$) 2977, 1462, 1271, 1033, 774
HRMS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{14}{ }^{79} \mathrm{BrNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 290.0151$, found 290.0149
$\mathbf{R f}=0.27$ in a 90:10 mixture of pentane and ethyl acetate

tert-butyl 3-(2-bromo-6-methoxyphenyl)-2,2-dimethylpropanoate (7d):

From Illa and ${ }^{i} \mathrm{PrCO}_{2}{ }^{t}$ Bu. Obtained as a colourless liquid ($856 \mathrm{mg}, 2.49 \mathrm{mmol}, 71 \%$ over three steps).

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{3}$ Exact Mass: 342.0831 Molecular Weight: $\mathbf{3 4 3 . 2 6 1 0}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.16$ (dd, $\left.J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.03 (t, J = 8.1 Hz, 1H), 6.77 (dd, J = 8.1, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.19 (s, 2H), 1.44 (s, 9H), 1.13 (s, 6H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 177.6,159.3,128.2,127.9$, 127.5, 125.2, 109.4, 79.8, 55.5, 44.3, 37.8, 28.2, 25.7

IR (neat): v (cm ${ }^{-1}$) 2975, 1720, 1461, 1261, 1135, 1035
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23}{ }^{79} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 365.0723$, found 365.0725
$\mathbf{R f}=0.42$ in a 90:10 mixture of pentane and ethyl acetate

3-(2-bromo-6-methoxyphenyl)-2,2-dimethylpropanoic acid (IV):

$7 \mathrm{a}(12.3 \mathrm{~g}, 40.9 \mathrm{mmol})$ was dissolved in a mixture THF (70 mL), $\mathrm{MeOH}(70 \mathrm{~mL})$ and 2 M aqueous LiOH (70 ml). The reaction was then heat at $80^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature, the organic solvents were removed under reduced pressure. The obtained aqueous solution was washed with diethyl ether, acidified to $\mathrm{pH}<0$ and extracted three times with DCM. The combined organic layers were then dried over MgSO 4 , filtered and concentrated under reduced pressure to yield IV (10.7 g, 37.2 mmol, 91% yield) as a yellow solid.

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{3}$ Exact Mass: 286.0205
Molecular Weight: 287.1530
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.17(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.05 (t, J = 8.1 Hz, 1H), 6.77 (dd, J = 8.1, 1.1 Hz, 1H), $3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.24 (s, 2H), 1.23 (s, 6H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 184.6,159.1,128.5,127.3$, 127.0, 125.2, 109.2, 55.0, 43.2, 39.3, 25.3 IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2971, 1687, 1265, 1033, 764
HRMS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{15}{ }^{79} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 309.0097$, found 309.0094
$\mathrm{Mp}=122-124^{\circ} \mathrm{C}$
$\mathbf{R f}=0.26$ in a 70:30 mixture of pentane and ethyl acetate

General procedure for preparation of $7 \mathrm{e}-7 \mathrm{k}$:

IV was dissolved in dry DCM (10 mL per mmol), then oxalyl chloride (1.1 equiv) was added, follow by few drops of DMF to initiate the reaction. After 1 hour of stirring at room temperature, the reaction was cooled to $0^{\circ} \mathrm{C}$ and the amine (free base or salt, 3 equiv) and aqueous 1 M NaOH (10 equiv) were added in one portion. The mixture was vigorously stirred for 16 hours with the ice bath warming to room temperature. The organic layer was then separated, washed with 2 M HCl , dried over MgSO_{4}, filtered and concentrated under reduced pressure. Crude material was then purified by flash column chromatography to yield the corresponding pure amide.

3-(2-bromo-6-methoxyphenyl)-N,N,2,2-tetramethylpropanamide (7e):

From IV and $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}$. Obtained as a colourless oil, which crystallize on standing ($240 \mathrm{mg}, 0.764$ mmol, 97\%).

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{BrNO}_{2}$
Exact Mass: 313.0677 Molecular Weight: $\mathbf{3 1 4 . 2 2 3 0}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.16(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03 (t, J = 8.1 Hz, 1H), 6.77 (dd, J = 8.1, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.25 (s, 3H), 3.10 (brs, 6H), 1.26 (s, 6H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 177.4,159.1,128.4,127.6$, 127.2, 125.3, 109.3, 55.6, 43.8, 38.7, 37.7, 27.0 IR (neat): v (cm$\left.{ }^{-1}\right)$ 2981, 2937, 1619, 1465, 1258, 1030, 776
HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20}{ }^{79} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 336.0570$, found 336.0575
$\mathrm{Mp}=62-64^{\circ} \mathrm{C}$
$\mathbf{R f}=0.22$ in a 50:50 mixture of pentane and ethyl acetate

3-(2-bromo-6-methoxyphenyl)-2,2-dimethyl-1-(piperidin-1-yl)propan-1-one (7f):

From IV and piperidine. Obtained as a colourless oil, which crystallize on standing ($490 \mathrm{mg}, 1.38 \mathrm{mmol}$, 99\%).

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrNO}_{2}$ Exact Mass: 353.0990 Molecular Weight: $\mathbf{3 5 4 . 2 8 8 0}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.16$ (dd, $J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.70-3.65 (m, 4H), 3.24 (s, 2H), 1.71-1.64 (m, 3H), 1.64-1.56 (m, 3H), 1.21 (s, 6H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 176.2,159.2,128.4,127.8$, $127.3,125.3,109.3,55.6,46.6,43.7,37.4,27.0,26.3,25.0$
IR (neat): v $\left(\mathrm{cm}^{-1}\right) 2935,2854,1611,1415,1265,1028,774$
HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{24}{ }^{79} \mathrm{BrNNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 376.0883$, found 376.0883
$\mathrm{Mp}=96-98^{\circ} \mathrm{C}$
$\mathbf{R f}=0.25$ in a 70:30 mixture of pentane and ethyl acetate

3-(2-bromo-6-methoxyphenyl)-2,2-dimethyl-1-morpholinopropan-1-one (7g):

From IV and morpholine. Obtained as a colourless oil, which crystallize on standing ($480 \mathrm{mg}, 1.35$ mmol, 97\%).

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ Exact Mass: 355.0783
Molecular Weight: $\mathbf{3 5 6 . 2 6 0 0}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.17$ (dd, $\left.J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.05(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.77-3.72 (m, 4H), 3.73-3.69 (m, 4H), 3.23 (s, 2H), $1.23(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 176.6,159.0,128.6,127.4$, 127.2, 125.4, 109.4, 67.1, 55.7, 46.2, 43.6, 37.5, 27.0

IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 2946, 2846, 1624, 1269, 1111, 1031, 775
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{22}{ }^{79} \mathrm{BrNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 378.0675$, found 378.0677
$\mathbf{M p}=86-88^{\circ} \mathrm{C}$
$\mathbf{R f}=0.24$ in a 50:50 mixture of pentane and ethyl acetate

methyl (3-(2-bromo-6-methoxyphenyl)-2,2-dimethylpropanoyl)-L-prolinate (7h):

From IV and H-L-Pro-OMe•HCl. Obtained as a wax ($368 \mathrm{mg}, 0.924 \mathrm{mmol}, 89 \%$).

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrNO}_{4}$ Exact Mass: 397.0889 Molecular Weight: 398.2970
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.67$ (m, 2H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, \mathrm{~J}$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 176.4, 173.6, 159.2, 128.4, 127.4, 127.2, $125.3,109.4,61.3,55.5,52.1,48.5,44.0,36.9,28.0,26.4,26.1,25.4$ IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 2948, 1743, 1622, 1397, 1159, 1031
HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{24}{ }^{79} \mathrm{BrNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 420.0781 , found 420.0788
$\mathbf{R f}=0.24$ in a 60:40 mixture of pentane and ethyl acetate
$[\alpha]_{D}{ }^{20}=-44.7^{\circ}\left(c=0.70, \mathrm{CHCl}_{3}\right)$
isopropyl (3-(2-bromo-6-methoxyphenyl)-2,2-dimethylpropanoyl)-L-prolinate (7i) and isopropyl (3-(2-bromo-6-methoxyphenyl)-2,2-dimethylpropanoyl)-D-prolinate (7k):

From IV and H-L-Pro-O'Pr.HCl or H-D-Pro-O'Pr.HCl respectively. Obtained as a colourless oil, which crystallize on standing, $\mathbf{7 i}(698 \mathrm{mg}, 1.64 \mathrm{mmol}, 90 \%), \mathbf{7 k}(279 \mathrm{mg}, 0.655 \mathrm{mmol}, 93 \%)$.

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrNO}_{4}$ Exact Mass: 425.1202 Molecular Weight: 426.3510
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.15(\mathrm{dd}, \mathrm{J}=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{sept}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.27$ ($\mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.19(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ $1.97(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 176.6, 172.4, 159.2, 128.4, 127.3, 127.2, 125.3, 109.4, 68.2, 61.7, 55.5, 48.6, 44.1, 36.9, 28.0, 26.4, 26.1, 25.5, 21.9, 21.8

IR (neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 2975,1742,1627,1401,1177,1035,781$
HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{28}{ }^{79} \mathrm{BrNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 448.1094$, found 448.1097
$\mathrm{Mp}=88-90^{\circ} \mathrm{C}$
$\mathbf{R f}=0.32$ in a $60: 40$ mixture of pentane and ethyl acetate
For $6 \mathrm{e}[\alpha]_{\mathrm{D}}{ }^{23}=-23.7^{\circ}\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right)$
For $6 \mathrm{f}[\alpha]_{\mathrm{D}}{ }^{23}=+22.8^{\circ}\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$
tert-butyl (3-(2-bromo-6-methoxyphenyl)-2,2-dimethyIpropanoyl)-L-prolinate (7j):
From IV and H-L-Pro-OtBu•HCl. Obtained as a wax ($344 \mathrm{mg}, 0.781 \mathrm{mmol}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.16(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$,

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BrNO}_{4}$ Exact Mass: 439.1358
Molecular Weight: $\mathbf{4 4 0 . 3 7 8 0}$ $7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.35(\mathrm{~m}$, 1 H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ ($\mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.08 (m, 1H), 2.08-1.96 (m, 1H), 1.91-1.75 $(\mathrm{m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 176.0, 172.3, 159.2, 128.4, 127.5, 127.3, 125.3, 109.3, 80.7, 62.2, 55.5, 48.5, 44.0, 37.0, 28.1, 28.1, 26.4, 26.3, 25.5

IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2974,1736,1623,1365,1148,1033,772$
HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{30}{ }^{79} \mathrm{BrNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 462.1250$, found 462.1253
$\mathbf{R f}=0.28$ in a $70: 30$ mixture of pentane and ethyl acetate
$[\alpha]_{0}{ }^{23}=-34.6^{\circ}\left(c=2.40, \mathrm{CHCl}_{3}\right)$

Experimental procedures $-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ arylation with model substrates

General procedure:

In an oven dry catalysis tube, substrate (0.2 mmol) was introduced. Then the tube was tranfer in glovebox and $\left[\mathrm{Pd}(\pi-\mathrm{Cin}) \mathrm{Cl}_{2}(5.2 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), \mathrm{L}^{1}(11.8 \mathrm{mg}, 20 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)\right.$, cesium pivalate ($46.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and cesium carbonate ($97.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) were introduced and the tube was close with a septum. Outside of the glovebox, mesitylene (2 mL) was added. The reaction was stirred at room temperature for 10 min , then, under pressure of argon, the septum was rapidely exchange for a screw cap. The tube was then introduced in a $160^{\circ} \mathrm{C}$ preheated aluminium heating block and stirred at this temperature for 18 hours. After this period the reaction was coolded to room temperature, diluted with DCM (1 mL), filtered over a pad of celite (washed three times with 1 mL of DCM). The crude material was analyzed by GC-MS and then concentrated and purified by flash column chromatography to yield the corresponding indane product. Enantiomeric/diastereomeric ratio were then determined by HPLC using a chiral stationary phase.

Racemic materials were obtained following the same procedure, using L^{2} as ligand.

methyl (S)-4-methoxy-2-methyl-2,3-dihydro-1H-indene-2-carboxylate (8a):

From 7a. Obtained as a yellow liquid ($40.5 \mathrm{mg}, 0.184 \mathrm{mmol}, 92 \%$).

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ Exact Mass: 220.1099
Molecular Weight: 220.2680
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.15(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.50$ ($\mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.39(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 178.3, 156.3, 143.3, 128.9, 128.2, 117.1, 108.2, 55.3, 52.2, 49.4, 44.5, 41.0, 25.6 IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 2950, 1730, 1590, 1261, 1075, 766
HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 243.0992$, found 243.0990
$\mathbf{R f}=0.21$ in a 95:5 mixture of pentane and ethyl acetate
HPLC separation: Chiralcel ${ }^{\circledR}$ OJ-H; 99:1 (n-heptane/i-PrOH), $0.8 \mathrm{ml}^{2} \mathrm{~min}^{-1}, 204 \mathrm{~nm}, \operatorname{tr}($ major $)=16.4$ $\mathrm{min}, \operatorname{tr}($ major $)=18.1 \mathrm{~min}, 66: 34$ e.r.

methyl (S)-4-isopropoxy-2-methyl-2,3-dihydro-1H-indene-2-carboxylate (8b):

From $\mathbf{7 b}$. Obtained as a yellow liquid ($46.2 \mathrm{mg}, 0.186 \mathrm{mmol}, 93 \%$).

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ Exact Mass: 248.1412 Molecular Weight: 248.3220
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) \delta 7.11(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51($ sept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ ($\mathrm{d}, \mathrm{J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36 \mathrm{z}(\mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 178.4, 154.8, 143.4, 130.4, 128.0, 117.0, 111.5, 70.4, 52.2, 49.3, 44.5, 41.2, 25.6, 22.4, 22.4

IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2976,1732,1477,1259,1111,766$
HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 271.1305$, found 271.1305
$\mathbf{R f}=0.26$ in a 95:5 mixture of pentane and ethyl acetate
 $\operatorname{tr}($ minor $)=8.8 \mathrm{~min}, 71: 29$ e.r.

tert-butyl (S)-4-methoxy-2-methyl-2,3-dihydro-1H-indene-2-carboxylate (8d):

From 7d. Obtained as a yellow oil mixed with significant amount of protodebrominated byproduct ($12.6 \mathrm{mg}, 0.048 \mathrm{mmol}, 24 \%$). NMR data are given from the racemate.

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ Exact Mass: 262.1569
Molecular Weight: $\mathbf{2 6 2 . 3 4 9 0}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 177.0,156.3,143.6,129.1$, 128.1, 117.2, 108.1, 80.3, 77.4, 77.2, 76.9, 55.3, 50.1, 44.3, 41.0, 28.2, 25.6

IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 2974, 1721, 1260, 1112, 1076, 767
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 285.1461$, found 285.1463
$\mathbf{R f}=0.32$ in a 95:5 mixture of pentane and ethyl acetate
HPLC separation: Chiralcel OJ-H; 99.5:0.5 (n-heptane/i-PrOH), $0.8 \mathrm{ml} . \mathrm{min}^{-1}, 220 \mathrm{~nm}, \operatorname{tr}($ major $)=7.3$ $\mathrm{min}, \operatorname{tr}($ minor $)=8.3 \mathrm{~min}, 58: 42$ e.r.

(S)-4-methoxy-N,N,2-trimethyl-2,3-dihydro-1H-indene-2-carboxamide (8e):

From 7e. Obtained as a wax ($44.3 \mathrm{mg}, 0.19 \mathrm{mmol}, 95 \%$).

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ Exact Mass: 233.1416 Molecular Weight: 233.3110
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.16(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{brs}, 6 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 176.9,156.3,143.1,128.6$, 128.3, 117.2, 108.0, 55.2, 49.5, 45.9, 41.7, 37.9, 26.5

IR (neat): v (cm ${ }^{-1}$) 2935, 1620, 1263, 1075, 766
HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: \mathbf{2 5 6 . 1 3 0 8}$, found 256.1309
$\mathbf{R f}=0.25$ in a 50:50 mixture of pentane and ethyl acetate
HPLC separation: Chiralcel ${ }^{\circledR}$ OJ-H; 95:5 (n-heptane/i-PrOH), $1.0 \mathrm{ml} . \mathrm{min}^{-1}, 204 \mathrm{~nm}, \operatorname{tr}($ minor $)=16.7$ $\mathrm{min}, \operatorname{tr}($ major $)=18.5 \mathrm{~min}, 82: 18$ e.r.

(S)-(4-methoxy-2-methyl-2,3-dihydro-1H-inden-2-yl)(piperidin-1-yl)methanone (8f):

From 7f. Obtained as a wax ($51.9 \mathrm{mg}, 0.19 \mathrm{mmol}, 95 \%$).

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ Exact Mass: 273.1729 Molecular Weight: 273.3760
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.15(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59-3.44(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, \mathrm{~J}=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}$, 4H), 1.35 (s, 3H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 175.5,156.3,143.1,128.6$, $128.2,117.2,108.0,55.2,49.6,46.1,46.0,41.8,27.1,26.2,24.8$
IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2932, 2853, 1623, 1420, 1258, 1076, 1013, 764
HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NNaO}_{2}$ [M+Na] ${ }^{+}$: 296.1621, found 296.1621
$\mathbf{R f}=0.26$ in a 75:25 mixture of pentane and ethyl acetate
HPLC separation: Chiralpak ${ }^{\circledR}$ IA; 95:5 (n-heptane/i-PrOH), $1.0 \mathrm{ml} . \mathrm{min}^{-1}, 205 \mathrm{~nm}, \operatorname{tr}($ major $)=10.6 \mathrm{~min}$, $\operatorname{tr}($ minor $)=11.7 \mathrm{~min}, 85: 15$ e.r.

(S)-(4-methoxy-2-methyl-2,3-dihydro-1H-inden-2-yl)(morpholino)methanone (8g):

From 7 g . Obtained as a wax ($52.3 \mathrm{mg}, 0.19 \mathrm{mmol}, 95 \%$).

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ Exact Mass: 275.1521
Molecular Weight: 275.3480
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.17(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.66(\mathrm{~m}$, 4 H), $3.64-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 175.9,156.3,142.7,128.5$, $128.2,117.2,108.1,67.0,55.2,49.2,46.0,45.4,41.8,27.2$ IR (neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$ 2961, 2926, 2852, 1626, 1416, 1264, 1113, 765
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 298.1414$, found 298.1417
$\mathbf{R f}=0.25$ in a 50:50 mixture of pentane and ethyl acetate
HPLC separation: Chiralpak ${ }^{\circledR}$ IA; 95:5 (n -heptane/i-PrOH), $1.0 \mathrm{ml} \cdot \mathrm{min}^{-1}, 205 \mathrm{~nm}, \operatorname{tr}($ major $)=14.5 \mathrm{~min}$, $\operatorname{tr}($ minor $)=15.6 \mathrm{~min}, 82: 18$ e.r.

methyl ((S)-4-methoxy-2-methyl-2,3-dihydro-1H-indene-2-carbonyl)-L-prolinate (8h):

From 7h. Obtained as a wax ($52.1 \mathrm{mg}, 0.164 \mathrm{mmol}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.15(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$,

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$ Exact Mass: 317.1627
Molecular Weight: 317.3850 $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38 (d, J = $16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 ($\mathrm{d}, \mathrm{J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 ($\mathrm{d}, \mathrm{J}=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 2 \mathrm{H})$, 1.36 (s, 3H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 176.1,173.4,156.4,143.1$, $128.6,128.2,117.2,108.1,60.6,55.3,52.2,49.6,47.8,44.8,40.7$, 28.3, 25.9, 25.4

IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2953, 1743, 1623, 1401, 1264, 1173, 1075, 766
HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 340.1519$, found 340.1520
$\mathbf{R f}=0.25$ in a 60:40 mixture of pentane and ethyl acetate
HPLC separation: with L^{2} Chiralpak $^{\circledR}$ IA; 95:5 (n -heptane/i-PrOH), $1.0 \mathrm{ml} . \mathrm{min}^{-1}, 205 \mathrm{~nm}, \operatorname{tr}$ (major) $=$ $22.2 \mathrm{~min}, \operatorname{tr}$ (minor) $=25.8 \mathrm{~min}, 64: 36$ e.r.
 $=25.9 \mathrm{~min}, 83: 17$ e.r.

isopropyl ((S)-4-methoxy-2-methyl-2,3-dihydro-1H-indene-2-carbonyl)-L-prolinate (8i):

From 7i. Obtained as a wax ($56.7 \mathrm{mg}, 0.164 \mathrm{mmol}, 82 \%$).

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$,
$J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{hept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.49(\mathrm{dd}, J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~d}$,
$J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.86(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.99-$
$1.83(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}$,
$3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 175.9,172.3,156.4,143.2,128.6,128.2,117.2,108.1,68.3,61.0$, 55.3, 49.7, 47.8, 44.7, 40.7, 28.3, 25.9, 25.4, 21.9, 21.8

IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 2977, 1735, 1625, 1401, 1264, 1185, 1107, 1076, 767
HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 368.1832$, found 368.1834
$\mathbf{R f}=0.27$ in a 70:30 mixture of pentane and ethyl acetate
HPLC separation: with L^{2} Chiralpak $^{\circledR}$ IA; 95:5 (n -heptane/i-PrOH), $1.0 \mathrm{ml} \cdot \mathrm{min}^{-1}, 205 \mathrm{~nm}$, tr(major) $=$ $14.8 \mathrm{~min}, \operatorname{tr}($ minor $)=18.3 \mathrm{~min}, 66: 34$ e.r.
 $=18.3 \mathrm{~min}, 87: 13$ e.r.

tert-butyl ((S)-4-methoxy-2-methyl-2,3-dihydro-1H-indene-2-carbonyl)-L-prolinate (8j):

From 7j. Obtained as a wax ($60.4 \mathrm{mg}, 0.168 \mathrm{mmol}, 84 \%$).

Description of major diastereoisomer:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.14(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-$ $2.09(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.35$ (s, 3H)
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 175.7,172.0,156.4,143.2,128.7,128.1,117.2,108.1,80.9,61.5$, 55.3, 49.7, 47.7, 44.8, 40.7, 28.3, 28.1, 25.9, 25.4

IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2973, 1735, 1625, 1151, 1076, 766
HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 382.1989$, found 382.1988
$\mathbf{R f}=0.33$ in a 70:30 mixture of pentane and ethyl acetate
HPLC separation: with L² Chiralpak ${ }^{\circledR}$ IA; 95:5 (n -heptane/i-PrOH), $1.0 \mathrm{ml} . \mathrm{min}^{-1}, 205 \mathrm{~nm}, \operatorname{tr}($ major $)=$ $11.0 \mathrm{~min}, \operatorname{tr}$ (minor) $=14.6 \mathrm{~min}, 62: 38$ e.r.
With L' ${ }^{1}$ Chiralpak ${ }^{\circledR}$ IA; 95:5 (n-heptane/i-PrOH), $1.0 \mathrm{ml}^{\mathrm{m}} \mathrm{min}^{-1}, 205 \mathrm{~nm}, \operatorname{tr}$ (major) $=10.8 \mathrm{~min}, \operatorname{tr}$ (minor) $=14.6 \mathrm{~min}, 83: 17$ e.r.

isopropyl ((S)-4-methoxy-2-methyl-2,3-dihydro-1H-indene-2-carbonyl)-D-prolinate (8k):

From 7k. Obtained as a wax ($56.0 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%$).

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{\mathbf{2 7}} \mathrm{NO}_{4}$ Exact Mass: $\mathbf{3 4 5 . 1 9 4 0}$ Molecular Weight: 345.4390
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.15(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (hept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.49 (dd, J = 8.6, 4.8 Hz, 1H), 3.81 (s, 3H), 3.76-3.60 (m, 2H), 3.61 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $1.83(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}$, 3H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 175.9,172.2,156.3,143.2,128.5,128.2,117.2,108.0,68.3,60.9$, 55.2, 49.9, 47.8, 45.0, 40.3, 28.3, 25.8, 25.1, 21.9, 21.8

IR (neat): v $\left(\mathrm{cm}^{-1}\right) 2977,1735,1625,1401,1264,1185,1107,1076,767$
HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 368.1836$, found 368.1834
$\mathbf{R f}=0.27$ in a 70:30 mixture of pentane and ethyl acetate
HPLC separation: with L^{2} Chiralpak $^{\circledR}$ IA; 95:5 (n -heptane/i-PrOH), $1.0 \mathrm{ml} . \mathrm{min}^{-1}, 205 \mathrm{~nm}, \operatorname{tr}$ (minor) $=$ $14.6 \mathrm{~min}, \operatorname{tr}$ (major) $=16.0 \mathrm{~min}, 36: 64$ e.r.
With L^{1} Chiralpak ${ }^{\circledR}$ IA; 95:5 (n-heptane/i-PrOH), $1.0 \mathrm{ml}_{\mathrm{min}}{ }^{-1}, 205 \mathrm{~nm}, \operatorname{tr}$ (major) $=14.6 \mathrm{~min}, \operatorname{tr}$ (minor) $=16.6 \mathrm{~min}, 63: 37$ e.r.

Experimental procedures - synthesis of russujaponol F, deliquinone and puraquinonic

 acid

10

6a'
6a

Scheme S2: Route for synthesis of racemic and enantioenriched russujaponol F, deliquinone and puraquinonic acid.

2,4,5-tribromo-3,6-dimethylphenol (9a):

A modification of the procedure of Gould ${ }^{6}$ was used. Aluminium ($4.01 \mathrm{~g}, 0.15 \mathrm{~mol}, 0.45$ equiv) was cautiously added in small portions to bromine ($100 \mathrm{~mL}, 1.94 \mathrm{~mol}, 5.8$ equiv) cooled to $0^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min . A solution of 2,5 -dimethylphenol (9) ($40.3 \mathrm{~g}, 330 \mathrm{mmol}$) in DCM (200 mL) was added over 2 h , and the mixture was stirred for additional 2 h at $0^{\circ} \mathrm{C}$ (Caution! a copius amount of HBr is evolved in this reaction which can be trapped by a water trap connected to an aqueous sodium carbonate scrubber). The reaction was then diluted at $0^{\circ} \mathrm{C}$ with DCM (200 mL) and water (200 mL). Then 5% aqueous NaHSO_{3} was added until the colour of bromine disappear. The phases were separated and the aqueous layer was extracted twice with DCM, the combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure to yield 2,4,5-tribromo-3,6dimethylphenol ($115 \mathrm{~g}, 320 \mathrm{mmol}$) as a white solid which was used in the next step without futher purification. Spectroscopic data are consistent with those previously reported. ${ }^{6}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}$ Exact Mass: $\mathbf{3 5 5 . 8 0 4 7}$ Molecular Weight: $\mathbf{3 5 8 . 8 5 5 0}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 5.83(\mathrm{~s}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}$, 3H)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 149.9, $136.2,128.2,125.3$, 118.4, 112.7, 26.5, 19.1

IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3491,1365,1444,1032,654$
HRMS (ESI): Calcd for $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{79} \mathrm{Br}_{3} \mathrm{O}$ [M-H]: 354.7974 , found 354.7976 Mp $=179-182^{\circ} \mathrm{C}$ $\mathbf{R f}=0.39$ in a 90:10 mixture of pentane and ethyl acetate

3-bromo-2,5-dimethylphenol (9b):

A modification of the procedure of Gould ${ }^{6}$ was used. A suspension of the 9 a ($115 \mathrm{~g}, 320 \mathrm{mmol}$) in aqueous $\mathrm{HI}(57 \%, 250 \mathrm{~mL})$ was heated at reflux under argon for 16 h and cooled. TBME (500 mL) was added, and at $0^{\circ} \mathrm{C}$ under stirring, $\mathrm{NaHSO}_{3}(40 \%, 900 \mathrm{~mL})$ was added dropwise. The layers were separated and the aqueous layer was extracted twice with TBME (300 mL). The combined organic phases were dried over MgSO_{4}, filtered, and concentrated under reduced pressure to yield $\mathbf{9 b}$ (54.7 g , $272 \mathrm{mmol})$ nearly pure as a light brown solid which was used in the next step without futher purification. Spectroscopic data are consistent with those previously reported. ${ }^{6}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}$ Exact Mass: 199.9837 Molecular Weight: 201.0630
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}$, 1H), 2.29 ($\mathrm{s}, 3 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 154.1, $137.8,125.8,125.7$, 121.3, 115.1, 20.78, 15.3

IR (neat): v $\left(\mathrm{cm}^{-1}\right) 3306,2921,1399,1272,1124,1007,814$
HRMS (ESI): Calcd for $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{79} \mathrm{BrO}[\mathrm{M}-\mathrm{H}]:$: 198.9764, found 198.9765
$\mathrm{Mp}=85-88^{\circ} \mathrm{C}$
$\mathbf{R f}=0.29$ in a 85:15 mixture of pentane and ethyl acetate

1-bromo-3-methoxy-2,5-dimethylbenzene (10):

9b ($54.4 \mathrm{~g}, 271 \mathrm{mmol}$) was dissolved in acetone (500 mL), then potassium carbonate ($56.0 \mathrm{~g}, 405 \mathrm{mmol}$, 1.5 equiv) and methyl iodide ($51.0 \mathrm{~mL}, 115 \mathrm{~g}, 810 \mathrm{mmol}, 3.0$ equiv) were added. The resulting dark brown mixture was stirred under reflux for 24 h , during this period, after 12 h , another equivalent of methyl iodide ($16.0 \mathrm{~mL}, 270 \mathrm{mmol}, 1.0$ equiv) was added. The dark brown suspension was concentrated carefully under reduced pressure. The residue was diluted with diethyl ether (700 mL) and water (500 mL) and the layers were separated. The aqueous phase was extracted twice with diethyl ether $(200 \mathrm{~mL})$. The combined organic phases were washed twice with water $(200 \mathrm{~mL})$, then with brine (100 mL), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude material was obtained as a brown liquid which was distilled under reduced pressure to give $\mathbf{1 0}$ as a colorless liquid ($53.47 \mathrm{~g}, 249 \mathrm{mmol}, 76 \%$ over 3 steps). Spectroscopic data are consistent with those previously reported. ${ }^{6}$

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}$ Exact Mass: 213.9993 Molecular Weight: 215.0900

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 158.2,137.4,125.6,125.0$, 123.8, 110.4, 55.9, 21.3, 15.4
IR (neat): v (cm^{-1}) 2925, 1264, 1144, 1046, 828
GCMS (EI): m / z for $\mathrm{C}_{9} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}[\mathrm{M}]^{+\bullet}: 214$
$\mathrm{Bp}=54-59^{\circ} \mathrm{C}$ at 0.1 mbar
$\mathbf{R f}=0.53$ in a 95:5 mixture of pentane and ethyl acetate

methyl 3-(2-bromo-6-methoxy-4-methylphenyl)-2,2-dimethylpropanoate (6a):

10 ($3.50 \mathrm{~g}, 16.3 \mathrm{mmol}$) was disolved in tetrachloromethane (20 mL) and N -bromosuccinimide (3.77 g , $21.2 \mathrm{mmol}, 1.32$ equiv) was added followed by AIBN ($321 \mathrm{mg}, 1.86 \mathrm{mmol}, 12 \mathrm{~mol} \%$). The resulting light yellow suspension was stirred under refluxed overnight. The reaction mixture was cooled in an ice bath, filtered and washed with a minimal amount of cold DCM. The filtrate was concentrated under reduced pressure to give an orange oil which was used without futher purification.
A solution of LDA ($25.3 \mathrm{mmol}, 1.55$ equiv) in THF (25 mL) was prepared from freshly distillated diisopropylamine ($25.3 \mathrm{mmol}, 1.55$ equiv) and 2.5 M (titrated) n-BuLi in hexane ($10.1 \mathrm{~mL}, 25.3 \mathrm{mmol}$, 1.55 equiv), mixed for 15 min at $0^{\circ} \mathrm{C}$. To the LDA solution, methyl isobutyrate ($24.5 \mathrm{mmol}, 1.5$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min . Freshly prepared crude 3-Bromo-2- bromomethyl-5-methyl-methoxybenzene from the previous step was diluted in THF (16 mL) and added slowly to the LDA solution at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature and stirred for 16 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ with water (30 mL). The mixture was extracted three times with diethyl ether (30 mL), the combined organic layers were washed with brine, dried over MgSO_{4}, filtered and then concentrated in vacuo to give the crude ester. The crude materail was purified by flash column chromatography to yield $\mathbf{6 a}$ as a colorless oil, which crystallize on standing ($3.85 \mathrm{~g}, 12.2 \mathrm{mmol}, 75 \%$ yield).

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{3}$ Exact Mass: 314.0518
Molecular Weight: 315.2070
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.66$ ($\mathrm{s}, 3 \mathrm{H}$), 3.13 ($\mathrm{s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.4,158.8,138.6,126.9$, $125.6,124.2,110.4,55.5,51.8,43.4,39.0,25.6,21.3$
IR (neat): v $\left(\mathrm{cm}^{-1}\right) 2968,1719,1266,1148,1042,822$
HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20}{ }^{79} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 337.0410$, found 337.0413
$\mathbf{M p}=63-65^{\circ} \mathrm{C}$
$\mathbf{R f}=0.26$ in a 90:10 mixture of pentane and ethyl acetate

methyl 4-methoxy-2,6-dimethyl-2,3-dihydro-1H-indene-2-carboxylate (11'):

In an oven dry catalysis tube, 6 a ($506 \mathrm{mg}, 1.15 \mathrm{mmol}$) was introduced. Then the tube was tranfer in glovebox and $[\mathrm{Pd}(\pi-\mathrm{cin}) \mathrm{Cl}]_{2}(29.8 \mathrm{mg}, 57.5 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), \mathrm{L}^{2}(67.7 \mathrm{mg}, 115 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$, cesium pivalate ($269 \mathrm{mg}, 1.15 \mathrm{mmol}, 1$ equiv) and cesium carbonate ($562 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.5$ equiv) were introduced and the tube was close with a septum. Outside of the glovebox, mesitylene (6 mL) was added. The reaction was stirred at room temperature for 10 min , then, under pressure of argon, the septum was rapidely exchange for a screw cap. The tube was then introduced in a $160^{\circ} \mathrm{C}$ preheated aluminium heating block and stirred at this temperature for 18 hours. After this period the reaction was coolded to room temperature, diluted with $\operatorname{DCM}(6 \mathrm{~mL})$, filtered over a pad of celite (washed three times with 6 mL of DCM). The crude material was analyzed by GC-MS, then concentrated and purified by flash column chromatography to yield $\mathbf{1 1}^{\prime}$ as a yellow liquid ($361 \mathrm{mg}, 1.00 \mathrm{mmol}, 87 \%$).

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ Exact Mass: 234.1256
Molecular Weight: 234.2950
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $7 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 3 \mathrm{H})$, $2.79(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 8 \mathrm{H}), 1.36$ ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.4,156.0,143.3,138.3$, $125.9,117.7,109.4,77.4,77.2,76.9,55.3,52.2,49.5,44.4,40.8$, 25.6, 21.8

IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2950, 2843, 1730, 1593, 1461, 1317, 1199, 1111, 1083, 829
HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 257.1154$, found 257.1148
$\mathbf{R f}=0.38$ in a 95:5 mixture of pentane and ethyl acetate

3-(2-bromo-6-methoxy-4-methylphenyl)-2,2-dimethylpropanoic acid (6a'):

6 ($3.5 \mathrm{~g}, 11.1 \mathrm{mmol}$) was dissolved in a mixture THF (20 mL), $\mathrm{MeOH}(20 \mathrm{~mL})$ and 2 M aqueous $\mathrm{LiOH}(20$ $\mathrm{ml})$. The reaction was then heat at $80^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature, the organic solvents were removed under reduced pressure. The obtained aqueous solution was washed with diethyl ether, acidified to $\mathrm{pH}<0$ and extracted three times with DCM. The combined organic layers were then dry over MgSO_{4}, filtered and concentrated under reduced pressure to yield $\mathbf{6 a}$ ' as a yellow solid, which was engaged in the next step without further purifications.

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3}$ Exact Mass: $\mathbf{3 0 0 . 0 3 6 1}$
Molecular Weight: 301.1800
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 184.9,158.8,138.7,126.9,125.6$, 123.8, 110.4, 54.9, 43.2, 39.1, 25.2, 21.3

IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 2974, 2939, 1691, 1271, 1159, 1045, 830
HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{79} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 323.0253$, found 323.0259
$\mathbf{M p}=100-103^{\circ} \mathrm{C}$
$\mathbf{R f}=0.30$ in a 70:30 mixture of pentane and ethyl acetate

isopropyl (3-(2-bromo-6-methoxy-4-methylphenyl)-2,2-dimethylpropanoyl)-L-prolinate (6b):

6a' was dissolved in dry DCM (110 mL), and then oxalyl chloride (1.1 equiv) was added, follow by few drops of DMF to initiate the reaction. After 1 hour of stirring at room temperature, the reaction was cooled to $0^{\circ} \mathrm{C}$ and H -L-Pro- $\mathrm{O}^{\prime} \mathrm{Pr} \cdot \mathrm{HCl}(6.45 \mathrm{~g}, 33.3 \mathrm{mmol}, 3$ equiv) and 1 M aqueous $\mathrm{NaOH}(110 \mathrm{~mL}, 110$ $\mathrm{mmol}, 10$ equiv) were added in one portion. The mixture was vigorously stirred for 16 hours with the ice bath warming to room temperature. The organic layer was then separated, washed with 2 M HCl , dried over MgSO_{4}, filtered and concentrated under reduced pressure. Crude material was then purified by flash column chromatography to yield $\mathbf{6 b}$ as a colourless wax, which crystallize on standing (4.25 g , 9.66 mmol 87\%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.02$

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BrNO}_{4}$ Exact Mass: 439.1358
Molecular Weight: $\mathbf{4 4 0 . 3 7 8 0}$ (sept, J = 6.3 Hz, 1H), 4.51-4.42 (m, 1H), 3.87-3.67 (m, 2H), 3.73 (s, $3 \mathrm{H}), 3.21(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$, 2.20-2.09 (m, 1H), 2.09-1.97 (m, 1H), 1.95-1.76 (m, 2H), $1.29(\mathrm{~s}, 3 \mathrm{H})$, $1.25(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 176.4,172.5,158.9,138.6$, 126.9, 125.7, 124.2, 110.5, 68.1, 61.6, 55.5, 48.5, 44.1, 36.5, 28.0, 26.4, 26.0, 25.4, 21.9, 21.8, 21.2

IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2977, 2932, 1741, 1615, 1400, 1161, 1040, 833
HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{30}{ }^{79} \mathrm{BrNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 462.1250$, found 462.1257
$\mathrm{Mp}=75-79^{\circ} \mathrm{C}$
$\mathbf{R f}=0.24$ in a 70:30 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{23}=-39.4^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$

isopropyl ((S)-4-methoxy-2,6-dimethyl-2,3-dihydro-1H-indene-2-carbonyl)-L-prolinate (11):

In an oven dry catalysis tube, $\mathbf{6 b}$ ($506 \mathrm{mg}, 1.15 \mathrm{mmol}$) was introduced. Then the tube was tranfer in glovebox and $[\mathrm{Pd}(\pi-\mathrm{cin}) \mathrm{Cl}]_{2}(29.8 \mathrm{mg}, 57.5 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), \mathrm{L}^{1}(67.7 \mathrm{mg}, 115 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$, cesium pivalate ($269 \mathrm{mg}, 1.15 \mathrm{mmol}, 1$ equiv) and cesium carbonate ($562 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.5$ equiv) were introduced and the tube was close with a septum. Outside of the glovebox, mesitilene (6 mL) was added. The reaction was stirred at room temperature for 10 min , then, under pressure of argon, the septum was rapidely exchange for a screw cap. The tube was then introduced in a $160^{\circ} \mathrm{C}$ preheated aluminium heating block and stirred at this temperature for 18 hours. After this period the reaction was coolded to room temperature, diluted with DCM (6 mL), filtered over a pad of celite (washed three times with 6 mL of DCM). The crude material was analyzed by GC-MS, then concentrated and purified by flash column chromatography to yield 11 as a wax ($361 \mathrm{mg}, 1.00 \mathrm{mmol}, 87 \%$).

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{\mathbf{2 9}} \mathrm{NO}_{4}$ Exact Mass: 359.2097 Molecular Weight: $\mathbf{3 5 9 . 4 6 6 0}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.02$ (sept, J = 6.2 Hz, 1H), 4.48 (dd, J = 8.6, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78-$ $3.59(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (d, J=16.2 Hz, 1H), $2.80(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 175.9,172.2,156.1,143.1$, $138.2,125.6,117.7,109.2,68.2,60.9,55.2,49.7,47.7,44.7,40.4$, 28.3, 25.9, 25.4, 21.9, 21.8, 21.8

IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2976,1736,1626,1400,1185,1108,1085,830$
HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 382.1989$, found 382.1994
$\mathbf{R f}=0.29$ in a 70:30 mixture of pentane and ethyl acetate
HPLC separation: with L^{2} Chiralpak $^{\circledR}$ IA; 95:5 (n -heptane/i-PrOH), $1.0 \mathrm{ml} \cdot \mathrm{min}^{-1}, 205 \mathrm{~nm}$, tr(major) $=$ $12.8 \mathrm{~min}, \operatorname{tr}($ minor $)=22.2 \mathrm{~min}, 66: 34$ e.r.
With L^{1} Chiralpak ${ }^{\circledR}$ IA; 95:5 (n-heptane/i-PrOH), $1.0 \mathrm{ml}^{2} \mathrm{~min}^{-1}, 205 \mathrm{~nm}, \operatorname{tr}$ (major) $=12.8 \mathrm{~min}, \operatorname{tr}$ (minor) $=21.7 \mathrm{~min}, 85: 15$ e.r.

(S)-4-hydroxy-2,6-dimethyl-2,3-dihydro-1H-indene-2-carboxylic acid (12):

To 11 ($931 \mathrm{mg}, 2.59 \mathrm{mmol}$) was added glacial acetic acid (8 mL) and 48% aqueous hydrobromic acid $(40 \mathrm{~mL})$. The reaction mixture was refluxed for 2 hours. After this period, the reaction was diluted with water (50 mL) and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Two portions of toluene (10 mL) were added and evaporated to remove the last traces of AcOH . The crude material was purified by flash chromatography using cyclohexane/EtOAc (6:4) affording 12 ($491 \mathrm{mg}, 2.38 \mathrm{mmol}, 92 \%$) as a light yellow solid.
Then the product was enantioenriched by recrystallization as follow: the purified product was solubilized under heating in a mixture of CHCl_{3} and cyclohexane ($3: 1$) (proportion $40 \mathrm{mg} / \mathrm{mL}$). The solution was then stored at room temperature for 4 days for crystallization. After separation, nearly racemic crystals ($187 \mathrm{mg}, 0.908 \mathrm{mmol}, 35 \%$) and concentrated enantioenriched mother liquor (304 $\mathrm{mg}, 1.47 \mathrm{mmol}, 57 \%)$ were engaged in the next step to measure the enantiomeric ratio by HPLC using a chiral stationary phase.
Racemic material was prepared using the same procedure from racemic 11^{\prime} ($890 \mathrm{mg}, 3.80 \mathrm{mmol}$), glacial acetic acid (12 mL) and 48% aqueous hydrobromic acid (58 mL) to yield racemic 12 (682 mg , 3.31 mmol 87\%).

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ Exact Mass: 206.0943
Molecular Weight: 206.2410
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta(\mathrm{ppm}) 12.24$ (bs, 1H), 9.03 (bs, 1H), $6.45(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=16.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}), 1.25$ (s, 3H)
${ }^{13}$ C NMR (126 MHz, DMSO-d6): $\delta(\mathrm{ppm}) 178.7,153.3,143.2,136.9$, 123.9, 116.0, 113.7, 48.8, 43.8, 40.2, 25.1, 21.0

IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 3282, 2924, 1696, 1306, 1121, 835
HRMS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 229.0835$, found 229.0838
Mp $=160-163^{\circ} \mathrm{C}$
$\mathbf{R f}=0.25$ in a 60:40 mixture of pentane and ethyl acetate
$[\alpha]_{D}{ }^{20}=+6.9^{\circ}\left(c=0.57, \mathrm{CHCl}_{3}\right)$

methyl (S)-4-(allyloxy)-2,6-dimethyl-2,3-dihydro-1H-indene-2-carboxylate (12a):

12 ($304 \mathrm{mg}, 1.47 \mathrm{mmol}$) was dissolved in DMF (12 mL) and $\mathrm{KHCO}_{3}(442 \mathrm{~g}, 4.41 \mathrm{mmol}, 3$ equiv) was added. The suspension was stirred for 10 minutes at room temperature, and then iodomethane (0.28 $\mathrm{mL}, 4.41 \mathrm{mmol}, 3$ equiv) was added. The mixture was stirred at $40^{\circ} \mathrm{C}$ until total consumption of starting material (approximatively 3 hours). To remove the excess of iodomethane, the reaction was heated to $65^{\circ} \mathrm{C}$ under a flow of argon for 15 min . After this period, the temperature was lowered to $40^{\circ} \mathrm{C}$ then NaH ($106 \mathrm{mg}, 4.41 \mathrm{mmol}, 3$ equiv) and allyl bromide ($0.40 \mathrm{~mL}, 4.41 \mathrm{mmol}, 3$ equiv.) were added successively carefully. The reaction mixture was stirred for 30 min and then cooled with an ice bath, and then water (30 mL) was added. The reaction was extracted three times with DCM (15 mL); the combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash column chromatography using cyclohexane/EtOAc (9:1) leading to 12a as a light yellow oil ($315 \mathrm{mg}, 1.21 \mathrm{mmol}, 82 \%$).
Racemic material was prepared using the same procedure from racemic 12 ($650 \mathrm{mg}, 3.15 \mathrm{mmol}$), KHCO_{3} ($947 \mathrm{mg}, 9.45 \mathrm{mmol}, 3$ equiv), iodomethane ($0.59 \mathrm{~mL}, 9.45 \mathrm{mmol}, 3$ equiv), NaH ($227 \mathrm{mg}, 9.45$ $\mathrm{mmol}, 3$ equiv) and allyl bromide ($0.82 \mathrm{~mL}, 9.45 \mathrm{mmol}, 3$ equiv) to yield racemic 12a ($730 \mathrm{mg}, 2.80$ mmol, 89\%).

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$ Exact Mass: 260.1412
Molecular Weight: 260.3330
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.06$ (ddt, $J=17.2,10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (dq, $J=10.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dt}, J=5.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.3,155.1,143.3,138.1$, 133.7, 126.3, 117.9, 117.1, 110.6, 68.7, 52.2, 49.5, 44.4, 40.8, 25.6, 21.8

IR (neat): v $\left(\mathrm{cm}^{-1}\right) 2926,1730,1591,1315,1112,1073,829$
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 283.1305$, found 283.1307
$\mathbf{R f}=0.25$ in a 95:5 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{23}=+5.2^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$
HPLC separation: Chiralpak ${ }^{\circledR}$ IA; 99:1 (n-heptane/i-PrOH), $1.0 \mathrm{ml} . \mathrm{min}^{-1}, 208 \mathrm{~nm}, \operatorname{tr}$ (major) $=5.0 \mathrm{~min}$, $\operatorname{tr}($ minor $)=6.1 \mathrm{~min}, 96: 4$ e.r.

methyl (S)-5-allyl-4-hydroxy-2,6-dimethyl-2,3-dihydro-1H-indene-2-carboxylate (4):

A sealed tube charged with 12a (204 mg, 0.784 mmol) and diethylaniline (3 mL) was heated under stirring at $200^{\circ} \mathrm{C}$ for 24 h . After this period, the reaction was poured into $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ and extracted three times with DCM (30 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography using cyclohexane/EtOAc (9:1) leading to $4(163 \mathrm{mg}, 0.626 \mathrm{mmol}, 80 \%)$ as a yellow oil which solidified on standing.
Racemic material was prepared using the same procedure from racemic 12a ($700 \mathrm{mg}, 2.69 \mathrm{mmol}$) to yield racemic 4 ($616 \mathrm{mg}, 2.37 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.95$ (ddt, $J=17.1$,

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$ Exact Mass: $\mathbf{2 6 0 . 1 4 1 2}$
Molecular Weight: $\mathbf{2 6 0 . 3 3 3 0}$ $10.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (dq, $J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (dt, $J=5.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, 1H), 2.76 (d, J = $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (s, 3H), 1.38 (s, 3H)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.2,150.6,1401.0,136.8$, $136.0,124.6,121.6,118.9,115.5,52.3,49.8,44.3,40.3,30.8,25.6$, 20.0

IR (neat): v (cm^{-1}) 3464, 2929, 1712, 1195, 1113, 909
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 283.1305, found 283.1308
$\mathbf{M p}=65-67^{\circ} \mathrm{C}$
$\mathbf{R f}=0.25$ in a 85:15 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{23}=+10.8^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$
HPLC separation: Chiralpak ${ }^{\circledR}$ IA; 97:3 (n-heptane/i-PrOH), $1.0 \mathrm{ml} . \mathrm{min}^{-1}, 208 \mathrm{~nm}, \operatorname{tr}($ minor $)=14.6 \mathrm{~min}$, $\operatorname{tr}($ major $)=16.8 \mathrm{~min}, 96: 4$ e.r.

methyl (S)- 4-hydroxy-5-(2-hydroxyethyl)-2,6-dimethyl-2,3-dihydro-1H-indene-2-carboxylate (14):

In a round bottom flask containing a stirred biphasic solution of 4 ($102 \mathrm{mg}, 0.392 \mathrm{mmol}$) in EtOAc (10 mL) and water (5 mL) was added $\mathrm{OsO}_{4}\left(5.0 \mathrm{mg}, 19.6 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right.$). After 5 minutes, $\mathrm{NaIO}_{4}(210 \mathrm{mg}$, $0.98 \mathrm{mmol}, 2.5$ equiv) was added in two portions separated by 5 min . The solution was vigorously stirred for 3 h at room temperature. The layers were separated and the aqueous phase was extracted twice with ethyl acetate (6 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was diluted in $\mathrm{MeOH}(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. After this, $\mathrm{NaBH}_{4}(44.5 \mathrm{mg}, 1.18 \mathrm{mmol}, 3$ equiv) was added and the reaction was allowed to reach room temperature. After $30 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}$ was added and the reaction was extracted three times with ethyl acetate (6 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography using cyclohexane/EtOAc (6:4) leading to 14 ($78 \mathrm{mg}, 0.295 \mathrm{mmol}, 75 \%$) as a light yellow oil.
Racemic material was prepared using the same procedure from racemic 4 ($257 \mathrm{mg}, 0.987 \mathrm{mmol}$), OsO_{4} ($12.5 \mathrm{mg}, 49.4 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), NaIO_{4} ($528 \mathrm{mg}, 2.47 \mathrm{mmol}, 2.5$ equiv) and NaBH_{4} ($112 \mathrm{mg}, 2.96 \mathrm{mmol}$, 3 equiv) to yield racemic 14 ($195 \mathrm{mg}, 0.737 \mathrm{mmol}, 75 \%$).

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ Exact Mass: 264.1362
Molecular Weight: 264.3210
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (dd, $J=6.4,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, 1H), 2.24 (s, 3H), 1.36 ($s, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.6,151.9,141.3,136.1$,
$126.2,123.1,118.7,64.0,52.2,49.6,44.3,40.9,29.4,25.6,20.3$
IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3313,2924,1722,1188,1110,905$
HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1254$, found 287.1256
$\mathbf{R f}=0.26$ in a 70:30 mixture of pentane and ethyl acetate
$[\alpha]_{D}{ }^{23}=+1.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$

(S)-(+)-puraquinonic acid (1):

Following a procedure of Yakura. ${ }^{7}$ In a round bottom flask equipped with a condenser, 14 ($66 \mathrm{mg}, 0.25$ mmol) and $\mathrm{LiOH}\left(157 \mathrm{mg}, 3.75 \mathrm{mmol}, 15\right.$ equiv) in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(1: 1,6 \mathrm{~mL})$ were refluxed for 1.5 h . After this period, the mixture was acidified with 1 M HCl and extracted three times with EtOAc (15 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was diluted in a mixture of 2,2,2-trifluoroethanol/ $\mathrm{H}_{2} \mathrm{O}(1: 2,3 \mathrm{~mL})$. Then Oxone ${ }^{\circledR}$ ($305 \mathrm{mg}, 0.992 \mathrm{mmol}, 4$ equiv) and 4-iodophenoxyacetic acid ($7.0 \mathrm{mg}, 24.8 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were added at room temperature. The reaction mixture was stirred until total consumption of starting material (approximatively 1 hour) then EtOAc and water were added (5 mL each). The layers were separated and the aqueous layer was extracted with EtOAc, The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography using $\mathrm{DCM} / \mathrm{MeOH}$ (93:7) leading to (S)-(+)-puraquinonic acid (1) (54.0 mg , $0.204 \mathrm{mmol}, 82 \%$ over two steps) as a yellow oil.
Racemic material was prepared using the same procedure from racemic 14 ($29.2 \mathrm{mg}, 0.110 \mathrm{mmol}$), $\mathrm{LiOH}\left(39.7 \mathrm{mg}, 1.66 \mathrm{mmol}, 15\right.$ equiv), Oxone ${ }^{\circledR}$ ($135.8 \mathrm{mg}, 0.442 \mathrm{mmol}, 4$ equiv) and 4iodophenoxyacetic acid ($3.1 \mathrm{mg}, 11.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) to yield racemic puraquinonic acid (1) (25.1 mg , $0.095 \mathrm{mmol}, 86 \%$).

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$
Exact Mass: 264.0998
Molecular Weight: 264.2770
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 3.76(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.34$ $(\mathrm{m}, 2 \mathrm{H}), 2.79(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.42$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 186.4,185.9,181.7,145.9$, $145.5,143.0,141.5,61.6,47.1,42.5,42.4,30.0,25.8,12.4$
Spectroscopic data are consistent with those previously reported for synthetic material. ${ }^{8}$
IR (neat): v $\left(\mathrm{cm}^{-1}\right) 3394,2925,1706,1221,1172,1103,914$
HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 287.0890$, found 287.0891
$\mathbf{R f}=0.12$ in a 95:5 mixture of DCM and methanol
$[\alpha]_{\mathrm{D}}{ }^{23}=+1.4^{\circ}\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$
Reported value for the natural material (R): $[\alpha]_{\mathrm{D}}{ }^{22}=-2.2^{\circ}\left(\mathrm{C}=0.55, \mathrm{CHCl}_{3}\right)^{8}$

$(S)-(+)$-deliquinone (2):

In a round bottom flask containing a stirred biphasic solution of 4 ($114 \mathrm{mg}, 0.438 \mathrm{mmol}$) in EtOAc (14 mL) and water (7 mL) was added $\mathrm{OsO}_{4}\left(5.57 \mathrm{mg}, 21.9 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right.$). After 5 minutes, $\mathrm{NaIO}_{4}(234 \mathrm{mg}$, $1.10 \mathrm{mmol}, 2.5$ equiv) was added in two portions separated by 5 min . The solution was vigorously stirred for 3 h at room temperature. The layers were separated and the aqueous layer was extracted twice with EtOAc (8 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was diluted in dry THF (10 mL) and cooled to $0^{\circ} \mathrm{C}$. After this, LiAlH_{4} ($49.9 \mathrm{mg}, 1.31 \mathrm{mmol}, 3$ equiv) was added and the reaction was allowed to reach room temperature. After $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added and the reaction was extracted three times with ethyl acetate (8 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Then Following a procedure of Yakura. ${ }^{7}$ The crude material was diluted in a mixture of $2,2,2$-trifluoroethanol $/ \mathrm{H}_{2} \mathrm{O}(1: 2,9 \mathrm{~mL})$. Then Oxone ${ }^{\circledR}(541 \mathrm{mg}, 1.76 \mathrm{mmol}, 4$ equiv) and 4 iodophenoxyacetic acid ($12.2 \mathrm{mg}, 44.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were added at room temperature. The reaction mixture was stirred until total consumption of the starting material (approximatively 1 hour) then EtOAc and water were added (10 mL each). The layers were separated and the aqueous layer was extracted with EtOAc, The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography using $\mathrm{DCM} / \mathrm{MeOH}$ (93:7) leading to (S)-(+)-deliquinone (2) ($62.7 \mathrm{mg}, 0.276 \mathrm{mmol}, 62 \%$ over two steps) as a yellow oil. Racemic material was prepared using the same procedure from racemic 4 ($220 \mathrm{mg}, 0.845 \mathrm{mmol}$), OsO ${ }_{4}$ ($11.1 \mathrm{mg}, 43.7 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), $\mathrm{NaIO}_{4}(450 \mathrm{mg}, 2.10 \mathrm{mmol}, 2.5$ equiv), LiAlH 4 ($98.0 \mathrm{mg}, 2.58 \mathrm{mmol}, 3$ equiv), Oxone ${ }^{\oplus}(1,04 \mathrm{~g}, 3.38 \mathrm{mmol}, 4$ equiv) and 4 -iodophenoxyacetic acid ($22.1 \mathrm{mg}, 84.5 \mu \mathrm{~mol}, 10$ mol\%) to yield racemic deliquinone (2) ($153 \mathrm{mg}, 0.647 \mathrm{mmol}, 76 \%$).

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ Exact Mass: 250.1205
Molecular Weight: 250.2940
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 3.74(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}$, 2 H), 2.87-2.80 (m, 2 H), $2.78(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 2 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{brs}, 1 \mathrm{H}), 1.69(\mathrm{brs}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 187.0, 186.4, 147.2, 146.8, $142.8,141.4,70.2,61.7,43.0,40.8,40.7,30.1,25.0,12.3$
Spectroscopic data are consistent with those previously reported for natural material. ${ }^{9}$
IR (neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3395,2925,1644,1249,1033$
HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 273.1097$, found 273.1095
$\mathbf{R f}=0.28$ in a 95:5 mixture of DCM and methanol
$[\alpha]_{0}{ }^{23}=+0.9^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$
Reported value for the natural material $(\mathrm{R}):[\alpha]_{\mathrm{D}}^{22}=-0.5^{\circ}\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)^{9}$

methyl (S)-5-allyl-2,6-dimethyl-4-(((trifluoromethyl)sulfonyl)oxy)-2,3-dihydro-1H-indene-2carboxylate (4a):

To a solution of $4(58.1 \mathrm{mg}, 0.223 \mathrm{mmol})$ in $\mathrm{DCM}(1.2 \mathrm{~mL})$, pyridine ($54 \mu \mathrm{~L}, 0.669 \mathrm{mmol}, 3$ equiv) and trifluoromethanesulfonic anhydride ($41 \mu \mathrm{~L}, 0.245 \mathrm{mmol}, 1.1$ equiv) were added. The reaction mixture was stirred a room temperature during 6 hours. The reaction was then concentrated and purified by flash column chromatographie to yield $\mathbf{4 a}(80.9 \mathrm{mg}, 0.206 \mathrm{mmol}, 93 \%)$ as a colourless liquid.
Racemic material was prepared using the same procedure from racemic 4 ($50 \mathrm{mg}, 0.192 \mathrm{mmol}$), pyridine ($47 \mu \mathrm{~L}, 0.576 \mathrm{mmol}, 3$ equiv) and trifluoromethanesulfonic anhydride ($36 \mu \mathrm{~L}, 0.211 \mathrm{mmol}, 1.1$ equiv) to yield racemic 4 a ($87.1 \mathrm{mg}, 0.167 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{ddt}, J=17.1$, $10.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (dq, $J=10.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dq}, J=17.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45(\mathrm{dt}, J=5.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (d, J = $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 177.3,144.3,142.9,139.0$, $134.4,132.0,129.2,126.7,118.7$ (q, J = 319.8 Hz), 116.0, 52.4, 50.1, 44.1, 41.9, 31.2, 25.0, 19.9
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-73.8$
IR (neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$ 2955, 1735, 1405, 1206, 1137, 817
HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 415.0798 , found 415.0795
$\mathbf{R f}=0.25$ in a 95:5 mixture of pentane and ethyl acetate
$[\alpha]_{D}{ }^{23}=+4.0^{\circ}\left(c=1.09, \mathrm{CHCl}_{3}\right)$

methyl (S)-5-allyl-2,4,6-trimethyl-2,3-dihydro-1H-indene-2-carboxylate (15):

Following a procedure of Woodward. ${ }^{10}$ In an oven dry catalysis tube, 4 a ($80 \mathrm{mg}, 0.204 \mathrm{mmol}$) was introduced. Then the tube was tranfer in glovebox and $\left[\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}\right]$ ($5.3 \mathrm{mg}, 5.1 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$) and X phos ($5.0 \mathrm{mg}, 10.2 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) were introduced and the tube was close with a septum. Outside of the glovebox, THF (2.5 mL) and DABAL-Me 3 ($41.8 \mathrm{mg}, 0.163 \mathrm{mmol}, 0.8$ equiv, as a solution in 0.8 mL of THF) were added. The septum was rapidely exchange for a screw cap. The tube was then introduced in a $75^{\circ} \mathrm{C}$ preheated aluminium heating block and stirred at this temperature for 4 hours. After this period the reaction was coolded to room temperature and quenched with $2 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$ and extracted three times with diethyl ether (3 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash column chromatography to yield 15 as a colourless liquid ($51.7 \mathrm{mg}, 0.200 \mathrm{mmol}, 98 \%$).
Racemic material was prepared using the same procedure from racemic 4 a ($50.2 \mathrm{mg}, 0.128 \mathrm{mmol}$), $\left[\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}\right.$] ($3.3 \mathrm{mg}, 3.2 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$), Xphos ($3.2 \mathrm{mg}, 6.4 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and DABAL-Me ${ }_{3}(26.3$ $\mathrm{mg}, 0.102 \mathrm{mmol}, 0.8$ equiv) to yield racemic 15 ($32.4 \mathrm{mg}, 0.167 \mathrm{mmol}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.88$ (ddt, $J=17.1$,

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}$ Exact Mass: $\mathbf{2 5 8 . 1 6 2 0}$
Molecular Weight: 258.3610 $10.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (dq, $J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (dq, $J=17.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}, J=5.7,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.5,138.8,138.3,135.8$, 135.3, 134.3, 132.7, 124.0, 114.9, 52.2, 49.1, 44.3, 43.7, 33.7, 25.8, 20.3, 16.0

IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2931, 1732, 1208, 1112, 911
HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 281.1512$, found 281.1508
$\mathbf{R f}=0.33$ in a 95:5 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{23}=+9.4^{\circ}\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right)$

(S)-(+)-russujaponol F (3):

In a round bottom flask containing a stirred biphasic solution of $\mathbf{1 5}(51.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ in EtOAc (4 mL) and water (2 mL) was added $\mathrm{OsO}_{4}\left(2.5 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right.$). After 5 minutes, $\mathrm{NaIO}_{4}(107 \mathrm{mg}$, $0.500 \mathrm{mmol}, 2.5$ equiv) was added in two portions separated by 5 min . The solution was vigorously stirred for 3 h at room temperature. The layers were separated and the aqueous layer was extracted twice with EtOAc (5 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was diluted in dry THF (5 mL) and cooled to $0^{\circ} \mathrm{C}$. After this, $\mathrm{LiAlH}_{4}(22.8 \mathrm{mg}, 0.600 \mathrm{mmol}, 3$ equiv) was added and the reaction was allowed to reach room temperature overnight. After this period, $\mathrm{H}_{2} \mathrm{O}$ was added and the reaction was extracted three times with ethyl acetate (5 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash column chromatography to yield (S)-(+)-russujaponol F(3) as a colourless oil ($39.8 \mathrm{mg}, 0.170 \mathrm{mmol}, 85 \%$).
Racemic material was prepared using the same procedure from racemic 15 ($20.5 \mathrm{mg}, 0.079 \mathrm{mmol}$), $\mathrm{OsO}_{4}\left(1.0 \mathrm{mg}, 4.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right.$), $\mathrm{NaIO}_{4}\left(42.5 \mathrm{mg}, 0.199 \mathrm{mmol}, 2.5\right.$ equiv) and $\mathrm{LiAlH}_{4}(9.1 \mathrm{mg}, 0.238$ $\mathrm{mmol}, 3$ equiv) to yield racemic russujaponol F (3) ($16.2 \mathrm{mg}, 0.069 \mathrm{mmol}, 87 \%$).

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ Exact Mass: 234.1620
Molecular Weight: 234.3390
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta(\mathrm{ppm}) 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.76$ (bs, 2H), 3.99 $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta(\mathrm{ppm}) 140.9,140.7,135.3,134.1$, $133.3,125.0,70.3,62.0,45.4,43.9,43.1,34.5,25.6,20.9,16.5$
Spectroscopic data are consistent with those previously reported for natural material. ${ }^{11}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 140.3,139.8,135.3,133.2,132.3,124.4,71.1,62.1,44.3,43.1$, 42.4, 32.9, 24.6, 20.5, 16.2

IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3313,2920,2867,1460,1037$
HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 257.1512 , found 257.1514
$\mathbf{R f}=0.23$ in a 50:50 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{23}=+1.0^{\circ}\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$
$[\alpha]_{D^{20}}=+2.1^{\circ}(c=0.53, \mathrm{MeOH})$
Reported value for the natural material $(\mathrm{S}):[\alpha]_{\mathrm{D}}{ }^{25}=+1.3^{\circ}(\mathrm{c}=3.1, \mathrm{MeOH})^{11}$

Determination of configuration - VCD and NOESY

Scheme S2: Route for synthesis of 12b, 16a and 16b

(S)-4-methoxy-2,6-dimethyl-2,3-dihydro-1H-indene-2-carboxylic acid (12b):

12 ($120 \mathrm{mg}, 0.58 \mathrm{mmol}$) was dissolved in DMF (5 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($401 \mathrm{mg}, 2.9 \mathrm{mmol}, 5$ equiv) was added, the mixture was then stirred during 5 min at room temperature. After this period, methyl iodide (0.18 $\mathrm{mL}, 2.9 \mathrm{mmol}, 5$ equiv) was added in one portion and the reaction was stirred at $50^{\circ} \mathrm{C}$ during 2 h . The reaction was then diluted with water, extracted with EtOAc and concentrated to yield 11', which was used in the next step without further purification. 11' was dissolved in a mixture of THF (1.5 mL), MeOH $(1.5 \mathrm{~mL})$ and 2 M aqueous $\mathrm{LiOH}(1.5 \mathrm{ml})$. The reaction was then heat at $80^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature, the organic solvents were removed under reduced pressure. The obtained aqueous solution was washed with diethyl ether, acidified to $\mathrm{pH}<0$ and extracted three times with DCM. The combined organic layers were then dry over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash column chromatography to yield the corresponding pure 12b ($105 \mathrm{mg}, 0.48 \mathrm{mmol}, 82 \%$) as a white solid.

Exact Mass: 220.1099
Molecular Weight: 220.2680
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 184.3,156.0,143.1,138.4$, 125.8, 117.7, 109.4, 55.3, 49.5, 44.2, 40.6, 25.3, 21.8

IR (neat): v $\left(\mathrm{cm}^{-1}\right)$ 2969, 2913, 2852, 1693, 1589, 1461, 1311, 1229, 1078, 825
HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 243.0992$, found 243.0993
$\mathbf{M p}=98-101^{\circ} \mathrm{C}$
$\mathbf{R f}=0.26$ in a 80:20 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{20}=+3.6^{\circ}\left(\mathrm{c}=0.38, \mathrm{CHCl}_{3}\right)$

VCD experiments:

IR and vibrational circular dichroism (VCD) spectra were recorded on a Bruker PMA 50 accessory coupled to a Tensor 27 Fourier transform infrared spectrometer. A photoelastic modulator (Hinds PEM 90) set at $I / 4$ retardation was used to modulate the handedness of the circular polarized light. Demodulation was performed by a lock-in amplifier (SR830 DSP). An optical low-pass filter (< $1800 \mathrm{~cm}^{-}$ ${ }^{1}$) in front of the photoelastic modulator was used to enhance the signal/noise ratio. A solution of 8 mg in $200 \mu \mathrm{CDCl}_{3}$ of $\mathbf{1 2 b}$ was prepared and measured in a transmission cell equipped with CaF_{2} windows and a 200 mm spacer. The VCD spectrum of the pure solvent served as the reference and was subtracted from the VCD spectrum of the compound in order to eliminate artefacts. For both the sample and the reference, ca. $40^{\prime} 000$ scans at $4 \mathrm{~cm}^{-1}$ resolution were averaged.

Calculations:

Density functional theory (DFT) as implemented in Gaussian09 was used to study the conformation and to calculate the corresponding IR and VCD spectra. The calculations were performed using the b3pw91 functional and a $6-31+G(d, p)$ basis set. The solvent was considered with a polarizable continuum model for chloroform, as implemented in Gaussian09, Revision C.01. ${ }^{12}$ Prior to the calculation of the spectra all degrees of freedom were completely relaxed. IR and VCD spectra were constructed from calculated dipole and rotational strengths assuming Gaussian band shape with a halfwidth at half-maximum of $4 \mathrm{~cm}^{-1}$. Frequencies were scaled by a factor of 0.97 . To calculate the Boltzmann distribution of the different conformers a thermal free energy correction was applied.

Conformational search:

A systematic conformation search of $\mathbf{1 2 b}$ was done. Conformational degrees of freedom are the orientation of the methyl group (methoxy), the orientation of the acid group and the five-membered ring, which is not planar. For the methoxy group only one conformation was considered because the other conformations are high up in energy and therefore not populated at room temperature. In total six conformers were found (Figure S1) differing in the orientation of the acid group and the conformation at the five-membered ring.

Assignment of absolute configuration:

As is evident from the comparison of the calculated VCD spectra of the individual conformers (Figure S4) the sign of many bands depends on the conformation. Therefore the calculated VCD spectrum depends on the Boltzmann weights and hence the relative free energy of the conformers, which is challenging to calculate accurately. However, there are some bands that have the same sign for all conformers (marked in Figures S4 and S5). Based on these bands and the overall shape of the VCD spectrum the absolute configuration can be assigned. The comparison between experiment and calculations show that the sample analysed has the same absolute configuration as the enantiomer considered in the calculations. Therefore we can assign the absolute configuration as the (S)enantiomer.

conformer 1 38.0\%

conformer 4
6.6\%

conformer 2
24.2\%

conformer 5 15.5\%

conformer 3 12.1\%

conformer 6 3.6\%

Figure S1: Six conformers of $\mathbf{1 2 b}$ found by the systematic conformational search. The numbers show the fractions of the respective conformer according to a Boltzmann distribution at room temperature.

Figure S2: Calculated infrared spectra for the six conformers. Frequencies are scaled by 0.97.

Figure S3: Comparison between experimental (black) and calculated (red) infrared spectra of 12b. The calculated spectrum is the linear combination (Boltzmann weighted) of the spectra of the conformers. Frequencies are scaled by 0.97 for the calculated spectrum.

Figure S4: Calculated VCD spectra for the six conformers. Frequencies are scaled by 0.97 . The green and red areas mark bands that show the same sign for all conformers. These bands are particularly meaningful for the assignment of the absolute configuration because the sign does not depend on distribution of conformers (Boltzmann factors).

Figure S5: Comparison between experimental (black) and calculated (red) VCD spectra of 12b. The calculated spectrum is the linear combination (Boltzmann weighted) of the spectra of the conformers. Frequencies are scaled by 0.97 for the calculated spectrum. The green and red areas mark bands that show the same sign for all conformers (see Figure S4).
(R)-3,3,3-trifluoro-2-methoxy-N-((S)-4-methoxy-2,6-dimethyl-2,3-dihydro-1H-inden-2-yl)-2phenylpropanamideacid (16a) and (S)-3,3,3-trifluoro-2-methoxy-N-((S)-4-methoxy-2,6-dimethyl-2,3-dihydro-1H-inden-2-yl)-2-phenylpropanamideacid (16b):

12b ($100 \mathrm{mg}, 0.46 \mathrm{mmol}$) was suspended in toluene (4.0 mL). Triethylamine ($77 \mu \mathrm{~L}, 0.552 \mathrm{mmol}, 1.2$ equiv) was added, followed by the addition of diphenylphosphonic azide ($103 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 1$ equiv). The mixture was stirred at room temperature for 2 hours. Then the mixture was heated at $90^{\circ} \mathrm{C}$ for 1 hour. The mixture was cooled down and poured into ice-cold 6 M aqueous $\mathrm{HCl}(4 \mathrm{~mL})$ and stirred overnight. The aqueous layer was collected, cooled down at $0^{\circ} \mathrm{C}$, basified with 2 M NaOH , and extracted three times with DCM (5 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the corresponding crude amine ($60.1 \mathrm{mg}, 0.314 \mathrm{mmol}$, $68 \%)$. After NMR analysis, the crude amine was considered enought pure to be engaged in the next step.
(R) - or (S)-Mosher acid ($16.7 \mathrm{mg}, 0.072 \mathrm{mmol}, 1.1$ equiv) was dissolved in dry DCM (0.85 mL), then oxalyl chloride ($7 \mu \mathrm{~L}, 0.075 \mathrm{mmol}, 1.15$ equiv) was added, follow by one drops of a 10% solution of DMF in DCM to initiate the reaction. After 1 hour of stirring at room temperature, crude amine (12.4 $\mathrm{mg}, 0.065 \mathrm{mmol}$), $\mathrm{NEt}_{3}(34 \mu \mathrm{~L}, 0.195 \mathrm{mmol}, 3$ equiv) and a crystal of DMAP were added. The mixture was stirred for 16 hours at room temperature. The reaction was then concentrated under reduced pressure and purified by flash column chromatography to yield the corresponding pure $\mathbf{1 6 a}(15.6 \mathrm{mg}$, $0.038 \mathrm{mmol}, 59 \%$) and $\mathbf{1 6 b}(18.9 \mathrm{mg}, 0.046 \mathrm{mmol}, 71 \%)$ amides as colourless wax.

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}$ Exact Mass: 407.1708 Molecular Weight: $\mathbf{4 0 7 . 4 3 3 2}$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}$, $3 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=$ $16 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.34(\mathrm{~m}, 3 \mathrm{H}), 3.11(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.9,156.0,143.0,138.4$, 133.1, 129.5, 128.6, 127.7, 125.1, 124.0 (q, $J=290.0 \mathrm{~Hz}$), 117.8, $109.5,84.1$ (q, $J=25.8 \mathrm{~Hz}), 61.5,55.3,55.0,46.3,43.2,29.9,25.7$, 21.9
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-68.8$
IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3415,2926,2848,1694,1510,1159,1081,833$
HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 430.1600$, found 430.1601
$\mathbf{R f}=0.32$ in a 90:10 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{20}=+24.2^{\circ}\left(\mathrm{c}=0.13, \mathrm{CHCl}_{3}\right)$

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}$ Exact Mass: 407.1708 Molecular Weight: 407.4332
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}$, $3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.35$ $(\mathrm{m}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.8,156.0,142.9,138.4$, 133.0, 129.5, 128.6, 127.8, 125.2, 124.0 ($q, J=289.9 \mathrm{~Hz}$), 117.8, $109.5,84.1$ ($q, J=25.9 \mathrm{~Hz}$), 61.4, 55.3, 55.0, 46.2, 43.2, 25.9, 21.8.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) \delta$-68.8
IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3416,2926,2847,1694,1509,1158,1081,833$
HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 430.1600$, found 430.1600
$\mathbf{R f}=0.32$ in a 90:10 mixture of pentane and ethyl acetate
$[\alpha]_{\mathrm{D}}{ }^{20}=+9.4^{\circ}\left(\mathrm{c}=0.18, \mathrm{CHCl}_{3}\right)$

NOESY NMR Analysis:

$\begin{array}{llllllllllllllllllllllllllllllllllllll}50 & 7.55 & 7.50 & 7.45 & 7.40 & 7.35 & 7.30 & 7.25 & 7.20 & 7.15 & 7.10 & 7.05 & 7.00 & 6.95 & 6.90 & 6.85 & 6.80 & 6.75 & 6.70 & 6.65 & 6.60 & 6.55 & 6.50 & 6.45 & 6.40\end{array}$

Figure S6: NOESY of Mosher amide

For 16a, a correlation between the benzylic proton 2 -Ha (identified by its correlation with the NH and the absence of correlation with the aromatic proton) and the meta proton of the phenyl group of the mosher amide part can be observed.
In the case of 16b, a similar correlation can be observed between the benzylic proton 3-Ha (identified by its correlation with the NH and the aromatic proton) and the meta proton of the phenyl group of the mosher amide.
Precedent calculations on Mosher amides ${ }^{13}$ indicate that the more stable conformer of such amides shows a synperiplanar relationship between the CF_{3} and the carbonyl groups.
This indicates that the quaternary stereocenter constructed during the enantioselective $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ arylation step has the (S) configuration.

References

1. a) D. Katayev, Chiral N-heterocyclic carbene (NHC) ligands in Pd-catalyzed cross-coupling reactions, 2012, PhD-thesis (25559), University of Geneva. b) D. Katayev, Y.-X. Jia, A. K. Sharma, D. Banerjee, C. Besnard, R. B. Sunoj, E. P. Kündig, Chem. Eur. J. 2013, 19, 11916-11927
2. F. Glorius, method for producing imidazolium salts, U.S. Patent 2005/0240025 A1, October 27, 2005
3. P. M. Holstein, M. Vogler, P. Larini, G. Pilet, E. Clot, O. Baudoin, ACS Catal. 2015, 5, 4300-4308
4. a) T. Saget, Enantioselective Palladium(0)-Catalyzed C-H Arylations, 2014, PhD-thesis (21741), ETH Zurich. b) J. Pedroni, Pd(0)-Catalysed C-H Functionalisations for the Enantioselective Synthesis of NHeterocycles, 2017, PhD-thesis (8142), EPFL
5. H.-J. Knölker, J. Knöll, Chem. Commun. 2003, 1170-1171
6. M. P. Gore, S. J. Gould, D. D. Weller, J. Org. Chem. 1992, 57, 2774-2783
7. T. Yakura, T. Konishi, Synlett 2007, 765-768
8. D. L. J. Clive, M. Yu, M. Sannigrahi, J. Org. Chem. 2004, 69, 4116-4125
9. M. Clericuzio, F. Han, F. Pan, Z. Pang, O. Sterner, Acta Chem. Scand. 1998, 52, 1333-1337
10. T. Cooper, A. Novak, L. D. Humphreys, M. D. Walker, S. Woodward, Adv. Synth. Catal. 2006, 348, 686-690
11. K. Yoshikawa, A. Kaneko, Y. Matsumoto, H. Hama, S. Arihara, J. Nat. Prod. 2006, 69, 1267-1270
12. Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
13. J. Manuel Seco, E. Quiñoá, R. Riguera, Chem. Rev. 2004, 104(1), 17-118

NMR Spectra and chromatograms

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 204nm

Peak\#	Ret. Time	Area	Height	Area\%
1	15.378	13244631	605367	49.545
2	17.306	13488147	548481	50.455
Total		26732778	1153849	100.000

<Chromatogram>

mAU

<Peak Table>
PDA Ch1 204nm

Peak\# Ret. Time	Area	Height	Area\%	
1	16.389	18602975	764148	66.255
2	18.088	9474922	374671	33.745
Total		28077896	1138819	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch2 221nm

Peak\# Ret. Time	Area	Height	Area\%	
1	7.546	3837875	449258	51.959
2	8.745	3548433	238485	48.041
Total		7386308	687743	100.000

<Chromatogram>

mAU

<Peak Table>

PDA Ch1 221nm				
Peak\# Ret. Time	Area	Height	Area\%	
1	7.518	5163269	608571	71.677
2	8.800	2040244	133058	28.323
Total		7203513	741629	100.000

<Chromatogram>
mAU

<Peak Table>

PDA Ch1 220nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	7.419	2089215	174899	51.140
2	8.359	1996092	137969	48.860
Total		4085306	312868	100.000

<Peak Table>
PDA Ch1 220nm

Peak\# Ret. Time	Area	Height	Area\%	
1	7.305	528165	44606	58.558
2	8.281	373780	26135	41.442
Total		901946	70741	100.000

<Chromatogram>
mAU

<Peak Table>

PDA Ch1 204nm			
Peak\# Ret. Time	Area	Height	Area\%
1	16.595	4643805	139542
2	18.400	4642939	130497
Total		9286745	270039

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 204nm

Peak\#	Ret. Time	Area	Height	Area\%
1	16.739	2072684	62758	17.953
2	18.481	9472399	258124	82.047
Total		11545084	320882	100.000

<Chromatogram>
mAU

<Peak Table>

PDA Ch1 205nm	Height			
Peak\# Ret. Time	Area	Hea		
1	10.644	5075261	317900	49.733
2	11.676	5129706	294590	50.267
Total		10204967	612490	100.000

<Chromatogram>

mAU

<Peak Table>
PDA Ch1 205nm

Peak\# Ret. Time	Area	Height	Area\%	
1	10.627	11395909	688748	84.796
2	11.682	2043259	121147	15.204
Total		13439168	809895	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\#	Ret. Time	Area	Height	Area\%
1	14.499	6779738	309557	49.841
2	15.594	6822886	283529	50.159
Total		13602624	593086	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\#	Ret. Time	Area	Height	Area\%
1	14.232	13766237	575649	79.675
2	15.398	3511859	135317	20.325
Total		17278096	710966	100.000

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

8h

<Chromatogram>
mAU

<Peak Table>

PDA Ch1 205nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	22.226	3144929	85062	64.131
2	25.809	1758950	42187	35.869
Total		4903879	127248	100.000

<Chromatogram>
mAU
<Peak Table>

PDA Ch1 205nm			
Peak\# Ret. Time	Area	Height	Area\%
1	22.214	5609402	151676
2	25.885	1102089	26596
Total		6711492	178272

${ }^{1} \mathrm{H}$ NMR， $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

$8 i$

${ }^{13} \mathrm{C}$ NMR， $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

$8 i$

	1	1	1	1	1	1	，	1	1		1	1	1	1	1	1	1		
10	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\#	Ret. Time	Area	Height	Area\%
1	14.798	5076833	222836	66.051
2	18.339	2609355	91188	33.949
Total		7686187	314024	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\# Ret. Time	Area	Height	Area\%	
1	14.772	5842523	253013	87.058
2	18.344	868569	34187	12.942
Total		6711092	287200	100.000

<Chromatogram>
mAU

<Peak Table>

PDA Ch1 205nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	14.604	12689983	550521	35.815
2	16.045	22742276	846939	64.185
Total		35432258	1397460	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\# Ret. Time	Area	Height	Area\%	
1	14.624	12018865	482571	62.798
2	16.581	7119918	277521	37.202
Total		19138783	760093	100.000

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

8j

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

8j

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\#	Ret. Time	Area	Height	Area\%
1	10.955	12332499	633593	62.397
2	14.635	7432194	319044	37.603
Total		19764693	952637	100.000

<Peak Table>
PDA Ch1 205nm

Peak\# Ret. Time	Area	Height	Area\%	
1	10.750	6616798	365456	83.192
2	14.558	1336847	60107	16.808
Total		7953645	425563	100.000

$\stackrel{8}{8}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

10

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

10

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\#	Ret. Time	Area	Height	Area\%
1	12.798	7298418	292502	66.186
2	22.161	3728758	97388	33.814
Total		11027177	389891	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 205nm

Peak\# Ret. Time	Area	Height	Area\%	
1	12.763	6790822	274912	85.107
2	21.718	1188296	34696	14.893
Total		7979119	309609	100.000

12

${ }^{13}$ C NMR, DMSO-d6, 126 MHz

12

10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

12a
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 208nm

Peak\#	Ret. Time	Area	Height	Area\%
1	5.035	5058195	588405	50.908
2	6.149	4877789	459125	49.092
Total		9935984	1047530	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch2 225nm

Peak\# Ret. Time	Area	Height	Area\%	
1	4.979	3389276	439702	95.732
2	6.097	151099	15414	4.268
Total		3540375	455117	100.000

<Chromatogram>
mAU

<Peak Table>
PDA Ch1 208nm

Peak\#	Ret. Time	Area	Height	Area\%
1	14.666	3577396	170451	50.347
2	16.802	3528036	146378	49.653
Total		7105432	316829	100.000

<Chromatogram>

mAU

<Peak Table>
PDA Ch1 208nm

Peak\#	Ret. Time	Area	Height	Area\%
1	14.614	47308	2670	4.077
2	16.767	1113046	46025	95.923
Total		1160354	48696	100.000

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

1

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

1

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

2
 M

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

2

10
$180 \quad 17$
$160 \quad 15$
140
130

$$
110
$$

f1 (ppm)
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, \mathbf{5 0 0} \mathrm{MHz}$

4a

劳
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

4a

	1	1	1	1	1	1	1	1	1	1 ,			1		,	1	,	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

4a

[^0]

${ }^{19}$ F NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

16a

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

16b

[^0]: | j0 | -61 | -62 | -63 | -64 | -65 | -66 | -67 | -68 | -69 | -70 | -71 | -72 | -73 | -74 | -75 | -76 | -77 | -78 | -79 | -80 | -81 | -82 | -83 | -84 | -85 | -86 | -87 | -88 | -89 | $-c$ |
 | :--- |

