Supporting Information

Ni-Catalyzed Defluorination for the Synthesis of *gem*-Difluoro-1,3-dienes and Their [4+2] Cycloaddition Reaction

Minqi Zhou,[†] Jian Zhang,[‡] Xing-Guo Zhang,^{*†} and Xingang Zhang^{*‡}

[†]College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China [‡]Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

xgzhang@mail.sioc.ac.cn; zxg@wzu.edu.cn

List of Contents

1. General Information and Materials	3
2. Optimization of Ni-Catalyzed Defluorination of Methyl (1,1,1-trifluoro-4-phenylbut-3-	en-2-yl)
carbonate 1a with B ₂ pin ₂ 2 (Tables S1-S4)	3
3. Preparation of Compounds 1	6
4. Data for Compounds 1	6
5. General Procedure for Ni-Catalyzed Defluorination of Compounds 1 with $B_2pin_2 2$	12
6. Data for Compounds 3	13
7. Synthesis of Compounds 6	20
8. Synthesis of Compound 7	22
9. References	22
10. Copies of ¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR Spectra of Compounds 1 , 3 , 6 and 7	23

1. General Information and Materials.

General Information: ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AM 400 spectrometer and are calibrated using residual undeuterated solvent (CHCl₃ at 7.26 ppm ¹H NMR; 77.6 ppm ¹³C NMR; CFCl₃ as an external standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction. **Materials:** All reagents were used as received from commercial sources, unless otherwise specified, or prepared as described in the literature. B₂pin₂ was purchased from Adamas and used as received. NiCl₂ DME was purchased from Strem Chemicals and used as received. 4,4'-Dimethoxy-2,2'-bipyridine was purchased from TCI and used as received. NaOMe was purchased from J&K and used as received.

2. Optimization of Ni-Catalyzed Defluorination of Methyl (1,1,1-trifluoro-4-phenylbut -3-en-2yl) carbonate 1a with B₂pin₂ 2 (Tables S1-S4)

To a 25 mL of Schlenk tube were added B₂pin₂ **2** (1.5 equiv), [Ni]-catalyst (10 mol %), *N*-ligand (10 mol %) and base (1.5 equiv) under argon atmosphere, followed by addition of solvent (1 mL). The reaction mixture was stirred for 10 min at room temperature, then a solution of compound **1a** (0.3 mmol, 1.0 equiv) in corresponding solvent (1 mL) was added. The tube was screw-capped and heated to 30-80 $^{\circ}$ C (oil bath). After stirring for 2-24 h, the reaction mixture was cooled to room temperature and fluorobenzene (1.0 equiv) was added. The yield was determined by ¹⁹F NMR before working up. Then, the reaction mixture was diluted with dichloromethane, filtered through a pad of Celite and concentrated. The residue was purified with silica gel chromatography (petroleum) to afford **3a** as a colorless oil.

	$\begin{array}{c c} OCO_2Me & NiCl_2 \cdot DME (10 \text{ mol }\%) \\ \hline \\ CF_3 & + & B_2pin_2 \\ \hline \\ 1a & 2 & DME, 30 ^\circ\text{C}, 12 \text{ h} \end{array}$	F Ja
Entry	Base	Yield of $3a^b$
1	K ₂ CO ₃	nr
2	K_3PO_4	nr
3	Na ₂ CO ₃	nr
4	Cs_2CO_3	nr
5	NaOAc	nr
6	<i>t</i> -BuOK	12%
7	t-BuONa	33%
8	t-BuLi	14%
9	LiOMe	34%
10	NaOMe	40%
11	KOMe	15%

Table S1. Base Effect on Ni-Catalyzed Defluorination of 1a with 2^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (0.45 mmol, 1.5 equiv), base (1.5 equiv), DME (2 mL), 30 °C for 12 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard. nr = no reaction.

Table S2. Screening of Solvents and Reaction Temperatures for Ni-Catalyzed Defluorination of 1a with 2^a

	OCO ₂ Me CF ₃ +	B ₂ pin ₂ 2	NiCl ₂ ·DME (10 mol %) bpy (10 mol %) NaOMe (1.5 equiv) solvent, temp., 12 h	F Ja
Entry	Solvent		Temp.	Yield of $3a^b$
1	DME		30 °C	40%
2	DME		40 °C	43%
3	DME		50 °C	46%
4	DME		60 °C	50%
5	DME		70 °C	54%
6	DME		80 °C	49%
7	DMF		70 °C	nr
8	CH ₃ CN		70 °C	nr
9	THF		70 °C	48%
10	Diglyme		70 °C	48%
11	Dioxane		70 °C	44%

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (0.45 mmol, 1.5 equiv), solvents (2 mL), 12 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard. nr = no reaction.

	CCO_2We $CF_3 + B_2pin_2$	[NI] (10 mol %) ligand (10 mol %) NaOMe (15 equiv)	F
	1a 2	DME, 70 °C, 12 h 3a	1
Entry	Nickel Sources	Ligands	Yield of $3a^b$
1	NiCl ₂ ·DME	bpy	54%
2	NiCl ₂ ·DME	4,4'-diMe-bpy	55%
3	NiCl ₂ ·DME	4,4'-di <i>t</i> Bu-bpy	34%
4	NiCl ₂ ·DME	4,4'-diOMe-bpy	65%
5	NiCl ₂ ·DME	6,6'-diMe-bpy	30%
6	NiCl ₂ ·dppf	4,4'-diOMe-bpy	50%
7	NiCl ₂ (PCy ₃) ₂	4,4'-diOMe-bpy	54%
8	NiBr ₂ ·DME	4,4'-diOMe-bpy	63%
9	NiBr ₂ ·Diglyme	4,4'-diOMe-bpy	62%
10	Ni(OTf) ₂	4,4'-diOMe-bpy	50%
11	Ni(cod) ₂	4,4'-diOMe-bpy	37%

Table S3. Screening of Nickel Sources and Ligands for Ni-Catalyzed Defluorination of 1a with 2^a

[Ni] (10 mol %)

OCO₂Me

^aReaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (0.45 mmol, 1.5 equiv), [Ni] (10 mol %), Ligand (10 mol %), DME (2 mL), 70 °C for 12 h. ^bDetermined by ¹⁹F NMR using fluorobenzene as an internal standard.

Table S4. Screening of Reaction Time and Control Experiments for Ni-Catalyzed Defluorination of 1a with 2^a

	OCO ₂ I	Me NiCl ₂ ·DME (1	10 mol %)	F	
	CF3	+ B ₂ pin ₂ 4,4'-diOMe-bpy NaOMe (1,	v (10 mol %) .5 equiv)	F	
	1a	2 DME, 70 °	°C, time	3a	
Entry	[Ni]	Ligand	Base	Time	Yield of $3a^b$
1	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	2 h	45%
2	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	3 h	53%
3	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	4 h	60%
4	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	5 h	68%
5	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	6 h	82%
6	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	7 h	70%
7	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	12 h	65%
8	NiCl ₂ ·DME	4,4'-diOMe-bpy	NaOMe	24 h	56%
9	none	4,4'-diOMe-bpy	NaOMe	6 h	nr
10	NiCl ₂ ·DME	none	NaOMe	6 h	nd
11	NiCl ₂ ·DME	4,4'-diOMe-bpy	none	6 h	nr

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (0.45 mmol, 1.5 equiv), NiCl₂·DME (10 mol %), 4,4'-diOMe-bpy (10 mol %), NaOMe (1.5 equiv), DME (2 mL), 70 °C. ^bDetermined by ¹⁹F NMR using fluorobenzene as an internal standard. nr = no reaction. nd = notdetected.

3. Preparation of Compounds 1

TBAF in THF (1.0 M, 0.1 equiv) was slowly dropped into the solution of α , β -unsaturated aldehyde (1.0 equiv) and TMSCF₃ (1.2 equiv) in anhydrous THF at 0 °C under argon. After stirring overnight at room temperature, the yellow mixture was quenched by addition of 1.0 M HCl (1.0 equiv). The reaction mixture was separated and the aqueous phase was extracted with diethyl ether. The combined organic layers were dried over Na₂SO₄ and concentrated. The resulting alcohol was purified by flash column chromatography with ethyl acetate/petroleum ether solvent system.

n-BuLi (1.1 equiv) was slowly added into the solution of alcohol (1.0 equiv) in THF at 0 °C under argon atmosphere. After the reaction mixture was stirred for 0.5 h at 0 °C, ClCO₂Me (1.5 equiv) was added and the resulting mixture was stirred for 12 h at room temperature. The reaction was quenched with saturated aqueous NH₄Cl and then extracted twice with dichloromethane. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The product was purified by flash column chromatography with ethyl acetate/petroleum ether solvent system.

4. Data for Compounds 1

(*E*)-Methyl (1,1,1-trifluoro-4-phenylbut-3-en-2-yl) carbonate (1a). [Known compound¹]: The reaction was carried out on 10 mmol-scale from alcohol. Compound 1a (2.39 g, 92% yield) as a yellow solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 20: 1). m.p. 53-55 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 6.6 Hz, 2H), 7.41 – 7.31 (m, 3H), 6.93 (d, *J* = 15.9 Hz, 1H), 6.15 (dd, *J* = 15.9 Hz, 7.9 Hz, 1H), 5.69 – 5.61 (m, 1H), 3.87 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 139.9, 135.4, 129.8, 129.3, 127.7, 123.4 (q, *J* = 281.9 Hz), 117.2, 75.6 (q, *J* = 34.0 Hz), 56.2.

(*E*)-Methyl (1,1,1-trifluoro-4-(*p*-tolyl)but-3-en-2-yl) carbonate (1b). The reaction was carried out on 5 mmol-scale from alcohol. Compound 1b (1.14 g, 83% yield) as a white solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 20: 1), m.p. 65-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 7.6 Hz, 2H), 6.90 (d, *J* = 15.9 Hz, 1H), 6.11 (dd, *J* = 15.9 Hz, 7.9 Hz, 1H), 5.69 – 5.61 (m, 1H), 3.87 (s, 3H), 2.37 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 76.8 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 139.91, 139.88, 132.6, 130.0, 127.6, 123.5 (q, *J* = 280.6 Hz), 116.0, 75.7 (q, *J* = 33.9 Hz), 56.1, 21.8. IR (thin film) v_{max} 2970, 1758, 1257 cm⁻¹. MS (EI): m/z (%) 274 (M⁺), 129 (100). HRMS: Calcd. for C₁₃H₁₃O₃F₃: 274.0817; Found: 274.0816.

(*E*)-4-(3,4-Dimethylphenyl)-1,1,1-trifluorobut-3-en-2-yl methyl carbonate (1c). The reaction was carried out on 3 mmol-scale from alcohol. Compound 1c (582.7 mg, 67% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 30: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 16.0 Hz, 1H), 6.09 (dd, *J* = 16.0 Hz, 8.0 Hz, 1H), 5.67 – 5.58 (m, 1H), 3.86 (s, 3H), 2.27 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 140.1, 138.6, 137.5, 133.1, 130.6, 128.8, 125.2, 123.5 (q, *J* = 281.8 Hz), 115.8, 75.8 (q, *J* = 34.0 Hz), 56.1, 20.3, 20.2. MS (EI): m/z (%) 288 (M⁺), 143 (100). HRMS: Calcd. for C₁₄H₁₅O₃F₃: 288.0973; Found: 288.0966.

(*E*)-4-(2,6-Dimethylphenyl)-1,1,1-trifluorobut-3-en-2-yl methyl carbonate (1d). The reaction was carried out on 5 mmol-scale from alcohol. Compound 1d (1.19 g, 83% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 30: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, *J* = 7.2 Hz, 1H), 7.10 (d, *J* = 7.2 Hz, 2H), 7.01 (d, *J* = 15.2 Hz, 1H), 5.80 – 5.67 (m, 2H), 3.94 (s, 3H), 2.34 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, *J* = 6.0 Hz, 3F). ¹³C NMR (101

MHz, CDCl₃) δ 154.7, 138.2, 136.4, 135.3, 128.4, 128.2, 123.4 (q, *J* = 281.8 Hz), 123.1, 75.6 (q, *J* = 33.9 Hz), 56.1, 21.1. MS (EI): m/z (%) 288 (M⁺), 143 (100). HRMS: Calcd. for C₁₄H₁₅O₃F₃: 288.0973; Found: 288.0970.

(*E*)-Methyl (1,1,1-trifluoro-4-(4-methoxyphenyl)but-3-en-2-yl) carbonate (1e). The reaction was carried out on 5 mmol-scale from alcohol. Compound 1e (1.09 g, 75% yield) as a white solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 15: 1), m.p. 47-49 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.8 Hz, 2H), 6.90 – 6.82 (m, 3H), 6.00 (dd, *J* = 15.9 Hz, 8.1 Hz, 1H), 5.65 – 5.56 (m, 1H), 3.85 (s, 3H), 3.82 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 154.8, 139.6, 129.1, 128.1, 123.5 (q, *J* = 281.9 Hz), 114.7, 75.9 (q, *J* = 34.1 Hz), 56.1, 55.9. IR (thin film) v_{max} 2967, 1770, 1248 cm⁻¹. MS (EI): m/z (%) 290 (M⁺), 145 (100). HRMS: Calcd. for C₁₃H₁₃O₄F₃: 290.0766; Found: 290.0768.

(*E*)-Methyl (1,1,1-trifluoro-4-(4-chlorophenyl)but-3-en-2-yl) carbonate (1f). The reaction was carried out on 10 mmol-scale from alcohol. Compound 1f (1.97 g, 67% yield) as a white solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 20: 1), m.p. 84-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 6.86 (d, *J* = 16.0 Hz, 1H), 6.11 (dd, *J* = 15.9 Hz, 7.7 Hz, 1H), 5.66 – 5.58 (m, 1H), 3.87 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.7 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 138.5, 135.6, 133.9, 129.5, 128.9, 123.3 (q, *J* = 282.2 Hz), 117.8, 75.3 (q, *J* = 34.1 Hz), 56.2. IR (thin film) v_{max} 2970, 1759, 1257 cm⁻¹. MS (EI): m/z (%) 294 (M⁺), 129 (100). HRMS: Calcd. for C₁₂H₁₀O₃F₃Cl: 294.0271; Found: 294.0264.

(*E*)-*tert*-Butyl (1,1,1-trifluoro-4-(4-bromophenyl)but-3-en-2-yl) carbonate (1g). The reaction was carried out on 0.86 mmol-scale from alcohol. Compound 1g (266.1 mg, 81% yield) as a white solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 20: 1). ¹H NMR (400

MHz, CDCl₃) δ 7.42 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 6.80 (d, *J* = 16.0 Hz, 1H), 6.12 (dd, *J* = 16.0 Hz, 7.6 Hz, 1H), 5.65 – 5.56 (m, 1H), 1.49 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.6 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 137.8, 134.4, 132.4, 129.0, 123.512, 123.511 (q, *J* = 280.7 Hz), 118.5, 84.5, 74.1 (q, *J* = 33.8 Hz), 28.0. IR (thin film) v_{max} 2360, 1759, 1256 cm⁻¹. MS (EI): m/z (%) 380 (M⁺), 115 (100). HRMS: Calcd. for C₁₅H₁₆O₃F₃Br: 380.0235; Found: 380.0233.

Methyl (*E*)-4-(3-((*tert*-butoxycarbonyl)oxy)-4,4,4-trifluorobut-1-en-1-yl)benzoate (1h). The reaction was carried out on 0.6 mmol-scale from alcohol. Compound 1h (213.6 mg, 98% yield) as a white solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 15: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.24 (dd, *J* = 16.0 Hz, 7.2 Hz, 1H), 5.66 – 5.57 (m, 1H), 3.92 (s, 3H), 1.49 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.6 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 152.2, 139.9, 137.9, 131.0, 130.6, 127.5, 123.5 (q, *J* = 280.7 Hz), 120.3, 84.8, 74.1 (q, *J* = 33.8 Hz), 52.8, 28.2.

(*E*)-Methyl (1,1,1-trifluoro-4-(4-(trifluoromethyl)phenyl)but-3-en-2-yl) carbonate (1i). The reaction was carried out on 5 mmol-scale from alcohol. Compound 1i (717.9 mg, 44% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 30: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 16.0 Hz, 1H), 6.24 (dd, *J* = 16.0 Hz, 7.6 Hz, 1H), 5.73 – 5.65 (m, 1H), 3.87 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 3F), -76.9 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 138.9 (q, *J* = 1.0 Hz), 138.0, 131.5 (q, *J* = 32.8 Hz), 127.8, 126.3 (q, *J* = 3.7 Hz), 124.6 (q, *J* = 271.9 Hz), 123.4 (q, *J* = 280.5 Hz), 120.0, 75.1 (q, *J* = 34.2 Hz), 56.2. IR (thin film) v_{max} 1766, 1328, 1131 cm⁻¹. MS (EI): m/z (%) 328 (M⁺), 59 (100). HRMS: Calcd. for C₁₃H₁₀O₃F₆: 328.0534; Found: 328.0538.

OCO₂Me

(*E*)-Methyl (1,1,1-trifluoro-3-methyl-4-phenylbut-3-en-2-yl) carbonate (1j). The reaction was carried out on 10 mmol-scale from alcohol. Compound 1j (2.14 g, 78% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 20: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 6.80 (s, 1H), 5.58 (q, *J* = 7.2 Hz, 1H), 3.88 (s, 3H), 2.02 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.9 (d, *J* = 7.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 136.3, 134.8, 129.7, 128.9, 128.23, 128.20, 123.7 (q, *J* = 283.3 Hz), 79.3 (q, *J* = 33.1 Hz), 56.2, 14.6. IR (thin film) ν_{max} 2962, 1763, 1287 cm⁻¹. MS (EI): m/z (%) 274 (M⁺), 129 (100). HRMS: Calcd. for C₁₃H₁₃O₃F₃: 274.0817; Found: 274.0809.

Methyl (1,1,1-trifluoro-4,4-diphenylbut-3-en-2-yl) carbonate (1k). The reaction was carried out on 2 mmol-scale from alcohol. Compound 1k (436.2 mg, 65% yield) as a white solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 40: 1), m.p. 69-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 3H), 7.32 – 7.21 (m, 7H), 6.06 (d, *J* = 9.6 Hz, 1H), 5.61 – 5.52 (m, 1H), 3.78 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.2 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 152.8, 140.7, 138.1, 130.0, 129.5, 129.1, 129.0, 128.9, 128.2, 123.7 (q, *J* = 282.1 Hz), 116.1, 73.1 (q, *J* = 33.8 Hz), 56.0. IR (thin film) v_{max} 2962, 2357, 1751, 1259 cm⁻¹. MS (EI): m/z (%) 336 (M⁺), 55 (100). HRMS: Calcd. for C₁₈H₁₅O₃F₃: 336.0973; Found: 336.0974.

(*E*)-Methyl (1,1,1-trifluoro-6-phenylhex-3-en-2-yl) carbonate (11). The reaction was carried out on 2 mmol-scale from alcohol. Compound 11 (415.6 mg, 72% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 20: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 7.4 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.16 (d, *J* = 7.4 Hz, 2H), 6.16 – 6.07 (m, 1H), 5.53 – 5.38 (m, 2H), 3.83 (s, 3H), 2.73 (t, *J* = 7.6 Hz, 2H), 2.47 – 2.40 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -

77.1 (d, J = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8 (s), 141.6 (s), 141.4 (s), 128.96, 128.94, 126.6, 123.4 (q, J = 281.7 Hz), 119.5, 75.4 (q, J = 33.8 Hz), 56.0, 35.3, 34.6. IR (thin film) ν_{max} 1763, 1258 cm⁻¹. MS (EI): m/z (%) 288 (M⁺), 91 (100). HRMS: Calcd. for C₁₄H₁₅O₃F₃: 288.0973; Found: 288.0971.

(*E*)-Methyl (1,1,1-trifluoro-6-(5-methylfuran-2-yl)hex-3-en-2-yl) carbonate (1m). The reaction was carried out on 2 mmol-scale from alcohol. Compound 1m (581.7 mg, 98% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 20: 1). ¹H NMR (400 MHz, CDCl₃) δ 6.15 – 6.06 (m, 1H), 5.86 – 5.81 (m, 2H), 5.55 – 5.39 (m, 2H), 3.80 (s, 3H), 2.68 (t, *J* = 7.2 Hz, 2H), 2.46 – 2.39 (m, 2H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.4 (d, *J* = 6.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 153.1, 150.9, 141.2, 123.4 (q, *J* = 281.6 Hz), 119.6 (q, *J* = 1.4 Hz), 106.4, 106.3, 75.2 (q, *J* = 33.7 Hz), 55.7, 31.4, 27.4, 13.6. IR (thin film) v_{max} 2960, 1763, 1444, 1257 cm⁻¹. MS (EI): m/z (%) 292 (M⁺), 95 (100). HRMS: Calcd. for C₁₃H₁₅O₄F₃: 292.0922; Found: 292.0915.

Methyl ((65,*E***)-1,1,1-trifluoro-6,10-dimethylundeca-3,9-dien-2-yl) carbonate (1n).** The reaction was carried out on 2 mmol-scale from alcohol. Compound **1n** (516.3 mg, 91% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 60: 1). ¹H NMR (400 MHz, CDCl₃) δ 6.04 (dt, *J* = 14.7 Hz, 7.3 Hz, 1H), 5.49 – 5.35 (m, 2H), 5.06 (t, *J* = 7.1 Hz, 1H), 3.81 (s, 3H), 2.18 – 2.07 (m, 1H), 2.03 – 1.88 (m, 3H), 1.66 (s, 3H), 1.58 (s, 3H), 1.56 – 1.49 (m, 1H), 1.33 – 1.28 (m, 1H), 1.19 – 1.11 (m, 1H), 0.86 (d, *J* = 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.25 (d, *J* = 5.6 Hz, 1.5F), -77.27 (d, *J* = 5.6 Hz, 1.5F, diastereoisomer). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 141.6, 141.5 (diastereoisomer), 131.9, 125.0, 123.5 (q, *J* = 281.7 Hz), 120.0, 75.55 (q, *J* = 33.7 Hz), 75.52 (q, *J* = 33.7 Hz, diastereoisomer), 55.9, 40.2, 37.1 (q, *J* = 5.3 Hz), 32.6, 26.2, 26.0, 19.8, 18.1. IR (thin film) v_{max} 2962, 1764, 1258 cm⁻¹. MS (EI): m/z (%) 308 (M⁺), 69 (100). HRMS: Calcd. for C₁₅H₂₃O₃F₃: 308.1599; Found: 308.1600.

OCO₂Me

Methyl (1,1,1-trifluoro-4-(triisopropylsilyl)but-3-yn-2-yl) carbonate (10). The reaction was carried out on 2 mmol-scale from alcohol. Compound 10 (343.3 mg, 51% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 100: 1). ¹H NMR (400 MHz, CDCl₃) δ 5.71 (q, *J* = 5.6 Hz, 1H), 3.87 (s, 3H), 1.08 – 1.05 (m, 21H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.1 (d, *J* = 5.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 122.0 (q, *J* = 282.1 Hz), 94.9, 93.6, 66.0 (q, *J* = 37.8 Hz), 56.4, 18.9, 11.5. IR (thin film) v_{max} 2947, 1770, 1258 cm⁻¹. MS (EI): m/z (%) 338 (M⁺), 93 (100). HRMS: Calcd. for C₁₅H₂₅O₃F₃Si: 338.1525; Found: 338.1528.

Methyl (1,1,1-trifluoro-4-phenylbut-3-yn-2-yl) carbonate (1p). The reaction was carried out on 30 mmol-scale from alcohol. Compound 1p (3.94 g, 51% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 40: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.49 (m, 2H), 7.42 – 7.32 (m, 3H), 5.96 (q, J = 5.6 Hz, 1H), 3.90 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, J = 5.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 132.8, 130.3, 129.0, 122.1 (q, J = 282.3 Hz), 121.1, 89.7, 77.5 (q, J = 2.1 Hz), 66.3 (q, J = 38.1 Hz), 56.5. IR (thin film) v_{max} 2962, 2242, 1770, 1444, 1260 cm⁻¹. MS (EI): m/z (%) 258 (M⁺), 182 (100). HRMS: Calcd. for C₁₂H₉O₃F₃: 258.0504; Found: 258.0509.

5. General Procedure for Ni-Catalyzed Defluorination of Compounds 1 with B2pin2 2.

To a septum capped 25 mL of Schlenck tube were added $B_2pin_2 2$ (228.6 mg, 1.5 equiv), NiCl₂·DME (13.2 mg, 10 mol %), 4,4'-dimethoxy-2,2'-bipyridine (13.0 mg, 10 mol %) and NaOMe (48.6 mg, 1.5 equiv) under argon, followed by addition of DME (2 mL). After stirring for 10 min at room temperature, a solution of compound **1** (0.6 mmol, 1.0 equiv) in DME (2 mL) was added to the reaction mixture. The tube was screw capped and put into an oil bath (preheated to 70 °C). After stirring for 6 h, the reaction mixture was cooled to room temperature, diluted with DCM, filtered through a pad of Celite and concentrated. The residue was purified with silica gel chromatography to give product **3**.

6. Data for Compounds 3

F

(*E*)-(4,4-Difluorobuta-1,3-dien-1-yl)benzene (3a). [Known compound²]: Compound 3a (55.8 mg, 56% yield; 82% yield, determined by ¹⁹F NMR) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 6.76 (dd, *J* = 16.0 Hz, 10.8 Hz, 1H), 6.54 (d, *J* = 16.0 Hz, 1H), 5.20 (dd, *J* = 24.0 Hz, 10.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -85.3 (dd, *J* = 26.7 Hz, 25.7 Hz, 1F), -87.1 (d, *J* = 26.7 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 157.4 (dd, *J* = 297.1 Hz, 291.5 Hz), 137.5, 131.7 (dd, *J* = 11.5 Hz, 3.2 Hz), 129.2, 128.2, 126.7, 118.3 (dd, *J* = 4.2 Hz, 2.4 Hz), 83.4 (dd, *J* = 27.9 Hz, 17.1Hz).

1-mmol Scale Synthesis of Compound 3a: To a septum capped 25 mL of Schlenck tube were added $B_{2}pin_{2} 2$ (457.1 mg, 1.5 equiv), NiCl₂·DME (26.4 mg, 10 mol %), 4,4'-dimethoxy-2,2'-bipyridine (26.0 mg, 10 mol %) and NaOMe (97.2 mg, 1.5 equiv) under argon, followed by addition of DME (4 mL). After stirring for 30 min at room temperature, a solution of compound **1a** (312.3 mg, 1.2 mmol, 1.0 equiv) in DME (4 mL) was added to the reaction mixture. The tube was screw capped and put into an oil bath (preheated to 70 °C). After stirring for 6 h, the reaction mixture was cooled to room temperature, diluted with DCM, filtered through a pad of Celite and concentrated. The residue was purified with silica gel chromatography (Petroleum ether) to give product **3a** (123.6 mg, 62% yield; 69% yield, determined by ¹⁹F NMR) as a colorless oil.

(*E*)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-methylbenzene (3b). [Known compound²]: Compound 3b (87.5 mg, 81% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.63 (dd, *J* = 16.0 Hz, 11.2 Hz, 11H), 6.46 (d, *J* = 16.0 Hz, 1H), 5.13 (dd, *J* = 24.1 Hz, 11.2 Hz, 1H), 2.36 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -85.8 (dd, *J* = 27.3 Hz, 26.3 Hz, 1F), -87.6 (d, *J* = 27.3 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (dd, *J* = 296.9 Hz, 291.2 Hz), 138.1, 134.7, 131.6 (dd, *J* = 11.6 Hz, 3.2 Hz), 129.9, 126.7, 117.4 (dd, *J* = 4.1 Hz, 2.4 Hz), 83.5 (dd, *J* = 27.7 Hz, 17.0 Hz), 21.8.

(*E*)-4-(4,4-Difluorobuta-1,3-dien-1-yl)-1,2-dimethylbenzene (3c). Compound 3c (68.7 mg, 59% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 1H), 6.64 (dd, *J* = 16.0 Hz, 11.2 Hz, 1H), 6.44 (d, *J* = 16.0 Hz, 1H), 5.14 (dd, *J* = 24.4 Hz, 11.2 Hz, 1H), 2.29 (s, 3H), 2.28 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -85.9 (dd, *J* = 27.8 Hz, 24.4 Hz, 1F), -87.7 (d, *J* = 27.8 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 157.2 (dd, *J* = 298.2 Hz, 292.5 Hz), 137.3, 136.9, 135.2, 131.8 (dd, *J* = 11.6 Hz, 3.3 Hz), 130.5, 128.0, 124.3, 117.2 (dd, *J* = 3.7 Hz, 2.3 Hz), 83.5 (dd, *J* = 27.7 Hz, 17.2 Hz), 20.3, 20.1. MS (EI): m/z (%) 194 (M⁺, 100). HRMS: Calcd. for C₁₂H₁₂F₂: 194.0907; Found: 194.0910.

(*E*)-2-(4,4-Difluorobuta-1,3-dien-1-yl)-1,3-dimethylbenzene (3d). Compound 3d (75.7 mg, 65% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.07 (m, 3H), 6.55 (d, *J* = 16.0 Hz, 1H), 6.25 (dd, *J* = 16.0 Hz, 10.8 Hz, 1H), 5.22 (dd, *J* = 24.4 Hz, 10.8 Hz, 1H), 2.37 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -86.1 (dd, *J* = 28.6 Hz, 24.4 Hz, 1F), -87.7 (d, *J* = 28.6 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (dd, *J* = 297.7 Hz, 292.1 Hz), 137.0, 136.6, 129.8 (dd, *J* = 11.4 Hz, 3.2 Hz), 128.5, 127.4, 123.7 (dd, *J* = 4.2 Hz, 1.9 Hz), 83.4 (dd, *J* = 27.1 Hz, 17.0 Hz), 21.6. MS (EI): m/z (%) 194 (M⁺, 100). HRMS: Calcd. for C₁₂H₁₂F₂: 194.0907; Found: 194.0912.

(*E*)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-methoxylbenzene (3e). [Known compound³]: Compound 3e (64.7 mg, 55% yield) as acolorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 40: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.53 (dd, *J* = 16.0 Hz, 10.0 Hz, 1H), 6.42 (d, *J* = 16.0 Hz, 1H), 5.11 (ddd, *J* = 24.4 Hz, 10.0 Hz, 1.2 Hz, 1H), 3.82 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) -86.3 (t, *J* = 26.7 Hz, 1F), -88.1 (d, *J* = 29.0 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 157.2 (dd, *J* = 296.5 Hz, 290.6 Hz), 131.2 (dd, *J* = 11.7

Hz, 3.3 Hz), 130.3, 128.0, 116.3 (dd, *J* = 3.9 Hz, 2.4 Hz), 114.7, 83.5 (dd, *J* = 27.7 Hz, 17.1 Hz), 55.8.

(*E*)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-chlorobenzene (3f). The reaction runs for 7 h. Compound 3f (75.8 mg, 63% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.21 (m, 4H), 6.60 (dd, *J* = 16.0 Hz, 11.2 Hz, 1H), 6.37 (d, *J* = 16.0 Hz, 1H), 5.09 (dd, *J* = 24.0 Hz, 11.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -86.8 (t, *J* = 24.7 Hz, 1F), -88.4 (d, *J* = 24.7 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (dd, *J* = 297.6 Hz, 292.1 Hz), 136.0, 133.8, 130.3 (dd, *J* = 11.6 Hz, 3.3 Hz), 129.4, 127.9, 119.0 (dd, *J* = 3.6 Hz, 2.2 Hz), 83.3 (dd, *J* = 27.9 Hz, 16.9 Hz). IR (thin film) v_{max} 3066, 1700, 1491, 1091 cm⁻¹. MS (EI): m/z (%) 200 (M⁺), 165 (100). HRMS: Calcd. for C₁₀H₇ClF₂: 200.0204; Found: 200.0200.

(*E*)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-bromobenzene (3g). *t*-Butyl carbonate was used as a substrate. Compound 3g (61.8 mg, 42% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.64 (dd, *J* = 16.0 Hz, 10.8 Hz, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 5.12 (dd, *J* = 24.0 Hz, 10.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (t, *J* = 24.4 Hz, 1F), -86.3 (d, *J* = 24.4 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (dd, *J* = 297.8 Hz, 292.2 Hz), 136.4, 132.3, 130.4 (dd, *J* = 11.7 Hz, 3.4 Hz), 128.2, 121.9, 119.1 (dd, *J* = 4.3 Hz, 2.4 Hz), 83.3 (dd, *J* = 27.9 Hz, 16.8 Hz). IR (thin film) v_{max} 3064, 1701, 1488, 1072 cm⁻¹. MS (EI): m/z (%) 244 (M⁺), 165 (100). HRMS: Calcd. for C₁₀H₇F₂Br: 243.9699; Found: 243.9698.

Methyl (*E*)-4-(4,4-difluorobuta-1,3-dien-1-yl)benzoate (3h). *t*-Butyl carbonate was used as a substrate. Compound 3h (71.3 mg, 53% yield) as a light yellow solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 40: 1), m.p. 53-55 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 6.75 (dd, *J* = 16.0 Hz, 10.8 Hz, 1H), 6.47 (d, *J* =

16.0 Hz, 1H), 5.14 (dd, J = 24.0 Hz, 10.8 Hz, 1H), 3.89 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.8 (t, J = 22.9 Hz, 1F), -85.3 (d, J = 22.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 157.7 (dd, J = 298.5 Hz, 293.0 Hz), 141.8, 130.7–130.5 (m, 2C), 129.5, 126.5, 120.9 (dd, J = 4.4 Hz, 2.4 Hz), 83.4 (dd, J = 28.0 Hz, 16.7 Hz), 52.6. IR (thin film) v_{max} 3470, 1705, 1282 cm⁻¹. MS (EI): m/z (%) 224 (M⁺), 164 (100). HRMS: Calcd. for C₁₂H₁₀O₂F₂: 224.0649; Found: 224.0645.

(*E*)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-trifluoromethylbenzene (3i). [Known compound³]: Compound 3i (70.3 mg, 50% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 6.8 Hz, 2H), 7.46 (d, *J* = 6.8 Hz, 2H), 6.81 – 6.71 (m, 1H), 6.49 (d, *J* = 16.0 Hz, 1H), 5.16 (d, *J* = 24.0 Hz, 11.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4 (s, 3F), -88.7 (t, *J* = 22.9 Hz, 1F), -90.2 (d, *J* = 22.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 157.9 (dd, *J* = 298.4 Hz, 293.0 Hz), 140.9, 130.1 (dd, *J* = 11.6 Hz, 3.4 Hz), 130.4 – 129.4 (m, 1C), 126.8, 126.2 (q, *J* = 3.8 Hz), 126.0 – 118.0 (m, 1C), 121.0 (dd, *J* = 4.4 Hz, 2.3 Hz), 83.3 (dd, *J* = 28.1 Hz, 16.8 Hz).

F

(4,4-Difluoro-2-methylbuta-1,3-dien-1-yl)benzene (3j). [Known compound⁴]: Compound 3j (E/Z = 1.3:1, determined by ¹⁹F NMR from the crude reaction mixture, 50.8 mg, 47% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.27 (m, 5H), 6.51 (s, 0.51H, *E*-isomer), 6.44 (s, 0.43H, *Z*-isomer), 5.46 (dd, J = 27.6 Hz, 4.9 Hz, 0.44H, *Z*-isomer), 5.13 (dd, J = 26.1 Hz, 5.0 Hz, 0.51H, *E*-isomer), 2.20 (dd, J = 3.7 Hz, 1.1 Hz, 1.53H, *Z*-isomer), 2.18 – 2.13 (m, 1.64H, *E*-isomer). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.4 – -80.5 (m, 0.46F, *Z*-isomer), -82.7 – -83.0 (m, 0.52F, *E*-isomer), -83.6 (dd, J = 31.6 Hz, 4.5 Hz, 0.46F, *Z*-isomer), -85.4 (dd, J = 36.1 Hz, 4.9 Hz, 0.53F, *E*-isomer). ¹³C NMR (101 MHz, CDCl₃) δ 157.8 (dd, J = 302.4 Hz, 289.7 Hz, *Z*-isomer), 156.5 (dd, J = 301.6 Hz, 288.5 Hz, *E*-isomer), 138.0 (*Z*-isomer), 137.9 (*E*-isomer), 130.4 – 130.1 (m), 129.6 (*E*-isomer), 129.5 (*Z*-isomer), 129.1 – 128.9 (m), 128.85 (*Z*-isomer), 128.7 (*E*-isomer), 128.0 – 127.8 (m), 127.4 (*Z*-isomer), 127.2 (*E*-isomer), 87.4 (dd, J = 28.4 Hz, 11.8 Hz, *E*-

isomer), 81.7 (dd, *J* = 29.6 Hz, 12.2 Hz, *Z*-isomer), 23.2 (d, *J* = 6.3 Hz, *Z*-isomer), 16.7 (d, *J* = 6.2 Hz, *E*-isomer).

(4,4-Difluorobuta-1,3-diene-1,1-diyl)dibenzene (3k). [Known compound⁵]: Compound 3k (103.2 mg, 71% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.30 (m, 10H), 6.76 (d, *J* = 11.6 Hz, 1H), 5.22 (ddd, *J* = 24.3 Hz, 11.2 Hz, 1.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.7 (t, *J* = 23.7 Hz, 1F), -85.4 (d, *J* = 23.7 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (dd, *J* = 298.5 Hz, 291.8 Hz), 143.0 (d, *J* = 11.9 Hz, 3.5 Hz), 142.3, 139.7, 130.7, 129.0, 128.8, 128.2, 128.1, 128.0, 116.9 (dd, *J* = 3.3 Hz, 2.9 Hz), 81.6 (dd, *J* = 28.4 Hz, 14.9 Hz).

(6,6-Difluorohexa-3,5-dien-1-yl)benzene (3l). Compound 3l (E/Z = 3.2:1, determined by ¹⁹F NMR from the crude reaction mixture, 93.2 mg, 80% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.22 (m, 5H), 6.08 – 5.98 (m, 1H), 5.75 – 5.66 (m, 0.79H, *E*-isomer), 5.60 – 5.52 (m, 0.29H, *Z*-isomer), 5.22 – 5.11 (m, 0.28H, *Z*-isomer), 4.97 (dd, J = 24.4 Hz, 10.4 Hz, 0.72H, *E*-isomer), 2.81 – 2.75 (m, 2H), 2.52 – 2.45 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -86.4 (t, J = 27.8 Hz, 0.25F, *Z*-isomer), -87.3 (d, J = 27.8 Hz, 0.25F, *Z*isomer), -87.5 (dd, J = 34.2 Hz, 24.8 Hz, 0.74F, *E*-isomer), -90.1 (d, J = 34.2 Hz, 0.76F, *E*-isomer). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (dd, J = 297.7 Hz, 291.5 Hz, *Z*-isomer), 156.5 (dd, J = 296.0 Hz, 290.4 Hz, *E*-isomer), 142.1 (*E*-isomer), 142.0 (*Z*-isomer), 131.1 (dd, J = 11.3 Hz, 3.2 Hz, *Z*-isomer), 133.0 (dd, J = 11.1 Hz, 3.0 Hz, *E*-isomer), 129.0 – 128.9 (m), 126.6 (*Z*-isomer), 126.5 (*E*-isomer), 119.8 (dd, J = 4.2 Hz, 1.2 Hz, *E*-isomer), 118.3 (dd, J = 3.9 Hz, 1.1 Hz, *Z*-isomer), 82.5 (dd, J = 26.8Hz, 17.2 Hz, *E*-isomer), 78.6 (dd, J = 26.7 Hz, 16.6 Hz, *Z*-isomer), 36.2 (*E*-isomer), 36.1 (*Z*-isomer), 35.2 (*E*-isomer), 30.1(*Z*-isomer). MS (EI): m/z (%) 194 (M⁺), 91 (100). HRMS: Calcd. for C₁₂H₁₂F₂: 194.0907; Found: 194.0905.

2-(6,6-Difluorohexa-3,5-dien-1-yl)-5-methylfuran (3m). Compound **3m** (E/Z = 2.4:1, determined by ¹⁹F NMR from the crude reaction mixture, 61.8 mg, 52% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 6.03 – 5.94 (m, 1H), 5.89 – 5.85 (m, 2H), 5.70 – 5.60 (m, 0.71H, *E*-isomer), 5.53 – 5.44 (m, 0.29H, *Z*-isomer), 5.21 – 5.10 (m, 0.30H, *Z*-isomer), 4.92 (dd, J = 24.4 Hz, 10.8 Hz, 0.70H, *E*-isomer), 2.71 – 2.65 (m, 2H), 2.46 – 2.41 (m, 2H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -86.4 (t, J = 27.8 Hz, 0.29F, *Z*-isomer), -87.4 (d, J = 27.8 Hz, 0.28F, *Z*-isomer), -88.0 (dd, J = 35.0 Hz, 24.4 Hz, 0.72F, *E*-isomer), -90.8 (d, J = 35.0 Hz, 0.72F, *E*-isomer). ¹³C NMR (101 MHz, CDCl₃) δ 157.6 (dd, J = 298.3 Hz, 291.5 Hz, *Z*-isomer), 150.96 (*E*-isomer), 132.6 (dd, J = 11.2 Hz, 3.0 Hz, *E*-isomer), 130.7 (dd, J = 11.4 Hz, 3.3 Hz, *Z*-isomer), 120.0 (d, J = 4.3 Hz, 1.4 Hz, *E*-isomer), 118.5 (d, J = 4.0 Hz, 1.3 Hz, *Z*-isomer), 106.44 (*Z*-isomer), 106.42 (*Z*-isomer), 106.29 (*E*-isomer), 32.0 (*Z*-isomer), 28.5 (*Z*-isomer), 28.4 (*E*-isomer), 78.6 (dd, J = 26.8 Hz, 16.6 Hz, *Z*-isomer), 32.0 (*Z*-isomer), 28.5 (*Z*-isomer), 28.4 (*E*-isomer), 27.0 (*E*-isomer), 14.0. MS (EI): m/z (%) 198 (M⁺), 95 (100). HRMS: Calcd. for C₁₁H₁₂F₂O: 198.0856; Found: 198.0850.

(*S*)-1,1-Difluoro-6,10-dimethylundeca-1,3,9-triene (3n). Compound 3n (E/Z = 4.4:1, determined by ¹⁹F NMR from the crude reaction mixture, 77.1 mg, 60% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 5.97 – 5.84 (m, 1H), 5.63 – 5.54 (m, 0.78H, *E*-isomer), 5.52 – 5.42 (m, 0.27H, *Z*-isomer), 5.20 – 5.07 (m, 1.27H), 4.91 (dd, J = 24.8 Hz, 10.8 Hz, 0.74H, *E*-isomer), 2.14 – 2.04 (m, 1H), 2.02 – 1.89 (m, 3H), 1.69 (s, 3H), 1.61 (s, 3H), 1.55 – 1.48 (m, 1H), 1.40 – 1.30 (m, 1H), 1.20 – 1.10 (m, 1H), 0.90 – 0.86 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -86.9 (dd, J = 29.0 Hz, 24.8 Hz, 0.22F, *Z*-isomer), -87.8 (d, J = 29.0 Hz, 0.24F, *Z*-isomer), -88.0 (dd, J = 35.0 Hz, 24.4 Hz, 0.76F, *E*-isomer), -90.8 (d, J = 35.0 Hz, 0.77F, *E*-isomer). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (dd, J = 297.5 Hz, 291.0 Hz, *Z*-isomer), 131.8 (*E*-isomer), 131.1 (dd, J = 11.3 Hz, 3.3 Hz, *Z*-isomer), 125.32 (*E*-isomer), 125.26 (*Z*-isomer), 120.3 (dd, J = 4.1

Hz, 1.4 Hz, *E*-isomer), 118.4 (dd, J = 3.8 Hz, 1.2 Hz, *Z*-isomer), 82.6 (dd, J = 26.6 Hz, 17.3 Hz, *E*-isomer), 78.8 (dd, J = 26.5 Hz, 16.7 Hz, *Z*-isomer), 40.9 (*E*-isomer), 37.3 (*Z*-isomer), 37.2 (*E*-isomer), 35.5 (*Z*-isomer), 33.5 (*Z*-isomer), 33.4 (*E*-isomer), 26.3 (*E*-isomer), 26.23 (*Z*-isomer), 26.18 (*E*-isomer), 20.02 (*Z*-isomer), 19.97 (*E*-isomer), 18.2 (*E*-isomer). MS (EI): m/z (%) 214 (M⁺), 69 (100). HRMS: Calcd. for $C_{13}H_{20}F_2$: 214.1533; Found: 214.1537.

(4,4-Difluorobut-3-en-1-yn-1-yl)triisopropylsilane (3o). Compound 3o (105.5 mg, 72% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 4.63 (d, *J* = 23.2 Hz, 1H), 1.12 – 1.07 (m, 21H). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.4 (dd, *J* = 22.9 Hz, 4.1 Hz, 1F), -80.3 (d, *J* = 4.1 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (dd, *J* = 300.4 Hz, 294.6 Hz), 96.4 (dd, *J* = 7.7 Hz, 3.5 Hz), 95.2 (dd, *J* = 10.8 Hz, 4.2 Hz), 66.5 (dd, *J* = 41.0 Hz, 19.2 Hz), 19.1, 11.8. IR (thin film) v_{max} 2946, 2152, 1716, 1222 cm⁻¹. MS (EI): m/z (%) 244 (M⁺), 91 (100). HRMS: Calcd. for C₁₃H₂₂F₂Si: 244.1459; Found: 244.1463.

(4,4-Difluorobut-3-en-1-yn-1-yl)benzene (3p). [Known compound⁶]: Compound 3p (42.3 mg, 43% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether).¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.34 – 7.29 (m, 3H), 4.80 (d, *J* = 22.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.6 (dd, *J* = 23.3 Hz, 4.9 Hz, 1F), -79.9 (d, *J* = 4.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (dd, *J* = 300.6 Hz, 294.5 Hz), 132.0, 129.1, 128.9, 123.4, 93.8 (dd, *J* = 8.7 Hz, 3.7 Hz), 78.1 (dd, *J* = 11.9 Hz, 4.4 Hz), 66.3 (dd, *J* = 42.2 Hz, 18.8 Hz).

7. Synthesis of Compounds 6

To a 25 mL of Schlenk tube were added *N*-(4-bromophenyl)maleimide **4** (1.2 equiv), compound **3** (0.3 mmol, 1.0 equiv) and LiCl (20 mol %) under argon atmosphere, followed by addition of DCE (2 mL). The reaction mixture was stirred for 2 days at 120 0 C (oil bath). Then, the reaction mixture was cooled to room temperature and fluorobenzene (1.0 equiv) was added. The yield was determined by 19 F NMR before working up. Then, the reaction mixture was diluted with dichloromethane, filtered through a pad of Celite and concentrated. The residue was purified with silica gelchromatography (Ethyl acetate/Petroleum ether) to afford compound **6**.

2-(4-Bromophenyl)-4-fluoro-7-phenyl-3a,7a-dihydro-1*H*-isoindole-1,3(2*H*)-dione (6a). Compound 6a (87.0 mg, 73% yield) as a yellow solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 5: 1), m.p. 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.35 – 7.22 (m, 5H), 6.86 (d, *J* = 8.4 Hz, 2H), 6.60 – 6.53 (m, 1H), 6.35 (dd, *J* = 9.6 Hz, 6.0 Hz, 1H), 4.27 (dd, *J* = 9.2 Hz, 4.0 Hz, 1H), 4.23 – 4.16 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 99.3 – -99.5 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 163.5, 158.2 (d, *J* = 284.0 Hz), 143.0 (d, *J* = 9.1 Hz), 132.8, 132.6, 130.9, 129.4, 129.3, 129.0, 128.4, 122.8, 122.2 (d, *J* = 30.8 Hz), 100.3 (d, *J* = 7.3 Hz), 45.6 (d, *J* = 1.9 Hz), 39.8. IR (thin film) v_{max} 1709, 1376 cm⁻¹. MS (EI): m/z (%) 397 (M⁺), 172 (100). HRMS: Calcd. for C₂₀H₁₃NO₂BrF: 397.0114; Found: 397.0111.

2,4-Bis(4-bromophenyl)-7-fluoro-3a,7a-dihydro-1H-isoindole-1,3(2*H***)-dione (6b). Compound 6b (78.0 mg, 55% yield) as a yellow solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 5: 1), m.p. 194-195 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.51 (d,** *J* **= 8.4 Hz, 2H), 7.43 (d,** *J* **= 8.4 Hz, 2H), 7.13 (d,** *J* **= 8.4 Hz, 2H), 6.92 (d,** *J* **= 8.4 Hz, 2H), 6.59 – 6.52 (m, 1H), 6.39 (dd,** *J* **= 10.0 Hz, 6.0 Hz, 1H), 4.31 (dd,** *J* **= 9.2 Hz, 4.0 Hz, 1H), 4.19 (dd,** *J* **= 9.2 Hz, 5.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) \delta -99.2 (dd,** *J* **= 4.5 Hz, 9.8 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) \delta 172.3, 163.4, 158.0 (d,** *J* **= 284.6 Hz), 142.3 (d,** *J* **= 9.2 Hz), 132.8, 132.6, 131.9, 131.2, 130.8, 128.4, 123.2, 123.0, 122.8 (d,** *J* **= 31.0 Hz), 100.3 (d,** *J* **= 7.3 Hz), 45.5 (d,** *J* **= 2.1 Hz), 39.1. MS (EI): m/z (%) 472 (M⁺), 84 (100). HRMS: Calcd. for C₂₀H₁₀NO₂Br₂F: 472.9062; Found: 472.9065.**

Methyl4-(2-(4-bromophenyl)-7-fluoro-1,3-dioxo-2,3,3a,7a-tetrahydro-1*H***-isoindol-4-yl)benzoate** (**6c).** Compound **6c** (84.6 mg, 62% yield) as a yellow solid was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 3: 1), m.p. 184-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.60 – 6.53 (m, 1H), 6.41 (dd, *J* = 9.6 Hz, 5.6 Hz, 1H), 4.33 (dd, *J* = 9.6 Hz, 4.0 Hz, 1H), 4.27 (dd, *J* = 9.6 Hz, 5.6 Hz, 1H), 3.90 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -99.2 (dd, *J* = 9.8 Hz, 4.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 167.0, 163.3, 158.0 (d, *J* = 284.6 Hz), 142.1 (d, *J* = 9.0 Hz), 138.2, 132.7, 130.84, 130.80, 130.6, 129.6, 128.3, 122.95, 122.94 (d, *J* = 31.1 Hz), 100.4 (d, *J* = 7.2 Hz), 52.8, 45.5 (d, *J* = 2.0 Hz), 39.5. MS (EI): m/z (%) 455 (M⁺), 199 (100). HRMS: Calcd. for C₂₂H₁₅NO4BrF: 455.0168; Found: 455.0175.

8. Synthesis of Compound 7

2-(4-Bromophenyl)-4-fluoro-7-phenylisoindoline-1,3-dione (**7**). To a 50 mL round bottom flask equipped with a magnetic bar were added toluene (10 mL), compound **6a** (0.2 mmol, 1.0 equiv) and DDQ (0.6 mmol, 3.0 equiv). The resulting mixture was stirred reflux for 12 h. Then the reaction mixture was concentrated and subjected to flash column chromatography. The product was eluted with ethyl acetate/petroleum ether = 10: 1 to afford compound **7** (60.0 mg, 76% yield) as a yellow solid. m.p. 195-197 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.68 (m, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.56 – 7.44 (m, 6H), 7.31 (d, *J* = 8.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.8 (dd, *J* = 8.3 Hz, 4.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 163.8, 157.9 (d, *J* = 267.9 Hz), 139.8 (d, *J* = 7.5 Hz), 138.7 (d, *J* = 4.0 Hz), 135.7, 132.8, 130.8, 129.9, 129.5, 129.0, 128.8, 128.6, 123.5 (d, *J* = 19.8 Hz), 122.6. MS (EI): m/z (%) 394 (M⁺), 397 (100). HRMS: Calcd. for C₂₀H₁₁NO₂BrF: 394.9957; Found: 394.9960.

9. References

- 1) Ikeda, K.; Kawatsura, M. Org. Biomol. Chem. 2016, 14, 3501.
- 2) Fujino, T.; Satoh, T. Org. Lett. 2005, 7, 721.
- 3) Ichitsuka, T.; Ichikawa, J. J. Fluorine Chem. 2015, 170, 29.
- 4) Hu, J.; Shi, Z. Angew. Chem., Int. Ed. 2017, 56, 13342.
- 5) Tang, H.-J.; Feng, C.; Loh, T.-P.; Shi, Z. Angew. Chem., Int. Ed. 2017, 56, 9872.
- 6) Fujino, T.; Satoh, T. Org. Lett. 2016, 18, 5688.
- 7) Elsheimer, S.; Foti, C. J.; Bartberger, M. D. J. Org. Chem. 1996, 61, 6252.

10. Copies of ¹HNMR, ¹³C NMR, and ¹⁹F NMR Spectra of Compounds (*E*)-Methyl (1,1,1-trifluoro-4-phenylbut-3-en-2-yl) carbonate (1a).

(E)-Methyl (1,1,1-trifluoro-4-(p-tolyl)but-3-en-2-yl) carbonate (1b).

(E)-4-(3,4-Dimethylphenyl)-1,1,1-trifluorobut-3-en-2-yl methyl carbonate (1c).

-2.274

	C12122 C12122 C12122 C12122 C12122 C10122 C10122 C10122 C10122 C10225 C10122 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C10225 C102555 C102555 C102555 C102555 C102555 C102555 C102555 C102555 C102555 C102555 C102555 C102555 C102555 C1025555 C102555 C102555 C102555 C1025555 C1025555 C1025555	3.863	
Gr 3			

<

(E)-Methyl (1,1,1-trifluoro-4-(4-methoxyphenyl)but-3-en-2-yl) carbonate (1e).

(E)-Methyl (1,1,1-trifluoro-4-(4-chlorophenyl)but-3-en-2-yl) carbonate (1f).

7.370 7.349 7.349 7.315 6.883 6.883 6.883 6.883 6.883 6.883 6.883 6.883 6.883 6.883 6.883 6.140 6.883 6.140 6.883 6.121 6.6121 6.6121 6.625 7.5558 6.5558 7.55586 5.5588

--3.865

			(pcc	D ₂ Me	
	\bigcirc	\sim	\sim	~c	F ₃	
CI/	\sim					
			-			

Chemical Formula: C₁₂H₁₀CIF₃O₃ Exact Mass: 294.0271

(E)-tert-Butyl (1,1,1-trifluoro-4-(4-bromophenyl)but-3-en-2-yl) carbonate (1g).

S34

(E)-Methyl (1,1,1-trifluoro-4-(4-(trifluoromethyl)phenyl)but-3-en-2-yl) carbonate (1i).

(E)-Methyl (1,1,1-trifluoro-6-phenylhex-3-en-2-yl) carbonate (11).

Chemical Formula: C₁₄H₁₅F₃O₃ Exact Mass: 288.0973

OCO ₂ Me	7.304 7.286 7.286 7.216 7.198 7.198 7.150	6.135 6.135 6.135 6.135 6.475 15.475 15.431 15.4457 15.431 15.395 5.395	3.833	2.751 2.732 2.712 2.712 2.463 2.445 2.427 2.409
---------------------	---	---	-------	--

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)

(E)-Methyl (1,1,1-trifluoro-6-(5-methylfuran-2-yl)hex-3-en-2-yl) carbonate (1m).

Methyl ((65,E)-1,1,1-trifluoro-6,10-dimethylundeca-3,9-dien-2-yl) carbonate (1n).

CF₃ Chemical Formula: C₁₅H₂₃F₃O₃

Exact Mass: 308.1599

S42

Chemical Formula: $C_{15}H_{23}F_3O_3$ Exact Mass: 308.1599	—154.803	141.642 131.532 131.57 131.57 127.671 125.019 122.082 119.986 119.293	76.048 75.716 75.382 75.047	55.899	 40.196 37.107 37.105 32.645 >32.645 >26.170 ₹26.176 ₹19.065 ₹18.065
--	----------	---	--------------------------------------	--------	---

Methyl (1,1,1-trifluoro-4-(triisopropylsilyl)but-3-yn-2-yl) carbonate (10).

OCO2Me	5.732 5.718 5.690	 1.086 1.070
TIPS Chemical Formula: C ₁₅ H ₂₅ F ₃ O ₃ Si		
Exact Mass: 338.1525		

(E)-(4,4-Difluorobuta-1,3-dien-1-yl)benzene (3a).

(E)-4-(4,4-Difluorobuta-1,3-dien-1-yl)-1,2-dimethylbenzene (3c).

-7.108 6.566 6.556 6.556 6.255 6.242 6.242 5.237 5.237 5.176 -2.371

(E)-2-(4,4-Difluorobuta-1,3-dien-1-yl)-1,3-dimethylbenzene (3d).

Chemical Formula: C₁₂H₁₂F₂ Exact Mass: 194.0907

(E)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-methoxylbenzene (3e).

S53

(E)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-bromobenzene (3g).

S56

(E)-(4,4-Difluorobuta-1,3-dien-1-yl)-4-trifluoromethylbenzene (3i).

7.577 7.7560 7.7458 7.451 6.791 6.757 6.757 6.757 6.757

Chemical Formula: C₁₁H₇F₅ Exact Mass: 234.0468

5.178 5.178 5.146 5.119

(4,4-Difluorobuta-1,3-diene-1,1-diyl)dibenzene (3k).

2-(6,6-Difluorohexa-3,5-dien-1-yl)-5-methylfuran (3m).

(4,4-Difluorobut-3-en-1-yn-1-yl)triisopropylsilane (30).

S68

2-(4-Bromophenyl)-4-fluoro-7-phenyl-3a,7a-dihydro-1*H*-isoindole-1,3(2*H*)-dione (6a)

2,4-Bis(4-bromophenyl)-7-fluoro-3a,7a-dihydro-1*H*-isoindole-1,3(2*H*)-dione (6b)

Methyl4-(2-(4-bromophenyl)-7-fluoro-1, 3-dioxo-2, 3, 3a, 7a-tetrahydro-1H-isoindol-4-yl) benzoate

(6c)

2-(4-Bromophenyl)-4-fluoro-7-phenylisoindoline-1,3-dione (7)

