Supporting Information

Manganese-Catalyzed Asymmetric Oxidation of Methylene C-H of Spirocyclic Oxindoles and Dihydroquinolinones with Hydrogen Peroxide

Bin Qiu,^{†,‡} Daqian Xu,[†] Qiangsheng Sun,[†] Jin Lin,^{†,‡} and Wei Sun^{*,†}

[†] State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China

[‡] University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author: E-mail: wsun@licp.cas.cn

Contents

1. Materials and methods	S2
2. Instrumentation	S2
3. General procedure for the synthesis of spirocyclic substrates 1	S2
4. General procedure for the asymmetric oxidation of spirocyclic substrate 1	S 8
5. General procedure for synthesis of spirocyclic substrates 4	S 16
6. General procedure for the asymmetric hydroxylation of spirocyclic substrate 4	S20
References	S28
7. Copies of ¹ H NMR and ¹³ C NMR spectra for substrates and spirocyclic products	S29
8. Copies of HPLC spectra of spirocyclic products	S75

Materials and methods.

All reagents and solvents were obtained from commercial suppliers without further purification unless noted otherwise. The chiral N4 ligands and the corresponding manganese complexes **C1-C6** were prepared according to the published methods¹. Flash column chromatography was performed over silica gel (200-300 mesh) to provide the products.

Instrumentation.

¹H and ¹³C NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts for protons are reported in ppm, and the spectra are referenced to residual ¹H and ¹³C signals of the solvents (CDCl₃, $\delta_{\rm H} = 7.26$ ppm; $\delta_{\rm C} = 77.2$ ppm). The high resolution mass spectra (HRMS) were recorded on an Agilent 6530 Q-TOF LC-MS. GC-MS analysis were performed with an Agilent 7890A/5975C GC-MS system with an HP-5MS column. Optical rotation was recorded with a Perkin-Elmer 341 polarimeter (sodium lamp, 1-dm cuvette, c in g/100 mL, 20 ^oC). HPLC analysis for measuring enantiomeric excess (*ee*) values was performed with a SHIMADZU system (SHIMADZU LC-20AT pump, SHIMADZU LC-20A Absorbance Detector) with Chiralpak AD and OD columns (Daicel Chemical Industries, LTD).

General procedure for synthesis of spirocyclic substrates 1

The spirocyclic oxindole and dihydroquinolinone substrates were synthesized according to the published strategies^{2,3}.

To a solution of 2-oxindole (15.0 mmol) in THF (60 mL) at RT was added anhydrous Na₂CO₃ (14.3 g, 135.0 mmol) and Boc₂O (8.62 mL, 37.6 mmol) sequentially. The reaction mixture was heated to reflux and maintained at this temperature for 2 h after which it was cooled to RT. The resulting precipitated material was filtered off under suction using THF (3×10 mL) and concentrated in vacuo. Purification by column chromatography (SiO₂, Petroleum ether/EtOAc, 50:1 \rightarrow 20:1) gave the title compounds as solid. Then, to a solution of above

compounds (4.29 mmol) in DMF (68 mL) at 0 $^{\circ}$ C was added NaH (60% in mineral oil, 377 mg, 9.43 mmol) in one portion. The mixture was stirred for 1 h 30 min at 0 $^{\circ}$ C after which a solution of o-xylylene dibromide (5.15 mmol) in DMF (6.3 mL) was added dropwise via syringe over 30 min. Following the addition, the mixture was allowed to warm to RT slowly over 16 h. The reaction was quenched with H₂O (40 mL) and diluted with EtOAc (40 mL). The layers were separated and the aqueous layer further extracted with EtOAc (40 mL). The combined organic layers were washed with brine (80 mL), dried (MgSO₄) and concentrated in vacuo. Purification by column chromatography (SiO₂, Petroleum ether/EtOAc, 20:1) gave the desired spirocyclic compounds **1a-g**, **1i-k** (33%-39% isolated yield based on *tert*-butyl 2-oxoindoline-1-carboxylate).

The compound **1h** was prepared in analogy to a literature procedure, which obtained by Heck cross-coupling reaction with the substrate **1e** and phenylboronic $acid^4$.

To a solution of **1e** (0.414g, 1.0 mmol) in Toluene/H₂O (10 mL/3 mL) at RT was added PhB(OH)₂ (0.304 g, 1.5mmol), Pd(PPh₃)₄ (60 mg, 0.05 mmol) and K₃PO₄ (0.53g, 2.5 mmol) sequentially under argon atmosphere. The reaction mixture was heated to 80 $^{\circ}$ C and maintained at this temperature for 6 h after which it was cooled to RT. The reaction was extracted with toluene (10 mL) and the organic layer was washed with H₂O (3 × 5 mL), brine (10 mL), dried (MgSO₄) and concentrated in vacuo. Purification by column chromatography (SiO₂, dry load, Petroleum ether/EtOAc, 50:1) afforded the title compound **1h** as light yellow solid (353 mg, 86% isolated yield).

To a solution of **1a** (0.335 g, 1.0 mmol) in CH₂Cl₂ (10 mL) at 0 °C was added TFA (1.0 mL, 13.0 mmol) dropwise. The reaction mixture was stirred at 0 °C for 30 min, after which it was added aq. NaHCO₃ (10 mL) and diluted with CH₂Cl₂ (10 mL). The layers were separated and the aqueous layer further extracted with CH₂Cl₂ (10 mL). The combined organic layers were washed with H₂O (3×10 mL), brine (10 mL), dried (MgSO₄) and concentrated *in vacuo* to obtain crude product. Then, to a solution of the crude product in CH₂Cl₂ (20 mL) at RT was (N,N-dimethylpyridin-4-amine, added DMAP 12 mg, 0.1 mmol), DIPEA (N,N-diisopropylpropan- ethylamine, 0.33 mL, 2.0 mmol) and acyl chloride (1.5 mmol) under argon atmosphere. The reaction mixture was heated to reflux and maintained at this temperature for 4 h after which it was cooled to RT. The reaction was quenched with H₂O (10 mL) and diluted with CH₂Cl₂. The layers were separated and the aqueous layer further extracted with CH_2Cl_2 (20 mL). The combined organic layers were washed with H_2O (3× 10 mL), brine (10 mL), dried (MgSO₄) and concentrated in vacuo. Purification by column chromatography (SiO₂, dry load, Petroleum ether:EtOAc, 20:1) gave the title compound 11 as White solid (271 mg, 85% isolated yield).

tert-butyl 2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1a)

White solid, 503 mg, 35% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.85 (d, J = 8.0 Hz, 1H), 7.25-7.29 (m, 5H), 7.00 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.2 Hz, 1H), 3.69 (d, J = 15.6 Hz, 2H), 3.13 (d, J = 15.6 Hz, 2H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.8, 149.2, 140.5, 138.0, 134.8, 128.1, 127.0, 124.7, 124.4, 121.3, 114.8, 84.3, 54.3, 45.3, 28.0.

tert-butyl 5'-fluoro-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1b)

Orange red solid, 560 mg, 37% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.85 (dd, J = 8.8, 4.4 Hz, 1H), 7.26 (s, 4H), 7.96 (td, J = 8.8, 2.8 Hz, 1H), 6.54 (dd, J = 8.0, 2.8 Hz, 1H), 3.69 (d, J = 15.6 Hz, 2H), 3.12 (d, J = 15.6 Hz, 2H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.4, 160.1 (d, J = 242 Hz), 149.3, 140.2, 136.6 (d, J = 9 Hz), 134.1, 127.4, 124.6, 116.3 (d, J = 8 Hz), 114.7 (d, J = 23 Hz), 109.0 (d, J = 24 Hz), 84.7, 54.7, 45.3, 28.1. *tert*-butyl 5'-chloro-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1c)

White solid, 602 mg, 38% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.82 (d, *J* = 8.4 Hz, 1H), 7.23-7.26 (m, 5H), 6.80 (s, 1H), 3.68 (d, *J* = 15.6 Hz, 2H), 3.12 (d, *J* = 15.6 Hz, 2H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.2, 149.2, 140.2, 136.8, 136.6, 130.1 128.3, 127.4, 124.6, 121.7, 116.3, 84.8, 54.5, 45.3, 28.1.

tert-butyl 6'-chloro-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1d)

Light yellow solid, 617 mg, 39% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.93 (d, *J* = 2.0 Hz 1H), 7.25 (s, 4H), 6.98 (dd, *J* = 8.0 , 2.0 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 3.68 (d, *J* = 16.0 Hz, 2H), 3.10 (d, *J* = 15.6 Hz, 2H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.4, 149.1, 140.4, 139.2, 133.9, 133.3, 127.4, 124.8, 124.6, 122.3, 115.7, 85.0, 54.3, 45.4, 28.1.

tert-butyl 5'-bromo-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1e)

White solid, 638 mg, 36% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.77 (d, J = 8.8 Hz, 1H), 7.40 (dd, J = 8.4, 2.0 Hz, 1H), 7.26 (s, 4H), 6.94 (d, J = 2.8 Hz, 1H), 3.68 (d, J = 15.6 Hz, 2H), 3.13 (d, J = 15.6 Hz, 2H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.1, 149.2, 140.1, 137.3, 137.0, 131.2, 127.4, 124.6, 124.5, 117.7, 116.7, 84.9, 54.4, 45.4, 28.1.

tert-butyl 6'-bromo-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1f)

White solid, 638 mg, 36% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.10 (t, J = 2.0 Hz, 1H), 7.25 (s, 4H), 7.13 (dt, J = 8.0, 1.6 Hz, 1H), 6.70 (dd, J = 8.0, 1.6 Hz, 1H), 3.68 (d, J = 15.6 Hz, 2H), 3.10 (d, J = 16.8 Hz, 2H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.2, 149.1, 140.3, 139.3, 133.8, 127.7, 127.4, 124.6, 122.7, 121.7, 118.5, 85.0, 54.3, 45.3, 28.1.

tert-butyl 5'-methyl-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1g)

White solid, 494 mg, 33% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.72 (d, *J* = 8.4 Hz, 1H), 7.25 (s, 4H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.65 (s, 1H), 3.67 (d, *J* = 15.6 Hz, 2H), 3.13 (d, *J* = 15.6 Hz, 2H), 2.20 (s, 3H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 179.2, 149.4, 140.8, 135.8, 135.0, 134.5, 128.7, 127.1, 124.5, 122.0, 114.7, 84.3, 54.3, 45.5, 28.2, 21.0.

tert-butyl 2'-oxo-5'-phenyl-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1h)

Light yellow solid, 353 mg, 86% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.93 (dd, J = 8.4, 2.4 Hz, 1H), 7.51 (dt, J = 8.4, 2.0 Hz, 1H), 7.34-7.42 (m, 4H), 7.30 (dd, J = 6.4, 1.6 Hz, 1H), 7.26 (s, 4H), 7.08 (t, J = 2.0 Hz, 1H), 3.72 (d, J = 17.2 Hz, 2H), 3.22 (d, J = 16.8

Hz, 2H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ179.1, 149.4, 140.6, 140.4, 138.1, 137.6, 135.6, 128.8, 127.3, 127.1, 126.9, 124.6, 120.1, 115.3, 84.6, 54.4, 45.6, 28.2; HRMS [M+Na]⁺ Calcd for C₂₇H₂₅NO₃Na: 434.1727, found: 434.1725.

tert-butyl 5,6-dimethoxy-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (1i)

White solid, 559 mg, 33% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.85 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.78 (s, 2H), 3.89 (s, 6H), 3.63 (d, J = 15.2 Hz, 2H), 3.07 (d, J = 15.2 Hz, 2H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.9, 149.4, 148.7, 138.3, 135.2, 132.2, 128.2, 124.8, 121.5, 114.9, 107.6, 84.4, 56.1, 54.8, 45.5, 28.2.

tert-butyl 5'-chloro-5,6-dimethoxy-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'carboxylate (1j)

White solid, 610 mg, 36% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.80 (d, J = 8.8 Hz, 1H), 7.23 (dd, J = 8.8, 2.4 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 6.77 (s, 2H), 3.88 (s, 6H), 3.61 (d, J = 15.2 Hz, 2H), 3.03 (d, J = 15.2 Hz, 2H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.0, 149.2, 148.8, 136.9, 136.8, 131.6, 130.1, 128.2, 121.7, 116.2, 107.6, 84.7, 56.1, 54.8, 45.3, 28.1.

tert-butyl 6'-chloro-5,6-dimethoxy-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'carboxylate (1k)

White solid, 593 mg, 35% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.93 (d, J = 2.0 Hz, 1H), 7.01 (dd, J = 8.0, 2.0 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.78 (s, 2H), 3.88 (s, 6H), 3.62 (d, J = 15.2 Hz, 2H), 3.03 (d, J = 15.2 Hz, 2H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 178.3, 149.1, 148.9, 139.2, 133.9, 133.5, 131.8, 124.8, 122.3, 115.7, 107.7, 84.9, 56.1, 54.6, 45.4, 28.1.

1'-pivaloyl-1,3-dihydrospiro[indene-2,3'-indolin]-2'-one (11)

White solid, 271 mg, 85% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.52 (d, J = 8.0 Hz, 1H), 7.22-7.28 (m, 5H), 7.00 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 7.2 Hz, 1H), 3.65 (d, J = 16.0 Hz, 2H), 3.19 (d, J = 16.0 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 182.8, 179.8, 140.6, 139.5, 135.6, 128.2, 127.3, 124.7, 124.6, 121.7, 114.1, 54.4, 45.0, 43.5, 26.9.

1,3-dihydrospiro[indene-2,3'-indolin]-2'-one (1m)

White solid, 119 mg, 92% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.86 (s, 1H, NH), 7.18-7.26 (m, 5H), 6.83-6.94 (m, 3H), 3.65 (d, *J* = 15.6 Hz, 2H), 3.13 (d, *J* = 15.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 183.3, 141.2, 139.9, 136.8, 128.0, 127.1, 124.6, 122.7, 121.9, 110.0, 54.8, 44.1.

General procedure for the asymmetric oxidation of spirocyclic substrate 1

S8

A 10 mL Schlenk tube was charged with substrate 1 (0.2 mmol, 1.0 equiv), manganese catalyst C1 (2.0 mol%),1 mL of CH₂Cl₂, 2,2-dimethylbutanoic acid (DMBA, 0.35 mL, 14 equiv) and a stir bar under argon. Then a solution of H₂O₂ (7.0 equiv, 30% aqueous solution diluted in 1 mL of MeCN) was added dropwise over 2 h using a syringe pump and the mixture was stirred at 0 $^{\circ}$ C for additional 2 h. The reaction mixture was then quenched with sodium sulfite and NaHCO₃ then purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1) to give the desired spirocyclic compound.

tert-butyl (*R*)-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2a)

White solid, 44 mg, 63% isolated yield; $[\alpha]_{D}^{20} = +32.8$ (c = 0.68 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.94 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 3.87 (d, J = 17.2 Hz, 1H), 3.46 (d, J = 17.2 Hz, 1H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.8, 173.2, 153.6, 148.9, 140.9, 135.9, 134.4, 129.1, 128.8, 128.4, 126.5, 125.7, 124.9, 121.9, 115.6, 84.7, 63.6, 38.7, 28.1; HRMS [M+Na]⁺ Calcd for C₂₁H₁₉NO₄Na: 372.1206, found: 372.1212; HPLC-separation conditions: Sample dissolved in EtOH, t_{R} [racemate] = 6.85 min, 11.18 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_{R} [**2a**] = 6.86 min, $t_{R} = [ent-$ **2a**] = 11.45 min; 91% ee.

tert-butyl (*R*)-5'-fluoro-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2b)

Light yellow solid, 41 mg, 56% isolated yield; $[\alpha]_D^{20} = +47.5$ (c = 0.116 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.94 (dd, J = 9.2, 4.4 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.05 (td, J = 9.0, 2.8 Hz, 1H), 6.66 (dd, J = 7.6, 2.8 Hz, 1H), 3.89 (d, J = 17.6 Hz, 1H), 3.45 (d, J = 17.2 Hz, 1H), 1.63

(s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.2, 172.8, 160.0 (d, J = 243.0 Hz), 153.4, 148.9, 136.9, 136.2, 134.2, 130.2 (d, J = 9.0 Hz), 128.6, 126.6, 125.9, 117.0 (d, J = 8.0 Hz), 115.6 (d, J = 22.0 Hz), 109.7 (d, J = 25.0 Hz), 84.9, 63.7, 38.5, 28.1; HRMS [M+Na]⁺ Calcd for C₂₁H₁₈FNO₄Na: 390.1112, found: 390.1125; HPLC-separation conditions: Sample dissolved in EtOH, $t_{\rm R}$ [racemate] = 6.53 min, 9.13 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, $t_{\rm R}$ [**2b**] = 6.67 min, $t_{\rm R} = [ent-2b] = 9.29$ min; 88% ee.

tert-butyl (*R*)-5'-chloro-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2c)

White solid, 51 mg, 67% isolated yield; $[\alpha]_{D}^{20} = +78.1$ (c = 0.22 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.91 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 7.2 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.32 (dd, J = 8.8, 2.0 Hz, 1H), 6.89 (s, 1H), 3.87 (d, J = 17.2 Hz, 1H), 3.45 (d, J = 17.6 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.0, 172.5, 153.3, 148.7, 139.5, 136.2, 134.2, 130.4, 130.3 129.1, 128.6, 126.5, 125.9, 122.3, 116.9, 85.1, 63.4, 38.5, 28.1; HRMS [M+Na]⁺ Calcd for C₂₁H₁₈ClNO₄Na: 406.0817; found: 406.0817; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 7.32 min, 11.02 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**2c**] = 7.32 min, $t_R = [ent-$ **2c**] = 11.05 min; 89% ee.

tert-butyl (*R*)-6'-chloro-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2d)

Light yellow solid, 50 mg, 65% isolated yield; $[\alpha]_D^{20} = +56.5$ (c = 0.32 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.03 (s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 1H), 6.85 (d, J = 8.4, 2.0 Hz, 1

8.0 Hz, 1H), 3.87 (d, J = 17.2 Hz, 1H), 3.44 (d, J = 17.6 Hz, 1H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.3, 172.7, 153.4, 148.7, 141.8, 136.1, 134.9, 134.2, 128.6, 127.0, 126.5, 125.9, 125.0, 122.9, 116.4, 85.3, 63.2, 38.5, 28.0; HRMS [M+Na]⁺ Calcd for C₂₁H₁₈ClNO₄Na: 406.0817, found: 406.0827; HPLC-separation conditions: Sample dissolved in EtOH, $t_{\rm R}$ [racemate] = 6.72 min, 10.91 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, $t_{\rm R}$ [**2d**] = 6.73 min, $t_{\rm R} = [ent-2d] = 10.92$ min; 88% ee.

tert-butyl (*R*)-5'-bromo-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2e)

White solid, 50 mg, 58% isolated yield; $[\alpha]_{D}^{20} = +35.6$ (*c* = 0.50 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.86 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.46-7.51 (m, 2H), 7.04 (d, *J* = 2.0 Hz, 1H), 3.87 (d, *J* = 17.2 Hz, 1H), 3.46 (d, *J* = 17.6 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.1, 172.5, 153.4, 148.7, 139.9, 136.2, 134.1, 132.0, 130.7, 128.6, 126.6, 125.9, 125.1, 117.7, 117.3, 85.1, 63.3, 38.5, 28.1; HRMS [M+Na]⁺ Calcd for C₂₁H₁₈BrNO₄Na: 450.0311, found: 450.0322; HPLC-separation conditions: Sample dissolved in EtOH, *t*_R [racemate] = 7.58 min, 11.88 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, *t*_R [**2e**] = 7.79 min, *t*_R = [*ent*-**2e**] = 12.49 min; 88% ee.

tert-butyl (*R*)-6'-bromo-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2f)

White solid, 44 mg, 52% isolated yield; $[\alpha]_{D}^{20} = +37.1$ (c = 0.66 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.18 (d, J = 1.6 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.72 (td, J = 7.4, 1.2 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.26 (dd, J = 8.0, 2.0 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 3.86 (d, J = 17.6 Hz, 1H), 3.44 (d, J = 17.2 Hz, 1H), 1.64 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.2, 172.6, 153.4, 148.7, 141.9, 136.2, 134.2, 128.6, 127.9, 127.6, 126.6, 125.8, 123.2, 122.7, 119.2, 85.3, 63.3, 38.4, 28.0.; HRMS [M+Na]⁺ Calcd for C₂₁H₁₈BrNO₄Na: 450.0311, found: 450.0305; HPLC-separation conditions: Sample dissolved in EtOH, *t*_R [racemate] = 6.96 min, 11.39 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, *t*_R [**2f**] = 6.97 min, *t*_R = [*ent*-**2f**] = 11.41 min; 87% ee.

tert-butyl (*R*)-5'-methyl-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2g)

White solid, 35 mg, 48% isolated yield; $[\alpha]_{D}^{20} = +44.7$ (*c* = 0.30 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 7.4 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.71 (s, 1H), 3.86 (d, *J* = 17.2 Hz, 1H), 3.44 (d, *J* = 17.6 Hz, 1H), 2.26 (s, 3H), 1.63 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 199.0, 173.4, 153.7, 149.0, 138.5, 135.9, 134.6, 134.5, 129.6, 128.8, 128.4, 126.5, 125.7, 122.5, 115.4, 84.5, 63.6, 38.7, 28.1, 21.0; HRMS [M+Na]⁺ Calcd for C₂₂H₂₁NO₄Na: 386.1363, found: 386.1367; HPLC-separation conditions: Sample dissolved in EtOH, *t*_R [racemate] = 8.45 min, 12.18 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, *t*_R [**2g**] = 8.27 min, *t*_R = [*ent*-**2g**] = 11.83 min; 88% ee.

tert-butyl (*R*)-1,2'-dioxo-5'-phenyl-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (2h)

White solid, 38 mg, 45% isolated yield; $[\alpha]_D^{20} = +32.5$ (c = 0.24 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.01 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.58 (dd, J = 8.4, 2.0 Hz, 1H), 7.45-7.50 (m, 3H), 7.37 (t, J = 7.6 Hz, 2H), 7.31 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1H), 3.92 (d, J = 17.6 Hz, 1H), 3.53 (d, J = 17.6 Hz, 1H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.8, 173.3, 153.6,

148.9, 140.2, 138.3, 136.0, 134.4, 129.4, 128.8, 128.5, 128.0, 127.4, 127.0, 126.5, 125.8, 120.6, 116.0, 84.8, 63.7, 38.7, 28.1; HRMS $[M+Na]^+$ Calcd for $C_{27}H_{23}NO_4Na$: 448.1519, found: 448.1527; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 14.14 min, 21.73 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**2h**] = 14.23 min, t_R = [*ent*-**2h**] = 21.84 min; 77% ee.

tert-butyl (*R*)-5,6-dimethoxy-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'carboxylate (2i)

White solid, 46 mg, 56% isolated yield; $[\alpha]_{D}^{20} = +53.8$ (*c* = 0.65 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.94 (d, *J* = 8.4 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.19 (s, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.01 (s, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 4.02 (s, 3H), 3.92 (s, 3H), 3.76 (d, *J* = 16.8 Hz, 1H), 3.36 (d, *J* = 16.8 Hz, 1H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 197.2, 173.5, 156.5, 150.2, 149.4, 148.9, 140.9, 129.0, 127.1, 124.8, 121.9, 115.6, 107.3, 105.6, 84.6, 63.9, 56.5, 56.2, 38.5, 28.1; HRMS [M+Na]⁺ Calcd for C₂₃H₂₃NO₆Na: 432.1418, found: 432.1419; HPLC-separation conditions: Sample dissolved in EtOH, *t*_R [racemate] = 18.92 min, 26.31 min; Chiralcel OD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, *t*_R [**2i**] = 18.69 min, *t*_R = [*ent*-**2i**] = 26.42 min; 69%; ee.

tert-butyl (*R*)-5'-chloro-5,6-dimethoxy-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline] -1'- carboxylate (2j)

White solid, 47 mg, 53% isolated yield; $[\alpha]_D^{20} = +40.0$ (c = 0.21 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.89 (d, J = 8.8 Hz, 1H), 7.31 (dd, J = 8.8, 2.4 Hz, 1H), 7.18 (s, 1H), 7.01 (s, 1H), 6.91 (d, J = 2.0 Hz, 1H), 4.03 (s, 3H), 3.93 (s, 3H), 3.76 (d, J = 17.2 Hz, 1H), 3.34 (d, J = 16.8 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.3, 172.8, 156.8, 150.4, 149.1, 148.8, 139.5, 130.7, 130.2, 129.0, 126.8, 122.2, 116.8, 107.3, 105.7, 84.9,

63.7, 56.5, 56.3, 38.3, 28.1; HRMS $[M+Na]^+$ Calcd for $C_{23}H_{22}NO_6CINa$: 466.1028, found: 466.1031; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 37.94 min, 44.91 min; Chiralcel IA, 20 °C, 210 nm, 95/5 *n*-hexane/*i*-PrOH, 0.8 mL/min, t_R [**2j**] = 38.24 min, $t_R = [ent-2j] = 45.29$ min; 60% ee.

tert-butyl (*R*)-6'-chloro-5,6-dimethoxy-1,2'-dioxo-1,3-dihydrospiro[indene-2,3'-indoline] -1'-carboxylate (2k)

White solid, 51 mg, 57% isolated yield; $[\alpha]_{D}^{20} = +21.0$ (*c* = 0.10 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.01 (d, *J* = 2.0 Hz, 1H), 7.18 (s, 1H), 7.11 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.00 (s, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 4.02 (s, 3H), 3.92 (s, 3H), 3.75 (d, *J* = 17.2 Hz, 1H), 3.33 (d, *J* = 17.2 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.5, 173.0, 156.7, 150.4, 149.1, 148.7, 141.8, 134.7, 127.4, 126.9, 124.8, 122.8, 116.4, 107.3, 105.6, 85.1, 63.5, 56.5, 56.3, 38.3, 28.0; HRMS [M+Na]⁺ calcud for C₂₃H₂₂NO₆ClNa: 466.1028, found: 466.1032; HPLC-separation conditions: Sample dissolved in EtOH, *t*_R [racemate] = 17.05 min, 23.51 min; Chiralcel IA, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, *t*_R [**2k**] = 16.98 min, *t*_R = [*ent*-**2k**] = 23.47 min, 55% ee.

(*R*)-1'-pivaloylspiro[indene-2,3'-indoline]-1,2'(3*H*)-dione (2l)

White solid, 28 mg, 42% isolated yield; $[\alpha]_{D}^{20} = +37.6$ (c = 0.21 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.82 (d, J = 7.6 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.32 (td, J = 7.8, 1.6 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.92 (dd, J = 7.6, 1.2 Hz, 1H), 3.88 (d, J = 17.2 Hz, 1H), 3.50 (d, J = 17.2 Hz, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.6, 182.4, 174.5, 153.7, 142.1, 136.0, 134.2, 129.8, 129.0, 128.4, 126.5, 125.8, 124.7, 122.0, 114.6, 63.8, 43.6, 37.8, 26.9;

HRMS $[M+Na]^+$ Calcd for C₂₁H₁₉NO₃Na: 356.1257, found: 356.1269; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 6.48 min, 8.10 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**2l**] = 6.49 min, t_R = [*ent*-**2l**] = 8.11 min; 87% ee.

(*R*)-5'-chlorospiro[indene-2,3'-indoline]-1,2'(3*H*)-dione (2c')

To a solution of 2c (66 mg, 0.171 mmol) in CH₂Cl₂ (5 mL) at 0 °C was added TFA (0.5 mL, 6.5 mmol) dropwise. The reaction mixture was stirred at 0 °C for 30 min, after which it was added aq. NaHCO₃ (10 mL) and diluted with CH₂Cl₂ (10 mL). The layers were separated and the aqueous layer further extracted with CH₂Cl₂ (10 mL). The combined organic layers were washed with H₂O (3 × 10 mL), brine (10 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by column chromatography (SiO₂, dry load, Petroleum ether:EtOAc, 3:1) gave the title compound 2c'.

Light orange solid, 41 mg, 82% isolated yield; $[\alpha]_D^{20} = +78.3$ (c = 0.22 in CHCl₃) $[[\alpha]_D^{20} = +33.1$ (c = 0.175, CDCl₃), 61% ee]²; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.62 (s, 1H, N-H), 7.84 (d, J = 7.6 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.20 (dd, J = 8.4, 2.0 Hz, 1H), 6.85-6.87 (m, 2H), 3.85 (d, J = 17.2 Hz, 2H), 3.45 (d, J = 17.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.9, 153.5, 140.5, 136.0, 134.7, 132.2, 128.9, 128.5, 128.3, 126.6, 125.8, 122.9, 111.4, 63.5, 37.4.

tert-butyl 1-hydroxy-2'-oxo-1,3-dihydrospiro[indene-2,3'-indoline]-1'-carboxylate (3a)

White solid, 16 mg, 23% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.90 (d, J = 8.0 Hz, 1H), 7.40-7.41 (m, 1H), 7.26-7.35 (m, 5H), 6.98 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 7.2

Hz, 1H), 5.72 (s, 1H), 3.61 (d, J = 15.6 Hz, 1H), 3.12 (d, J = 15.6 Hz, 1H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 177.4, 149.2, 142.5, 140.1, 139.2, 129.0, 128.9, 127.7, 124.9, 124.8, 124.5, 124.2, 122.5, 115.4, 84.6, 83.0, 62.1, 41.6, 28.2; HRMS [M+Na]⁺ Calcd for C₂₁H₂₁NO₄Na: 374.1363, found: 374.1364. HPLC-separation conditions: Sample dissolved in EtOH, Chiralcel AD-H, 20 °C, 210 nm, 95/5 *n*-hexane/*i*-PrOH, 0.5 mL/min.

Gram-scale reaction for the asymmetric oxidation of 1a

Substrate **1a** (1.005 g, 2.86 mmol, 1.0 equiv), manganese catalyst **C1** (2.0 mol %) were added into a 50 mL of *Schlenk* tube, followed by 6 mL of CH_2Cl_2 and 2,2-dimethylbutanoic acid (DMBA, 5.0 mL, 14 equiv) with a magnetic stir bar under argon. Then 7 equiv of H_2O_2 (30% aqueous solution diluted in 6 mL of MeCN) was added dropwise over 3 h using a syringe pump and the mixture was stirred at 0 °C for additional 3 h. The reaction mixture was then quenched with sodium sulfite and then purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1-10:1) to give the desired spirocyclic compound **2a** (white solid, 0.408 g, 39% yield, 90% ee) and **3a** (white solid, 0.211 g, 20% yield, 0% ee).

General procedure for synthesis of spirocyclic substrates 4

The 2,3-dihydroquinolin-4(1*H*)-one derivatives were synthesized according to the reported method^{5,6}.

To a solution of 2,3-dihydroquinolin-4-one (0.74 g, 5 mmol) in CH_2Cl_2 (30 mL) at rt was added DMAP (60 mg, 0.5 mmol), DIPEA (1.65 mL, 10.0 mmol) and Boc_2O (1.73 mL, 7.5

mmol) under argon atmosphere. The reaction mixture was heated to reflux and maintained at this temperature for 4 h after which it was cooled to RT. Purification by column chromatography (SiO₂, dry load, Petroleum ether/EtOAc, 20:1) gave the compound. Then, to a mixture of *t*-BuOK (0.50 g, 4.44 mmol, 2.22 equiv.) in dry *t*-BuOH (10 mL) was added ketone (2.0 mmol, 1.0 equiv.) under an inert atmosphere. The mixture was stirred at rt for 10-15 min. To this mixture, α , α '-dibromo xylene (2.0 mmol, 1.0 equiv.) was added and resulting mixture was stirred at rt for 2 h. The reaction mixture was concentrated on a rotary evaporator to give residue. The residue was diluted with water (5 mL) and 15% HCl (5 mL). The mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated to give crude product. It was purified by column chromatography (petroleum ether/ethyl acetate, 50:1-25:1) to give the product **4** (53%-85% isolated yield based on *tert*-butyl 4-oxo-3,4-dihydroquinoline-1(2*H*)-carboxylate).

tert-butyl 4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)-carboxylate (4a)

White solid, 524 mg, 75% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.05 (d, J = 7.6 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.14-7.24 (m, 5H), 3.98 (s, 2H), 3.42 (d, J = 16.0 Hz, 2H), 2.87 (d, J = 16.0 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 197.3, 153.3, 143.9, 140.3, 134.1, 128.2, 127.0, 124.9, 123.9, 123.4, 82.1, 55.2, 52.2, 39.1, 28.2. HRMS [M+H]⁺ Calcd for C₂₂H₂₄NO₃: 350.1751, found: 350.1751.

tert-butyl 6'-chloro-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)carboxylate (4b)

White solid, 605 mg, 79% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.01 (s, 1H), 7.90 (d, *J* = 9.2 Hz, 1H), 7.46 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.21 (s, 4H), 3.98 (s, 2H), 3.42 (d, *J* =

16.0 Hz, 2H), 2.87 (d, J = 16.8 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.2, 153.1, 142.3, 140.0, 133.9, 129.6, 127.6, 127.1, 124.9, 82.5, 54.9, 52.1, 39.0, 28.1. HRMS [M+H]⁺ Calcd for C₂₂H₂₃ClNO₃: 384.1361, found: 384.1358.

4'-oxo-6'-(trifluoromethyl)-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)-carboxy late (4c)

White solid, 567 mg, 68% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.34 (s, 1H), 8.10 (d, *J* = 8.8 Hz, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.21 (s, 4H), 4.02 (s, 2H), 3.44 (d, *J* = 16.0 Hz, 2H), 2.89 (d, *J* = 16.0 Hz, 2H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.1, 153.0, 146.4, 139.8, 130.3, 127.1, 125.7, 124.9, 123.8, 123.4, 83.0, 54.8, 52.1, 39.0, 28.1. HRMS [M+H]⁺ Calcd for C₂₃H₂₃F₃NO₃: 418.1625, found: 418.1623.

6'-methoxy-4'-oxo-1,3-dihydro-2'H-spiro[indene-2,3'-quinoline]-1'(4'H)-carboxylate (4d)

White solid, 622 mg, 82% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.81 (d, *J* = 9.2 Hz, 1H), 7.50 (s, 1H), 7.21 (s, 4H), 7.12 (dd, *J* = 9.2, 2.8 Hz, 1H), 3.96 (s, 2H), 3.84 (s, 3H), 3.43 (d, *J* = 16.0 Hz, 2H), 2.88 (d, *J* = 16.4 Hz, 2H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 197.5, 155.9, 153.5, 140.2, 137.7, 127.0, 125.0, 124.9, 124.6, 122.6, 109.1, 81.9, 55.7, 55.3, 52.3, 39.2, 28.2. HRMS [M+H]⁺ Calcd for C₂₃H₂₆NO₄: 380.1856, found: 380.1857.

8'-methoxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)-carboxylate (4e)

White solid, 402 mg, 53% isolated yield;¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.63 (d, J = 7.6 Hz, 1H), 7.19-7.24 (m, 5H), 7.11 (d, J = 8.0 Hz, 1H), 3.86-4.10 (m, 5H), 3.43 (d, J = 16.8

Hz, 2H), 2.91 (d, J = 16.8 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 198.4, 153.8, 152.8, 134.1, 127.0, 126.5, 125.6, 124.8, 119.3, 116.7, 81.1, 56.9, 56.0, 53.8, 40.1, 28.0. HRMS [M+H]⁺ Calcd for C₂₃H₂₆NO₄: 380.1856, found: 380.1862.

tert-butyl 6',7'-dimethoxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)carboxylate (4f)

White solid, 695 mg, 85% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.50 (s, 1H), 7.49 (s, 1H), 7.20 (s, 4H), 3.98 (s, 3H), 3.96 (s, 2H), 3.92 (s, 3H), 3.43 (d, *J* = 16.0 Hz, 2H), 2.85 (d, *J* = 16.0 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.3, 153.9, 153.3, 145.8, 140.4, 139.5, 126.9, 124.9, 117.1, 108.3, 105.7, 82.0, 56.3, 56.1, 54.8, 52.7, 39.1, 28.2. HRMS [M+H]⁺ Calcd for C₂₄H₂₈NO₅: 410.1962, found: 410.1963.

tert-butyl 4'-oxo-6'-phenyl-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)carboxylate (4g)

White solid, 655 mg, 77% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.31 (s, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.21 (s, 4H), 4.02 (s, 2H), 3.47 (d, *J* = 16.0 Hz, 2H), 2.91 (d, *J* = 16.0 Hz, 2H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 197.3, 153.4, 143.0, 140.2, 139.6, 136.7, 132.6, 128.9, 127.6, 127.0, 126.9, 126.3, 124.9, 124.0, 123.7, 82.3, 55.1, 52.3, 39.2, 28.2. HRMS [M+H]⁺ Calcd for C₂₈H₂₈NO₃: 426.2064, found: 426.2064.

tert-butyl 4-oxo-1',3'-dihydro-2*H*-spiro[benzo[g]quinoline-3,2'-indene]-1(4*H*)carboxylate (4h)

Boc

Light yellow solid, 551 mg, 69% isolated yield;¹H NMR (400 MHz, CDCl₃) in ppm: δ 9.36 (d, J = 8.8 Hz, 1H), 7.91-7.96 (m, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.20-7.25 (m, 4H), 4.03 (s, 2H), 3.53 (d, J = 15.6 Hz, 2H), 2.95 (d, J = 16.0 Hz, 2H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 199.7, 153.5, 146.0, 140.5, 134.7, 131.5, 130.9, 129.3, 128.3, 127.0, 126.8, 125.7, 124.8, 122.6, 118.3, 82.4, 57.9, 52.8, 40.6, 28.2. HRMS [M+H]⁺ Calcd for C₂₆H₂₆NO₃: 400.1907, found: 400.1907.

5,6-dimethoxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)-carboxylate (4i)

Light yellow solid, 515 mg, 63% isolated yield; ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.06 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.74 (s, 2H), 4.03 (s, 2H), 3.86 (s, 6H), 3.37 (d. *J* = 15.6 Hz, 2H), 2.84 (d, *J* = 15.6 Hz, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 197.4, 153.4, 148.5, 143.8, 134.1, 131.7, 128.2, 123.9, 123.7, 123.3, 107.9, 82.1, 56.1, 55.5, 52.5, 39.2, 28.2. HRMS [M+H]⁺ Calcd for C₂₄H₂₈NO₅: 410.1962, found: 410.1960.

General procedure for the asymmetric hydroxylation of spirocyclic substrate 4

A 10 mL Schlenk tube was charged with substrate 4 (0.2 mmol, 1.0 equiv), manganese catalyst C1 (1.0 mol%),1 mL of CH₂Cl₂, 2,2-dimethylbutanoic acid (DMBA, 0.35 mL, 14 equiv) and a stir bar under argon. Then a solution of H_2O_2 (1.0 equiv, 30% aqueous solution

diluted in 0.5 mL of MeCN) was added dropwise over 30 min using a syringe pump and the mixture was stirred at -20 °C for additional 30 min. After, manganese catalyst **C1** (1.0 mol%) and H_2O_2 (1.0 equiv, 30% aqueous solution diluted in 0.5 mL of MeCN, over 30 min) were added again, total reaction time was 2 h. The reaction mixture was then quenched with sodium sulfite and NaHCO₃ then purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1) to give the desired spirocyclic alcohol compound.

Table S1 Optimization of asymmetric hydroxylation catalysed by manganese catalyst

^aReaction conditions: substrate **4a** (0.2 mmol), manganese Mn catalyst (1.0 mol%) and 2,2-dimethylbutanoic acid (DMBA, 14.0 equiv) were dissolved in 1.0 mL of CH_2Cl_2 under Ar atmosphere, H_2O_2 (1.0 equiv, 30% aqueous solution diluted in 0.5 mL of MeCN) was added dropwise over 30 min and stirred for additional 30 min; after, Mn catalyst (1.0 mol%) was added to the reaction, and second addition of H_2O_2 (1.0 equiv) was performed in the same manner, total reaction time of 2 h, isolated yield.

^b C1 (2.0 mol%) was added in one times and H_2O_2 (2.0 equiv, 30% aqueous solution diluted in 1.0 mL of MeCN) was added dropwise over 1 h.

^c C1 (2.0 mol%) was added in one times and H_2O_2 (7.0 equiv, 30% aqueous solution diluted in 1.0 mL of MeCN) was added dropwise over 1 h.

^d 3.0 mol% of **C1**.

^e 14 equic of EHA.

^f 14 equic of AcOH.

tert-butyl (S)-1,4'-dioxo-1,3-dihydro-2'H-spiro[indene-2,3'-quinoline]-1'(4'H)-

carboxylate (5a)

White solid, 25mg, 34% isolated yield; $[\alpha]_{D}^{20} = -40.3$ (c = 0.33 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.01 (dd, J = 7.6, 1.6 Hz, 1H), 7.78 (t, J = 7.2 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.56 (td, J = 7.8, 1.6 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 4.51 (d, J = 13.6 Hz, 1H), 4.16 (d, J = 14.0 Hz, 1H), 3.73 (d, J = 17.2 Hz, 1H), 3.03 (d, J = 17.2 Hz, 1H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 201.2, 193.5, 152.3, 144.3, 135.5, 135.1, 134.4, 128.1, 126.6, 124.8, 124.4, 124.2, 124.1, 82.5, 61.5, 51.1, 35.3, 28.2; HRMS [M+Na]⁺ Calcd for C₂₂H₂₁NO₄Na: 386.1363, found: 386.1368; HPLC-separation conditions: Sample dissolved in EtOH, t_{S} [racemate] = 19.48 min, 21.41 min; Chiralcel AD-H, 20 °C, 210 nm, 95/5 *n*-hexane/*i*-PrOH, 0.8 mL/min, t_{R} [**5a**] = 21.02 min, t_{R} [*ent*-**5a**] = 22.76 min; 94% ee.

tert-butyl (1*R*,2*R*)-1-hydroxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'-quinoline]-1'(4'*H*)-carboxylate (6a)

White solid, 28 mg, 38% isolated yield; $[\alpha]_{D}^{20} = +51.7$ (c = 0.232 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.02 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.43-7.44 (m, 1H), 7.28-7.30 (m, 2H), 7.20-7.22 (m, 1H), 7.16 (t, J = 7.4 Hz, 1H), 5.16 (s, 1H), 4.18 (d, J = 13.2 Hz, 1H), 4.12 (d, J = 14.0 Hz, 1H), 3.57 (d, J = 16.4 Hz, 1H), 2.85 (d, J = 16.8 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.8, 153.1, 143.8, 143.0, 139.3, 134.4, 128.9, 128.0, 127.6, 125.1, 124.7, 123.9, 123.8, 123.3, 82.5, 79.7, 58.6, 52.0, 37.5, 28.2; HRMS [M+Na]⁺ Calcd for C₂₂H₂₃NO₄Na: 388.1519, found: 388.1536; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 12.17 min, 16.27 min; Chiralcel IA, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6a**] = 11.70 min, t_R = [*ent*-**6a**] = 15.62 min; 98% ee, dr > 20:1

tert-butyl (1*R*,2*R*)-6'-chloro-1-hydroxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'quinoline]-1'(4'*H*)-carboxylate (6b)

White solid, 26mg, 33% isolated yield; $[\alpha]_{D}^{20} = +34.9$ (c = 0.172 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.97 (s, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.42-7.48 (m, 2H), 7.29-7.31 (m, 2H), 7.21-7.23 (m, 1H), 5.17 (s, 1H), 4.20 (d, J = 13.6 Hz, 1H), 4.06 (d, J = 13.6 Hz, 1H), 3.60 (d, J = 16.4 Hz, 1H), 2.81 (d, J = 16.8 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 195.4, 152.9, 152.3, 142.6, 142.2, 139.3, 134.2, 129.6, 129.1, 127.8, 127.5, 125.2, 124.8, 82.9, 79.6, 58.6, 51.9, 37.4, 28.2; HRMS [M+Na]⁺ Calcd for C₂₂H₂₂ClNO₄Na: 422.1130, found: 422.1128; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 11.97 min, 19.07 min; Chiralcel IA, 20 °C, 210 nm, 95/5 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6b**] = 12.00 min, t_R = [*ent*-**6b**] = 19.11 min; 94% ee, dr > 20:1 *tert*-**butyl** (**1***R*,**2***R*)-**1**-**hydroxy-4'-oxo-6'-(trifluoromethyl)-1,3-dihydro-2'H-spiro [indene-**

2,3' -quinoline]-1'(4'H)-carboxylate (6c)

White solid, 21mg, 24% isolated yield; $[\alpha]_{D}^{20} = +37.9$ (c = 0.290 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.31 (s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.43-7.45 (m, 1H), 7.30-7.33 (m, 2H), 7.23-7.24 (m, 1H), 5.19 (s, 1H), 4.26 (d, J = 13.6 Hz, 1H), 4.10 (d, J = 13.6 Hz, 1H), 3.64 (d, J = 16.4 Hz, 1H), 2.82 (d, J = 16.8 Hz, 1H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 195.2, 152.7, 146.3, 142.5, 139.2, 130.6, 129.2, 127.8, 126.1, 125.6, 125.2, 124.8, 123.7, 123.4, 83.4, 79.6, 58.5, 51.9, 37.3, 28.2; HRMS [M+Na]⁺ Calcd for C₂₃H₂₂F₃NO₄Na: 456.1393, found: 456.1412; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 18.63 min, 25.61 min; Chiralcel AD-H, 20 °C, 210 nm, 95/5 *n*-hexane/*i*-PrOH, 0.8 mL/min, t_R [**6c**] = 18.60 min, t_R = [*ent*-**6c**] = 25.79 min; 94% ee, dr > 20:1

tert-butyl (1*R*,2*R*)-1-hydroxy-6'-methoxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'quinoline]-1'(4'*H*)-carboxylate (6d)

White solid, 32 mg, 41% isolated yield; $[\alpha]_{D}^{20} = +34.4$ (c = 0.960 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.75-7.81 (m, 1H), 7.43-7.46 (m, 1H), 7.28-7.30 (m, 2H), 7.20-7.23 (m, 1H), 7.10-7.14 (m, 2H), 5.16 (s, 1H), 4.16 (d, J = 13.2 Hz, 1H), 4.09 (d, J = 14.0 Hz, 1H), 3.82 (s, 3H), 3.58 (d, J = 16.4 Hz, 1H), 2.85 (d, J = 16.4 Hz, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.8, 155.9, 153.3, 143.0, 139.4, 137.7, 129.0, 127.7, 125.1, 125.0, 124.8, 124.5, 123.0, 109.0, 82.2, 79.7, 58.7, 55.7, 52.1, 37.6, 28.3; HRMS [M+Na]⁺ Calcd for C₂₃H₂₅NO₅Na: 418.1625, found: 418.1642; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 14.61 min, 25.85 min; Chiralcel IA, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6d**] = 14.61 min, t_R = [*ent*-**6d**] = 26.05 min; 98% ee, dr = 1.6:1

tert-butyl (1*S*,2*R*)-1-hydroxy-8'-methoxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3'quinoline]-1'(4'*H*)-carboxylate (6e)

White solid, 18 mg, 23% isolated yield; $[\alpha]_{D}^{20} = +46.7$ (c = 0.214 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.58 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 6.4 Hz, 1H), 7.18-7.29 (m, 4H), 7.11 (d, J = 8.0 Hz, 1H), 5.18 (s, 1H), 3.90-4.35 (m, 5H), 3.41-3.55 (m, 1H), 2.83-3.06 (m, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 197.7, 152.8, 134.1, 128.8, 127.6, 125.7, 124.9, 119.2, 116.9, 81.4, 80.6, 60.6, 55.9, 53.7, 38.2, 28.0; HRMS [M+Na]⁺ Calcd for C₂₃H₂₅NO₅Na: 418.1625, found: 418.1633; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 41.42 min, 56.14 min; Chiralcel IA, 20 °C, 210 nm, 95/5 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6e**] = 41.36 min, t_R = [*ent*-**6e**] = 56.61. min; 99% ee, dr > 20 :1

tert-butyl (1*R*,2*R*)-1-hydroxy-6',7'-dimethoxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3' -quinoline]-1'(4'*H*)-carboxylate (6f)

White solid, 31 mg, 37% isolated yield; $[\alpha]_{D}^{20} = +103.3$ (*c* = 0.300 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.48-7.50 (m, 1H), 7.44 (s, 2H), 7.27-7.30 (m, 2H), 7.22-7.23 (m, 1H), 5.12 (s, 1H), 4.12 (s, 2H), 3.97 (s, 3H), 3.89 (s, 3H), 3.56 (d, *J* = 16.4 Hz, 1H), 2.85 (d, *J* = 16.0 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 195.8, 154.3, 153.1, 145.9, 143.1, 139.6, 128.9, 127.6, 125.1, 124.8, 116.9, 108.1, 105.7, 82.3, 79.6, 57.8, 56.3, 56.0, 52.5, 37.6, 28.3; HRMS [M+Na]⁺ Calcd for C₂₄H₂₇NO₆Na: 448.1731, found: 448.1737; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 43.60 min, 81.41 min; Chiralcel IA, 20 °C, 210 nm, 96/4 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6f**] = 43.37 min, t_R = [*ent*-**6f**] = 82.37 min; 98% ee, dr = 3.3:1

tert-butyl (1*R*,2*R*)-1-hydroxy-4'-oxo-6'-phenyl-1,3-dihydro-2'*H*-spiro[indene-2,3'quinoline]-1'(4'*H*)-carboxylate (6g)

White solid, 32 mg, 36% isolated yield; $[\alpha]_D^{20} = +35.1$ (c = 0.228 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 8.26 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 6.8 Hz, 2H), 7.42-7.46 (m, 3H), 7.22-7.37 (m, 4H), 5.19 (s, 1H), 4.22 (d, J = 13.6 Hz, 1H), 4.15 (d, J = 13.6 Hz, 1H), 3.62 (d, J = 16.4 Hz, 1H), 2.87 (d, J = 16.4 Hz, 1H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 196.8, 153.1, 143.0, 142.9, 139.5, 139.3, 136.7, 133.0, 129.0, 128.9, 127.7, 127.6, 126.8, 126.1, 125.2, 124.8, 124.0, 123.7, 82.6, 79.8, 58.6, 52.0, 37.6, 28.3; HRMS [M+Na]⁺ Calcd for C₂₈H₂₇NO₄Na: 464.1832, found: 464.1827; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 33.96 min, 42.78 min; Chiralcel AD-H, 20 °C, 210 nm, 90/10 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6g**] = 34.11 min, t_R = [*ent*-**6g**] = 43.84 min; 96% ee, dr = 15.7:1

tert-butyl (1'*R*,3*R*)-1'-hydroxy-4-oxo-1',3'-dihydro-2*H*-spiro[benzo[g]quinoline-3,2'indene]-1(4*H*)-carboxylate (6h)

Light yellow solid, 18 mg, 22% isolated yield; $[\alpha]_D^{20} = +29.3$ (c = 0.256 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 9.30 (d, J = 8.8 Hz, 1H), 7.89-7.97 (m, 2H), 7.79 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.46-7.49 (m 2H), 7.30-7.32 (m, 2H), 7.22-7.25 (m, 1H), 5.20 (s, 1H), 4.21 (d, J = 13.2 Hz, 1H), 4.16 (d, J = 12.8 Hz, 1H), 3.61 (d, J = 16.0 Hz, 1H), 2.96 (d, J = 16.4 Hz, 1H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 199.6, 153.2, 146.4, 143.3, 139.8, 135.2, 131.3, 130.9, 129.5, 128.9, 128.4, 127.6, 126.7, 125.9, 125.1, 124.8, 122.6, 118.2, 82.8, 80.4, 60.4, 52.6, 39.0, 28.2; HRMS [M+Na]⁺ Calcd for C₂₆H₂₅NO₄Na: 438.1676, found: 438.1686; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 12.83 min, 17.96 min; Chiralcel IA, 20 °C, 210 nm, 95/5 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6h**] = 12.72 min, t_R = [*ent*-**6h**] = 17.87 min; 99% ee, dr = 18.6:1

tert-butyl (1*R*,2*R*)-1-hydroxy-5,6-dimethoxy-4'-oxo-1,3-dihydro-2'*H*-spiro[indene-2,3' -quinoline]-1'(4'*H*)-carboxylate (6i)

Light yellow solid, 26 mg, 31% isolated yield; $[\alpha]_{D}^{20} = +8.3$ (c = 0.156 in CHCl₃), ¹H NMR (400 MHz, CDCl₃) in ppm: δ 7.98 (d, J = 8.8 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.15 (t, J = 7.4 Hz, 1H), 6.94 (s, 1H), 6,71 (s, 1H), 5.69 (s, 1H), 4.23 (d, J = 13.6 Hz, 1H), 4.16 (d, J = 14.0 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 2.97 (s, 2H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) in ppm: δ 197.1, 153.7, 149.9, 148.9, 143.9, 134.3, 134.2, 130.7, 128.0, 123.9, 123.9, 123.3, 107.4, 107.1, 82.3, 78.3, 59.7, 56.1, 48.4, 37.2, 28.2; HRMS [M+Na]⁺ Calcd for C₂₄H₂₇NO₆Na: 448.1731, found: 448.1729; HPLC-separation conditions: Sample dissolved in EtOH, t_R [racemate] = 16.69 min, 18.97 min; Chiralcel AD-H, 20 °C, 210 nm, 99/1 *n*-hexane/*i*-PrOH, 1.0 mL/min, t_R [**6i**] = 16.47 min, t_R = [*ent*-**6i**] = 18.52 min; 70% ee, dr = 14.3:1

References

1. (a) Wang, B.; Miao, C.-X.; Wang, S.-F.; Xia, C. G.; Sun, W. Manganese Catalysts with *C*₁-Symmetric N4 Ligand for Enantioselective Epoxidation of Olefins. *Chem. -Eur. J.* **2012**, *18*, 6750-6753. (b) Shen, D.-Y. Miao, C.-X., Wang, S.-F., Xia, C.-G.; Sun, W. Efficient Benzylic and Aliphatic C-H Oxidation with Selectivity for Methylenic Sites Catalyzed by a Bioinspired Manganese Complex. *Org. Lett.* **2014**, *16*, 1108-1111. (c) Wang, X.-E.; Miao, C.-X.; Wang, S.-F.; Xia, C.-G.; Sun, W. Bioinspired Manganese and Iron Complexes with Tetradentate N Ligands for the Asymmetric Epoxidation of Olefins. *ChemCatChe*. **2013**, *5*, 2489-2494. (d) Shen, D.-Y.; Miao, C.-X.; Wang, S.-F.; Xia, C.-G.; Sun, W. A Mononuclear Manganese Complex of a Tetradentate Nitrogen Ligand-Synthesis, Characterizations, and Application in the Asymmetric Epoxidation of Olefins. *Eur. J. Inorg. Chem.* **2014**, *33*, 5777-5782.

2. Frost, J. R.; Huber, S. M.; Breitenlechner, S.; Bannwarth, C.; Bach, T. Enantiotopos-Selective C-H Oxygenation Catalyzed by a Supramolecular Ruthenium Complex. *Angew. Chem., Int. Ed.* **2015**, *54*, 691-695.

3. Soni, R.; Collinson, J. M.; Clarkson, G. C.; Wills, M. An Unexpected Directing Effect in the Asymmetric Transfer Hydrogenation of α, α-Disubstituted Ketones. *Org. Lett.* **2011**, *13*, 4304-4307.

4. Mendieta, M. A. E. P. B.; Negri, M.; Jagusch, C.; Müller-Vieira, U.; Lauterbach, T.; Hartmann, R. W. Synthesis, Biological Evaluation, and Molecular Modeling of Abiraterone Analogues: Novel CYP17 Inhibitors for the Treatment of Prostate Cancer. *J. Med. Chem.* **2008**, *51*, 5009-5018.

5. Klapars, A.; Antilla, J. C.; Huang, X. H.; Buchwald, S. L. A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the *N*-Arylation of Nitrogen Heterocycles, *J. Am. Chem. Soc.* **2001**, *123*, 7727-7729 (2001)

6. Bender, A. M.; Griggs, N. W.; Anand, J. P.; Traynor, J. R.; Jutkiewicz, E. M.; Mosberg. E. I. Asymmetric Synthesis and in vitro and in vivo Activity of Tetrahydroquinolines Featuring a Diverse Set of Polar Substitutions at the 6 Position as Mixed-Efficacy μ Opioid Receptor/ δ Opioid Receptor Ligands, *ACS Chem. Neurosci.* **2015**, *6*, 1428-1435.

Copyies of ¹H NMR and ¹³C NMR Spectra for substrates and spirocyclic

products

¹H NMR Spectrum of **1a**

S29

¹H NMR Spectrum of **1b**

¹³C NMR Spectrum of **1b**

¹H NMR Spectrum of **1**c

¹³C NMR Spectrum of **1c**

¹H NMR Spectrum of **1d**

¹³C NMR Spectrum of **1d**

¹H NMR Spectrum of **1e**

¹³C NMR Spectrum of **1e**

¹H NMR Spectrum of **1f**

¹H NMR Spectrum of **1g**

¹³C NMR Spectrum of **1g**

S36
¹H NMR Spectrum of **1i**

¹³C NMR Spectrum of **1i**

¹H NMR Spectrum of **1k**

¹³C NMR Spectrum of **1k**

¹H NMR Spectrum of **1**l

¹³C NMR Spectrum of **11**

¹H NMR Spectrum of **1m**

¹³C NMR Spectrum of **11**

¹³C NMR Spectrum of **2h**

¹H NMR Spectrum of **2i**

¹H NMR Spectrum of **2**j

¹H NMR Spectrum of **2k**

¹³C NMR Spectrum of **2k**

¹H NMR Spectrum of **2c'**

¹³C NMR Spectrum of **2c'**

¹H NMR Spectrum of **3a**

¹³C NMR Spectrum of **3a**

¹H NMR Spectrum of **4a**

¹³C NMR Spectrum of **4a**

¹H NMR Spectrum of **4b**

¹³C NMR Spectrums of **4b**

¹H NMR Spectrum of **4**c

¹H NMR Spectrum of **4d**

¹H NMR Spectrum of **4e**

¹H NMR Spectrum of **4f**

¹³C NMR Spectrum of **4f**

¹H NMR Spectrum of **4g**

¹H NMR Spectrum of **4h**

¹³C NMR Spectrum of **4i**

160 150 140 130 120 110 100 f1 (ppm)

200 190 180 170

90 80

60 50

70

40 30

0

20 10

¹H NMR Spectrum of **6c**

¹H NMR Spectrum of **6e**

¹H NMR Spectrum of **6g**

S73

¹H NMR Spectrum of **6i**

¹³C NMR Spectrum of **6i**

Copies of HPLC spectra of spirocyclic products

Chiral 2a, 91% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	6.863	8159260	95.277	661668	96.642
2	11.446	404428	4.723	22991	3.358

Chiral 2b, 88% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	7.324	4812807	94.342	403001	95.710
2	11.052	288637	5.658	18065	4.290

Peak	Ret.Time	Area	Area %	Height	Height %
1	6.724	9189907	50.896	833500	63.188
2	10.912	8866216	49.104	485590	36.812

Chiral 2d, 88% ee

Chiral 2e	, 88% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	7.789	12742345	94.033	1025114	95.642
2	12.493	808640	5.967	46711	4.358

Peak	Ret.Time	Area	Area %	Height	Height %
1	6.970	16836337	93.283	1481195	95.195
2	11.411	1212366	6.717	74761	4.805

Chiral **2g**, 88% ee

mV

Peak	Ret.Time	Area	Area %	Height	Height %
1	8.268	5650363	94.200	349902	95. 537
2	11.830	347896	5.800	16344	4.463

Chiral **2h**, 77% ee

mV

Peak	Ret.Time	Area	Height	Area %	Height %
1	14.225	1952585	71386	11.410	18.224
2	21.840	15159746	320331	88. 590	81.776

Chiral 2i, 69% ee

mV

Peak	Ret.Time	Area	Area %	Height	Height %
1	18.689	22985665	84. 518	324184	88.507
2	26.417	4210490	15.482	42097	11.493

Peak	Ret.Time	Area	Area %	Height	Height %
1	37.940	8035707	50.042	136174	53.880
2	44.913	8022348	49.958	116564	46.120

Chiral **2j**, 60% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	38.236	10316801	79.808	170803	81.412
2	45.285	2610249	20. 192	38998	18.588

Racemic 2k

mV

Chiral 2k, 55% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	16.976	21548019	77.547	736103	81.471
2	23.466	6239008	22.453	167411	18. 529

mV

Peak	Ret.Time	Area	Area %	Height	Height %
1	6. 489	18074416	93.531	1673387	94.570
2	8.112	1250060	6.469	96086	5.430

Racemic 6a

mV

Peak	Ret.Time	Area	Area %	Height	Height %
1	8.862	542941	2.857	28082	3.563
2	10.928	501265	2.638	20986	2.663
3	12.168	9058811	47.673	409513	51.964
4	16.274	8898963	46.832	329489	41.810

Chiral 6a, 98% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	11.704	77992648	98.965	4003642	99.165
2	15.622	815683	1.035	33717	0.835

Racemic 6b

Peak	Ret.Time	Area	Area %	Height	Height %
1	10.861	33072	0.171	1593	0.206
2	11.968	9477293	49.134	442417	57.177
3	14.444	32712	0.170	1255	0.162
4	19.073	9745632	50. 525	328503	42.455

Chiral **6a**, 94% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	11.996	10501358	97.007	507033	97.638
2	19.108	323998	2.993	12266	2.362

Racemic 6c

mV

Peak	Ret.Time	Area	Area %	Height	Height %
1	16.993	187013	1.170	3924	1.272
2	18.632	7664734	47.955	150267	48.705
3	22.070	187550	1.173	2644	0.857
4	25.608	7943830	49.701	151691	49.166

Chiral 6c, 94% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	18.604	49937203	97.057	1002009	97.151
2	25.793	1514117	2.943	29380	2.849

Racemic 6d

mV

Pea	ak	Ret.Time	Area	Area %	Height	Height %
	1	12.356	865889	19.900	36371	25.372
	2	14.607	1309610	30.098	52173	36.394
	3	22.234	866180	19.907	23543	16.423
	4	25.846	1309438	30.094	31267	21.811

Chiral 6d, 98% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	14.611	14883308	98.835	583715	99.199
2	26.047	175374	1.165	4711	0.801

Chiral 6e, 99% ee

Ret.Time	Area	Area %	Height	Height %
41.362	39424560	99.683	525713	99.720
56.610	125215	0.317	1477	0.280

Racemic 6f

Chiral 6f, 98% ee

4

Peak	Ret.Time	Area	Area %	Height	Height %
1	43.367	15282119	99.256	189193	99.390
2	82.374	114525	0.744	1161	0.610

Racemic 6g

Chiral **6g**, 96% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	34.107	31858712	98.004	443694	98.423
2	43.835	648752	1.996	7110	1.577

Peak	Ret.Time	Area	Area %	Height	Height %
1	12.825	2607135	46.255	127951	52.888
2	14.373	209425	3.716	9756	4.033
3	17.961	2605702	46.230	97924	40.477
4	23.739	214119	3. 799	6296	2.602

Chiral **6h**, 99% ee mV

Peak	Ret.Time	Area	Area %	Height	Height %
1	12.715	15274697	99.469	750845	99.542
2	17.873	81616	0.531	3458	0.458

Racemic 6i

Peak	Ret.Time	Area	Area %	Height	Height %
1	16.685	5854156	42.792	162432	51.104
2	18.968	5757185	42.083	116925	36. 787
3	22.119	1052912	7.696	20514	6.454
4	27.982	1016324	7.429	17972	5.654

Chiral 6i, 70% ee

Peak	Ret.Time	Area	Area %	Height	Height %
1	16.467	4043620	15.228	114975	20.576
2	18.516	22510016	84.772	443816	79.424

Peak	Ret.Time	Area	Area %	Height	Height %
1	25.523	54533520	37.844	897210	35.023
2	26.776	18158675	12.601	301673	11.776
3	30. 201	16997389	11.795	259601	10.134
4	32.577	54411198	37.759	1103260	43.067