Self-assembling Releasable Thiocolchicine-Diphenylbutenylaniline Conjugates

Gaia Fumagalli, ${ }^{,}$Laura Polito, ${ }^{b}$ Eleonora Colombo, ${ }^{a}$ Francesca Foschi, ${ }^{a}$ Michael S. Christodoulou, ${ }^{a}$ Francesco Galeotti, ${ }^{b}$ Dario Perdicchia, ${ }^{a}$ Ivan Bassanini, ${ }^{c}$ Sergio Riva, ${ }^{c}$ Pierfausto Seneci, ${ }^{a}$ Aída GarcíaArgáez, ${ }^{d, e}$ Lisa Dalla Via, ${ }^{d}$ Daniele Passarella* ${ }^{*} a$

Chemistry

General

All reactions were carried out in oven-dried glassware and dry solvents under nitrogen atmosphere.
Unless otherwise stated, all solvents were purchased from Sigma Aldrich and used without further purification.

Substrates and reagents were purchased from Sigma Aldrich and used as received.
Thin layer chromatography (TLC) was performed on Merck precoated $60 \mathrm{~F}_{254}$ plates.
Reactions were monitored by TLC on silica gel, with detection by UV light (254 nm) or by charring with 1% permanganate solution.

Flash chromatography was performed using silica gel (240-400 mesh, Merck).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Bruker DRX-400 And Bruker DRX-300 instruments and are reported relative to residual CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on the same instruments (100 and 75 MHz) and are reported relative to CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$.

Chemical Shifts (δ) for proton and carbon resonances are quoted in parts per million (ppm) relative to tetramethylsilane (TMS), which was used as an internal standard.

MS spectra were recorded using Electrospray ionization (ESI) technique on a Waters Micromass Q-Tof micro mass spectrometer and HR-ESI mass spectra were recorded on FT-ICR APEX ${ }_{\|}$(Bruker Daltonics), EI mass spectra were recorded at an ionizing voltage of 6 kEv on a VG 70-70 EQ.

Specific rotations were measured with a P-1030-Jasco polarimeter with 10 cm optical path cells and 1 ml capacity (Na lamp, $\lambda=589 \mathrm{~nm}$). Microwave assisted reactions were performed with Emrys Creator singlemode (power range 0-400 W from magnetron at 2.45 GHz).

IR spectra were recorded on a Jasco FT-IR 4100 Spectrometer using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in NaCl rectangular windows.

Synthesis of 4

To a solution of 4-hydroxybenzaldehyde $3(2.005 \mathrm{~g}, 16.377 \mathrm{mmol})$ in acetone (100 mL), allybromide (3.950 $\mathrm{g}, 32.653 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(4.502 \mathrm{~g}, 32.574 \mathrm{mmol})$ and $\mathrm{KI}(0.273 \mathrm{~g}, 1.644 \mathrm{mmol})$ are added and the reaction mixture is stirred at room temperature for 3 h . Brine $(70 \mathrm{~mL})$ is added and extracted with AcOEt ($5 \times 15 \mathrm{~mL}$). The organic layers are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent is removed under reduced pressure to obtain 4 as a yellow oil (2.660 g , Yield: $>90 \%$) without any further purification. ${ }^{1}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=9.91(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.13-6.03(\mathrm{~m}$, $1 \mathrm{H}), 5.48-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.66$ (m, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})=190.6,163.6,132.3,131.9,130.1\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 118.2,115.0\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, 69.0 .
ESI-HRMS : $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}$: 185.0578; found : 185.0580.
IR (neat): 3076, 2925, 2837, 1686, 1596, 1575, $1507 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 74.06; $\mathrm{H}, 6.21$. Found: $\mathrm{C}, 73.95 ; \mathrm{H}, 6.32$.

Synthesis of 5

Compound 4 ($3.492 \mathrm{~g}, 21.011 \mathrm{mmol}$) is exposed to microwave radiation in a microwave oven at $190^{\circ} \mathrm{C}$ for 30 minutes. The crude is purified by flash chromatography (Hex/AcOEt 8:2) to obtain 5 (2.657 g , Yield: $78 \%){ }^{2}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{bs}, 1 \mathrm{H})$, 6.07-5.93 (m, 1H), 5.18-5.13 (m, 2H), 3.46-3.45 (m, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 191.9,160.5,135.4,132.6,130.9,129.5,126.9,117.1,116.1,34.4$.

[^0]
Synthesis of 6

To a mixture of $\mathrm{Ac}_{2} \mathrm{O} /$ Pyridine $1: 1(40 \mathrm{~mL}) 5(2.003 \mathrm{~g}, 12.301 \mathrm{mmol})$ is added and the reaction mixture is stirred at room temperature for 2 h . The reaction mixture is then cooled at $0^{\circ} \mathrm{C}$ and solid NaHCO_{3} is added. The reaction mixture is extracted with AcOEt ($3 \times 20 \mathrm{~mL}$) and organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layers are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent is removed under reduced pressure. The crude is purified by flash chromatography (Hex/AcOEt 85:15) to obtain 6 (2.302 g, Yield: 80%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.87(\mathrm{~m}$, 1H), 5.17-5.09 (m, 2H), 3.40-3.39 (m, 2H), 2.35 (s, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 191.9,170.5,157.6,135.4,132.7,130.9,129.5,126.9,117.1,116.1$, 34.4, 20.4.

ESI-HRMS : $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}: 227.0684$; found : 227.0688 .

Synthesis of 7

To a solution of $6(0.203 \mathrm{~g}, 0.984 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(0.074 \mathrm{~g}, 1.965 \mathrm{mmol})$ is added and the reaction mixture is stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The solvent is then removed under reduced pressure, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ is added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 10 \mathrm{~mL})$. The organic layers are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent is removed under reduced pressure. The crude is purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 98:2) to obtain 7 (0.151 g, Yield: 75%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-5.92(\mathrm{~m}$, 1 H), 5.11-5.07 (m, 2H), 4.52 (s, 2H), 3.37-3.35 (m, 3H), $2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 170.9,135.8,136.6,132.2,129.4,127.04,126.4,116.1,115.7,64.9$, 34.4, 20.2.

ESI-HRMS : $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}: 229.0841$; found : 229.0845.

Synthesis of 8

To a solution of $\mathbf{7}(1.194 \mathrm{~g}, 5.791 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, 4-nitrophenyl chloroformate ($2.343 \mathrm{~g}, 11.594$ mmol) and dry pyridine ($0.917 \mathrm{~g}, 11.594 \mathrm{mmol}$) are added and the reaction mixture is stirred at room temperature for 36 h . The solvent is then removed under reduced pressure. The crude is purified by flash chromatography (Hex/AcOEt 8:2) to obtain 8 (2.101 g, Yield: 90 \%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 8.28(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}$, $J=8.8,1 \mathrm{H}), 6.07-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 169.6,155.5,152.5,149.5,145.4,136.4,135.0,132.8,130.7,130.0$ (2 $\left.\mathrm{CH}_{\text {Ar }}\right), 129.6\left(2 \mathrm{CH}_{\text {Ar }}\right), 129.4,127.6,116.4,70.5,34.8,20.9$.

ESI-HRMS : (m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{7} \mathrm{Na}: 394.0902$; found : 394.0909.

Synthesis of 9

To a solution of $8(1.106 \mathrm{~g}, 5.654 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL}), \mathrm{BH}_{3} \cdot \mathrm{THF}(7.771 \mathrm{~mL}, 3.885 \mathrm{mmol})$ is added and the reaction mixture is stirred at rt for 22 h . At $0^{\circ} \mathrm{CH}_{2} \mathrm{O}_{2}(0.166 \mathrm{~mL}, 7.079 \mathrm{mmol})$ is added and the reaction mixture is stirred at rt for 30 minutes. Solid NaCl and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ are added and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40$ mL). The organic layers are washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent is removed under reduced pressure. The crude is purified by flash chromatography (Hex/AcOEt 1:1) to obtain 9 (1.221 g, Yield: 50 \%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 8.26(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.8,1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H})$, $3.65(\mathrm{t}, J=6.1,2 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=7.1,2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H})$, OH signal not detected.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 169.6,155.5,152.4,149.5,145.4,134.3,132.1,129.1,125.3,122.5$ (2 $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 121.8,121.1\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 70.4,61.8,32.6,26.2,20.9$.

ESI-HRMS : (m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{8} \mathrm{Na}: 412.1008$; found : 412.1012.

Synthesis of 11a

To a solution of (-)-thiocolchicine 10 ($500 \mathrm{mg}, 1.205 \mathrm{mmol}$) in MeOH (20 mL), HCl $2 \mathrm{~N}(9.650 \mathrm{~mL}, 19.312$ $\mathrm{mmol})$ is added and the reaction mixture is stirred at reflux at $90^{\circ} \mathrm{C}$ for 57 h . The solvent is removed under reduced pressure, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ is added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The aqueous layer is neutralized with NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers are washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent is removed under reduced pressure. The crude is purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$) to obtain 11a (0.387 g , Yield: 86%). ${ }^{3}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, $3.93(\mathrm{~s}, 6 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.93(\mathrm{~m}, 1 \mathrm{H}), \mathrm{NH}_{2}$ signal not detected.

Anal. calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}\right)$: $\mathrm{C}, 64.32, \mathrm{H}, 6.21, \mathrm{~N}, 3.75$; Found: C, 64.27, H, 6.35, N, 3.68.
$[\boldsymbol{\alpha}]_{D}^{20}:-160.6^{\circ}$ (c $\left.0.35 ; \mathrm{MeOH}\right)$.

Synthesis of 11b

To a solution of 11a ($0.303 \mathrm{~g}, 0.812 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, N -Boc-glycine ($0.312 \mathrm{~g}, 0.59 \mathrm{mmol}$), DCC $(1.009 \mathrm{~g}, 4.862 \mathrm{mmol})$ and DMAP $(0.198 \mathrm{~g}, 1.624 \mathrm{mmol})$ are added. The reaction mixture is stirred at rt for 16 h , then filtered through Celite. The solvent is removed under reduced pressure. The crude is purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$) to afford $\mathbf{1 1 b}(0.420 \mathrm{~g},>90 \%) .{ }^{4}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 8.20(\mathrm{bs}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}$, 1 H), $5.80(\mathrm{bs}, 1 \mathrm{H}), 4.78-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.63(\mathrm{~m}, 11 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.32(\mathrm{~m}, 2 \mathrm{H})$, 2.13-2.03 (m, 1H) 1.42 (s, 9H).

[^1]${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, detected signals): $\delta(\mathrm{ppm}): 182.3,169.6,158.2,156.3,154.5,151.0,141.8,139.1$, $135.5,131.4,128.1,107.2,80.6,61.5,61.3,56.1,52.1,45.0,36.4,29.9,28.3,15.3$.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 61.11 ; \mathrm{H}, 6.46 ; \mathrm{N}, 5.28$. Found: C, 61.14; H, 6.41; $\mathrm{N}, 5.30$.

Synthesis of 11

To a solution of $11 \mathrm{~b}(0.420 \mathrm{~g}, 0.812 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ TFA ($\left.2.418 \mathrm{~g}, 21.085 \mathrm{mmol}\right)$ is added and the reaction mixture is stirred at rt for 1 h . The solvent is removed under reduced pressure to obtain 11 (0.430 g , Yield: $>95 \%$) without any further purification. ${ }^{5}$
characterization of the free amine: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 8.89(\mathrm{bs}, 2 \mathrm{H}), 8.03-8.00(\mathrm{~m}, 1 \mathrm{H})$, 7.77-7.73 (m, 1H), $7.54(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{bs}, 1 \mathrm{H}), 4.41-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.60-$ $2.54(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, detected signals): $\delta(\mathrm{ppm}): 182.3,158.2,156.3,154.5,151.0,141.8,139.1,135.5$, $131.4,128.1,107.2,61.5,61.3,56.1,52.1,45.0,36.4,29.9,15.3$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 61.38 ; \mathrm{H}, 6.09 ; \mathrm{N}, 6.51$. Found: C, $61.42 ; \mathrm{H}, 6.08 ; \mathrm{N}, 6.48$.

Synthesis of 12

[^2]To a solution of $11(0.438 \mathrm{~g}, 0.812 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ DMAP ($\left.0.247 \mathrm{~g}, 2.015 \mathrm{mmol}\right)$ and a solution of $9(0.315 \mathrm{~g}, 0.812 \mathrm{mmol})$ are added and the reaction mixture is stirred at reflux at $40^{\circ} \mathrm{C}$ for 3 h . The solvent is then removed under reduced pressure. The crude is purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$) to afford 12 ($0.399 \mathrm{~g}, 72 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 8.37(\mathrm{bs}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{bs}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 8 \mathrm{H}), 3.60(\mathrm{~s}$, $3 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}$, $2 \mathrm{H}), \mathrm{OH}$ signal not detected.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 182.2,169.7,169.4,158.3,156.8,153.7,151.7,151.0,148.6,141.5$, $138.7,134.9,134.5,134.2,133.8,129.9,128.6,127.0,126.6,125.6,122.3,107.5,66.3,61.6,61.4,61.2$, 56.2, 53.50, 52.3, 36.2, 32.4, 29.6, 26.1, 20.9, 15.0.

ESI-HRMS : $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{SNa}$: 703.2301; found : 703.2307.

Synthesis of 13a

14

13a

To a solution of sebacic acid ($0.255 \mathrm{~g}, 1.263 \mathrm{mmol}$) in dry THF (20 mL) HATU ($0.527 \mathrm{~g}, 1.386 \mathrm{mmol}$) and DIPEA ($0.326 \mathrm{~g}, 2.523 \mathrm{mmol}$) are added and the reaction mixture is stirred for 30 minutes. Then 4-(1,2-diphenylbut-1-en-1-yl)aniline ($0.378 \mathrm{~g}, 1.265 \mathrm{mmol}$) is added and the reaction mixture is stirred at rt overnight. The solvent is removed under reduced pressure, AcOEt is added and it is washed with water and brine. The organic layer is then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude is purified by flash chromatography (AcOEt/Hex 4:6) to obtain pure 13a (0.476 g, Yield: 78\%). ${ }^{6}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 7.95(\mathrm{bs}, 1 \mathrm{H}), 7.33-6.78(\mathrm{~m}, 14 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 4 \mathrm{H})$, 1.87-1.61 (m, 4H), 1.35-1.24 (m, 8H), 0.94-0.88 (m, 3H), OH signal not detected.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right.$, detected signals): $\delta(\mathrm{ppm}): 175.3,174.6,145.1,143.2,143.1,141.3,139.7,135.4$, $131.9,129.6,129.4,128.2,127.7,127.3,126.3,116.1,37.6,35.0,31.8,30.8,27.0,26.2,13.6$.

[^3]
Synthesis of 13b

To a solution of 4, 4^{\prime}-dithiobutyric acid ($0.228 \mathrm{~g}, 0.958 \mathrm{mmol}$) in dry THF (15 mL) HATU ($0.401 \mathrm{~g}, 1.054$ mmol) and DIPEA ($0.248 \mathrm{~g}, 1.921 \mathrm{mmol}$) are added and the reaction mixture is stirred for 30 minutes. Then 4-(1,2-diphenylbut-1-en-1-yl)aniline ($0.827 \mathrm{~g}, 0.958 \mathrm{mmol}$) is added and the reaction mixture is stirred at rt overnight. The solvent is then removed under reduced pressure, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ is added, acidified with HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude is purified by flash chromatography (Hex/EtOAc 6:4 + 1\% of glacial acetic acid) to provide 13b (0.289 g, Yield: 58\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 7.38-7.13(\mathrm{~m}, 12 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.50(\mathrm{~m}$, $6 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}), \mathrm{NH}$ and OH signals not detected.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}): 178.3,170.6,143.4,142.2\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 139.2,138.1,135.4,131.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $129.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.7,126.2,118.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 37.8,37.5,35.4$, 32.3, 29.0, 24.5, 24.0, 13.5

ESI-HRMS : $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Na}: 542.1800$; found : 542.1803.

Synthesis of 1

To a suspension of $13 \mathrm{a}(0.106 \mathrm{~g}, 0.221 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}) \mathrm{EDC} \cdot \mathrm{HCl}(0.050 \mathrm{~g}, 0.262 \mathrm{mmol})$, DMAP $(0.019 \mathrm{~g}, 0.154 \mathrm{mmol})$ are added and the reaction mixture is stirred for 30 minutes. Then $\mathbf{1 2}$ ($0.150 \mathrm{~g}, 0.221$
mmol) is added and the reaction mixture is stirred at rt for 48 h . The solvent is removed under reduced pressure. The crude is purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$ to afford 1 ($0.063 \mathrm{~g}, 25 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.56(\mathrm{bs}, 1 \mathrm{H}), 7.53(\mathrm{bs}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.07(\mathrm{~m}, 12 \mathrm{H}), 7.01-$ $6.96(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{bs}, 1 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 2 \mathrm{H})$, $4.70-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 5 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.39(\mathrm{~m}, 10 \mathrm{H})$, $2.37-2.28(\mathrm{~m}, 6 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 6 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 6 \mathrm{H})$, $0.99-0.91(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 182.8,174.6,172.0,170.1,169.5,159.1,157.3,154.4,151.8,149.4,144.1$, $142.8,143.0,142.3,139.4,139.1,138.8,136.8,135.6,135.0,134.9,133.8,131.8\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 131.4,130.7$, $130.3\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 130.1\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 129.1,128.8\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 128.6\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 128.0,127.2,126.8,126.3,123.1,119.2$ $\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 114.7,108.1,67.2,64.2,62.2,62.1,56.8,52.7,45.2,38.3,37.2,35.0,30.5,30.4,30.2,30.0,29.6$, 29.4, 27.4, 26.2, 26.2, 25.6, 21.6, 15.8,14.2.

ESI-HRMS : $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{67} \mathrm{H}_{75} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{SNa}: 1168.4969$; found : 1168.4976.

Synthesis of 2

To a suspension of $13 \mathrm{~b}(0.114 \mathrm{~g}, 0.221 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}) \mathrm{EDC} \cdot \mathrm{HCl}(0.050 \mathrm{~g}, 0.262 \mathrm{mmol})$, DMAP $(0.019 \mathrm{~g}, 0.154 \mathrm{mmol})$ are added and the reaction mixture is stirred for 30 minutes. Then $\mathbf{1 2}(0.150 \mathrm{~g}, 0.221$ mmol) is added and the reaction mixture is stirred at rt for 48 h . The solvent is removed under reduced pressure. The crude is purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$ to afford $2(0.184 \mathrm{~g}, 71 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $) \delta 7.89(\mathrm{bs}, 1 \mathrm{H}), 7.82(\mathrm{bs}, 1 \mathrm{H}), 7.46-7.03(\mathrm{~m}, 17 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ $(\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{bs}, 1 \mathrm{H}), 4.98(\mathrm{q}, J=13.0,12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.77-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 5 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.69(\mathrm{~m}, \mathrm{~J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.60-2.35(\mathrm{~m}$, $13 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.82(\mathrm{~m}, 8 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}): 182.91,173.76,171.08,170.09,169.61,159.07,157.34,154.36$, $151.84,149.35,144.13,142.84,142.73,142.32,139.50,139.09,138.83,136.51,135.52,135.06,134.93$, 133.68, $131.94\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 131.45,130.67,130.32\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 130.12\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 129.19,128.79\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 128.56$ $\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 127.83,127.38,127.28,126.85,126.29,123.12,119.25\left(2 \mathrm{CH}_{\mathrm{ar}}\right), 108.14,67.12,64.52,62.22,62.05$, $56.80,52.90,45.12,38.65,38.35,37.09,36.07,33.26,30.58,29.73,29.29,27.38,25.14,24.97,21.59$, 15.80, 14.20.

ESI-MS: m/z 1204.7 [$\mathrm{M}+\mathrm{Na}]^{+}$.
ESI-HRMS : (m / z) calcd for $\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Na}: 1204.4098$; found : 1204.4010.

NP Characterization: Dynamic light scattering and ζ-potential measurements were carried out by a 90 plus particle size analyzer (Brookhaven Instrument Corporation) equipped with a solid state He-Ne laser (wavelength $=661 \mathrm{~nm}$). Experiments were carried out at 298 K and the scattering angle was setted at 90°. Each sample was sonicated allowed to equilibrate for 3 min before the experiment. Ten independent measurements of 60 s duration were performed for each sample. The hydrodynamic diameters were calculated using Mie theory, considering absolute viscosity and refractive index values of the medium to be 0.890 cP and 1.33, respectively. The ζ-potential was calculated from electrophoretic mobility of nanoparticles, by using the Smoluchowski theory.

[^4]Hydrodynamic diameters of Compound $\mathbf{1}$ and $\mathbf{2}$ after one week of observation:

	Hydrodynamic Diameter (nm) Over 1 week of observation	Polydispersity Index
$\mathbf{1}$	417.0 ± 8.2	0.190 ± 0.072
$\mathbf{2}$	388.3 ± 8.5	0.153 ± 0.045

AFM investigations were performed using a NT-MDT NTEGRA apparatus in tapping mode under ambient conditions. Fluorescence microscopy images were taken with a Nikon Eclipse TE2000-U inverted microscope.

TEM investigations on samples were performed using at an EFTEM Leo 912 ab (Zeiss, Germany) operating at 100 KV and digital images were acquired by a CCD camera 1kx1k (Proscan, Germany) and iTEM software (Olympus, Germany).

Compound 1

Compound 2

Lipase-incubation: general procedure.

The selected lipase ($5 \mathrm{mg} / \mathrm{ml}$) and $\mathrm{n}-\mathrm{BuOH}(10 \mu \mathrm{~L} / \mathrm{ml})$ were added to solution of drug-drug conjugate (2 $\mathrm{mg} / \mathrm{ml}$) prepared in a 15 : 85 mixture of DMSO and phosphate buffer ($20 \mathrm{mM}, \mathrm{pH} 7$) which was subsequently incubated in a thermoshaker ($45^{\circ} \mathrm{C}$, 180 rpm) overnight. After that, the reacting media was extracted with AcOEt. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated in vacuo and dissolved again in a 2:1 mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and MeOH to be analyzed by means of reversed-phase HPLC.

Compound 1: The incubation of $1(4 \mathrm{mg}, 0,0034 \mathrm{mmol})$ with porcine pancreas lipase type II (PPL, 10 mg) and n-BuOH ($0.020 \mathrm{~mL}, 0.22 \mathrm{mmol}$) in the experimental conditions described above, gave the 88% of enzymaticpromoted hydrolysis of 1 calculated on the bases of the total products area.

Compound 2: The incubation of $2(4 \mathrm{mg}, 0,0035 \mathrm{mmol})$ with Celite ${ }^{\circledR}$-supported lipase PS (10 mg) and nBuOH ($0.020 \mathrm{ml}, 0.22 \mathrm{mmol}$) in the experimental conditions described above, gave the 85% of enzymaticpromoted hydrolysis of $\mathbf{2}$ calculated on the bases of the total products area.

HPLC analysis: general information and methods. All the samples were analysed using a Kinetex 5μ EVO $\mathrm{C} 18100 \AA ̊$ column working with a gradient of $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{A})$ and milliQ water $+0.001 \%$ of TFA (B) (0 min: $\mathrm{A}=90$ $\%, 30 \mathrm{~min}: A=20 \% ; 35 \mathrm{~min}: A=0 \% ; 60 \mathrm{~min}: A=0 \% ; 75 \mathrm{~min}: A=90 \%$) at a flow rate of $0.5 \mathrm{~mL} \mathrm{~min}-1$ and collecting the chromatograms at 256 nm .

compound	Retention time (min.)
$\mathbf{1}$	43.4
$\mathbf{2}$	43.2
$\mathbf{1 1}$	20.4
$\mathbf{1 3 a}$	39.9
$\mathbf{1 3 b}$	39.4
$\mathbf{1 4}$	4.5
$\mathbf{1 5}$	27.1

Figure 2-Supp.Info: HPLC chromatograms of a) compound $\mathbf{1}$ at $\mathrm{t}=0$; b) compound $\mathbf{1}$ after overnight incubation with lipase; c) compound $\mathbf{2}$ at $\mathrm{t}=0$; d) compound $\mathbf{2}$ after overnight incubation with lipase.

ESI-MS of the enzymatic reaction mixture of $\mathbf{1}$ after overnight incubation with lipase:

Compound	ESI-MS $(\boldsymbol{m} / \boldsymbol{z})$ calcd	found
$\mathbf{1}\left(\mathrm{C}_{67} \mathrm{H}_{75} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{SNa}\right)$	1168.4969	1168.4978
$\mathbf{1 1}\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}\right)$	453.1460	453.1465
$\mathbf{1 3 a}\left(\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{NNaO}_{3}\right)$	506.2671	506.2678
$\mathbf{1 4}\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}\right)$	396.1245	396.1249
$\mathbf{1 5}\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNa}\right)$	322.1572	322.1575

ESI-MS of the enzymatic reaction mixture of $\mathbf{2}$ after overnight incubation with lipase:

Compound	ESI-HRMS $(\boldsymbol{m} / \boldsymbol{z})$ calcd	found
$\mathbf{2}\left(\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Na}\right)$	1204.4098	1204.4101
$\mathbf{1 1}\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}\right)$	453.1460	453.1468
$\mathbf{1 3 b}\left(\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NNaO}_{3} \mathrm{~S}_{2}\right)$	542.1799	542.1804
$\mathbf{1 4}\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}\right)$	396.1245	396.1241
$\mathbf{1 5}\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNa}\right)$	322.1572	322.1575

${ }^{13} \mathrm{C}$ - NMR of compound 5 in CDCl_{3}
(

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 6 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of compound 6 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{7}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of compound 7 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 8 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of compound 8 in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of compound 9 in CDCl_{3}

9
${ }^{13} \mathrm{C}$-NMR of compound 9 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 11a in CDCl_{3}

11b
${ }^{1} \mathrm{H}$-NMR of compound 11b in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of compound 11 in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 12 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of compound 12 in CDCl_{3}

13a
${ }^{1} \mathrm{H}$-NMR of compound 13a in CDCl_{3}

13b
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 13b in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of 13 b in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of compound 1 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of compound 1 in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{2}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{2}$ in CDCl_{3}

2D COSY of compound 2 in CDCl_{3}

2D HSQC of compound 2 in CDCl_{3}

[^0]: ${ }^{1}$ The characterization of product $\mathbf{4}$ is consistent with that reported in the literature: Z. Liu, L. Tang et al., European Journal of Medicinal Chemistry, 2014, 74, 671-682.
 ${ }^{2}$ The characterization of product $\mathbf{5}$ is consistent with that reported in the literature: W.A.L. van Otterlo, G.L. Morgans et al., Tetrahedron, 2005, 61, 7746

[^1]: ${ }^{3}$ The characterization of product 11a is consistent with that reported in the literature: A. Muzaffar, A. Brossi, Synthetic Communications, 1990, 20, 713-717
 ${ }^{4}$ The characterization of product 11b is consistent with that reported in the literature: G. Cappelletti, D. Cartelli, B. Peretto et al., Tetrahedron, 2011, 67, 7354-7357

[^2]: ${ }^{5}$ The characterization the free amine 11 is consistent with that reported in the literature: G. Cappelletti, D. Cartelli, B. Peretto et al., Tetrahedron, 2011, 67, 7354-7357

[^3]: ${ }^{6}$ The characterization of product 13a is consistent with that reported in the literature: G. Fumagalli, M.S. Christodoulou, B. Riva, Organic \& Biomolecular Chemistry, 2017, 15, 1106-1109

[^4]: Figure 1-Supp.Info: a) and b) hydrodynamic diameter in function of pH ; c) and d) hydrodynamic diameter in function of ionic strength.

