Supporting Information

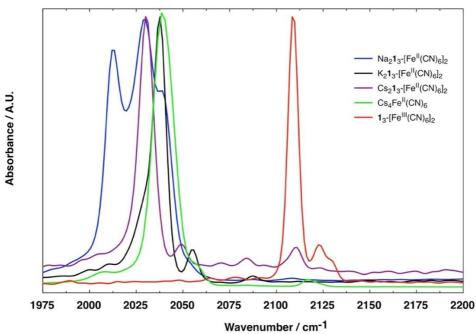
Chemical and electrochemical alkali cations

intercalation/release in an ionic hydrogen bonded

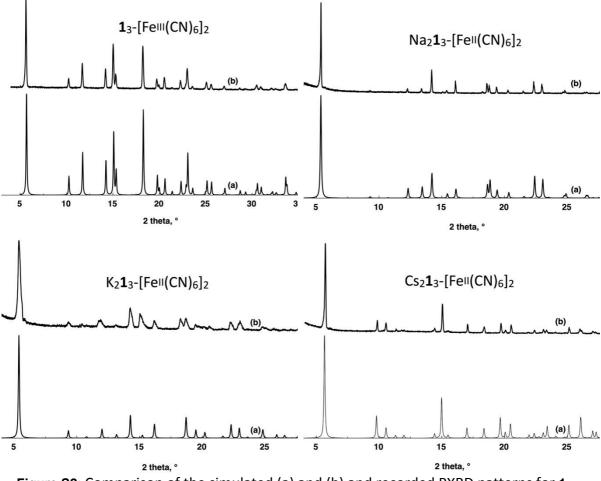
network

Geoffrey Gerer,^{*a,b*} Frédéric Melin,^{*b*} Petra Hellwig,^{*b**} Mir Wais Hosseini^{*a**} and Sylvie Ferlay^{*a**}

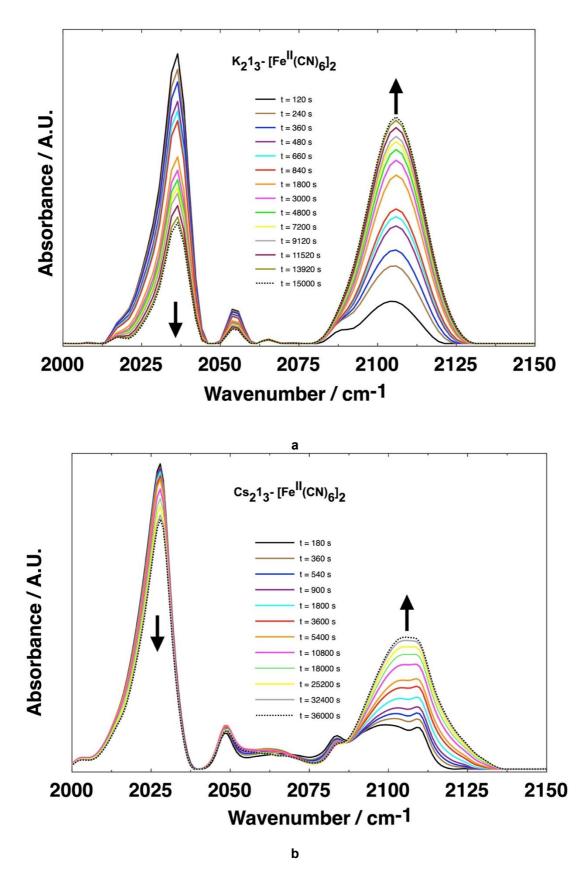
^a Molecular Tectonics Laboratory, University of Strasbourg, UMR UDS-CNRS 7140, Institut le Bel, 4, rue Blaise Pascal, F-67000 Strasbourg, France <u>ferlay@unistra.fr</u>, <u>hosseini@unistra.fr</u>

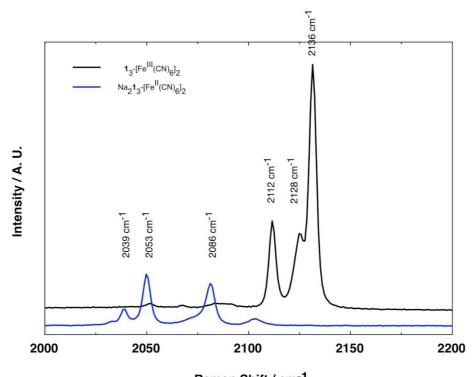

^b Laboratoire de Bioélectrochimie et Spectroscopie, University of Strasbourg, UMR UDS-CNRS 7140, Institut le Bel, 4, rue Blaise Pascal, F-67000 Strasbourg, France <u>hellwig@unistra.fr</u>

Purity of the used compounds:


 $K_{2}1_{3}$ -[Fe^{II}(CN)₆]₂: Elemental analysis calculated (%) for $C_{90}H_{132}K_{2}Fe_{2}N_{24}$ ($K_{2}(Fe(CN)_{6})_{2}(C_{26}H_{44}N_{4})_{3}$) Anal. Calcd.: C 62.1%, H 7.6%, N 19.3%; found: C 63.4%, H 7.5%, N 19.2%.

 $Cs_2 \mathbf{1}_3$ -[Fe^{II}(CN)₆]₂: Elemental analysis calculated (%) for $C_{90}H_{132}Cs_2Fe_2N_{24}$ ($Cs_2(Fe(CN)_6)_2(C_{26}H_{44}N_4)_3$) Anal. Calcd.: C 56.1%, H 6.9%, N 17.4%; found: C 57.6%, H 6.8%, N 17.3%.


1₃-[Fe^{III}(CN)₆]: Elemental analysis calculated (%) for C₉₀H₁₃₂Fe₂N₂₄ ((Fe(CN)₆)₂(C₂₆H₄₄N₄)₃) Anal. Calcd.: C 65.1%, H 8.0%, N 20.2%; found: C 66.3 7%, H 8.2%, N 20.4%.


Figure S1: MIR absorbance spectra at room temperature for $X_2 \mathbf{1}_3$ -[Fe^{II}(CN)₆]₂ (X = Na, K and Cs) and $X_2 \mathbf{1}_3$ -[Fe^{III}(CN)₆]₂ together with the one of starting salt Cs₄[Fe^{III}(CN)₆] at RT for the spectral range specific for the $v(C \equiv N)$ vibrational modes.

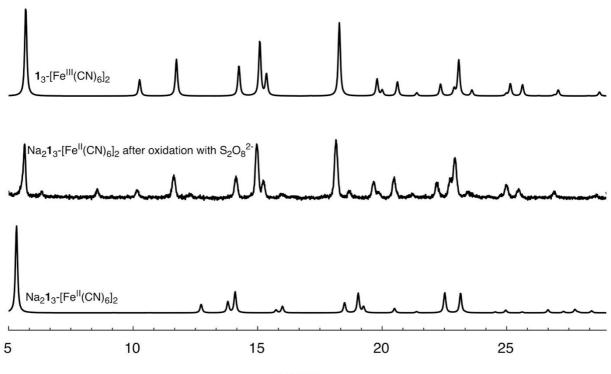
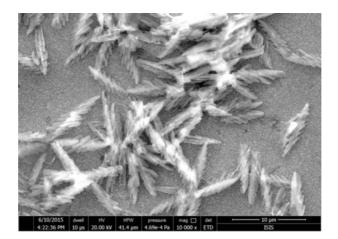

Figure S2: Comparison of the simulated (a) and (b) and recorded PXRD patterns for 1_3 -[Fe^{II}(CN)₆]₂ and X₂ 1_3 -[Fe^{II}(CN)₆]₂ (X = Na, K and Cs). Discrepancies in intensity between the observed and simulated patterns are due to preferential orientations of the microcrystalline powders

Figure S3: Kinetic study of the oxidation of $X_2 \mathbf{1}_3$ -[Fe^{III}(CN)₆]₂ (a) K, b) Cs) into $\mathbf{1}_3$ -[Fe^{III}(CN)₆]₂ by $S_2 O_8^{2-}$ followed at RT by MIR spectroscopy for the 2000-2200 cm^s window.



Raman Shift / cm^{-1} Figure S4: Raman spectra for Na₂1₃-[Fe^{III}(CN)₆]₂ and 1₃-[Fe^{III}(CN)₆]₂ for the 2000-2200 cm⁻¹ window.

2 theta

Figure S5: XRPD diagram for Na₂1₃-[Fe^{II}(CN)₆]₂ after oxidation by S₂O₈²⁻ and comparison with the simulated XRPD diagrams for Na₂1₃-[Fe^{II}(CN)₆]₂ and 1₃-[Fe^{III}(CN)₆]₂ (from XRD data)

Figure S6: SEM micrograph images of a gold substrate immersed in a solution of $1-2CI + K_3$ [Fe^{III}(CN)₆] in H₂O/MeOH (9/1) after 100 voltammetric cycles between -200 and +800 mV.

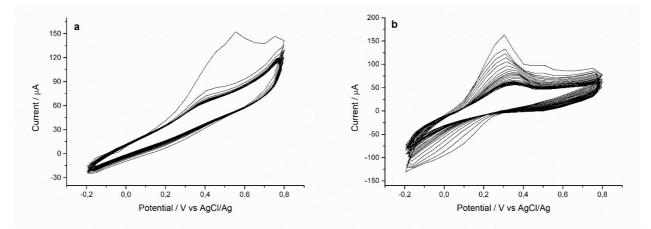


Figure S7: Cyclic voltammograms of gold substrate immersed for 2h into a a solution of $(1-2CI + Na_4[Fe^{II}(CN)_6])$ (a) and $(1-2CI + K_3[Fe^{III}(CN)_6)]$ (b). Scan rate 0.1 V.s⁻¹.