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Supporting Text 

In this supporting text, we explain Eqs. 2, 3, 6 and 7 of the main text. In our model, 

the binding status of molecular complexes in the system is represented by a set of 3𝑁 

variables {𝑖1𝑘, 𝑖2𝑘, 𝑗𝑘} with 𝑘 = 1, ⋯ , 𝑁, where 0 ≤ 𝑖1𝑘 ≤ 6 is the number of KaiB 

molecules bound on the CI domains of 𝑘th KaiC hexamer, 𝑖2𝑘 = 0 or 1 is the number 

of KaiA dimer bound on the CII ring of the 𝑘th KaiC hexamer, and 0 ≤ 𝑗𝑘 ≤ 𝑖1𝑘 is the 

number of KaiA dimers bound on KaiB in the 𝑘th KaiCB complex. Thus, by writing the 

probability that a binding status {𝑖1𝑘, 𝑖2𝑘, 𝑗𝑘}  is realized in the system at time 𝑡  as 

𝑃(𝑖11, 𝑖21, 𝑗1, ⋯ , 𝑖1𝑘 , 𝑖2𝑘, 𝑗𝑘, ⋯ , 𝑖1𝑁, 𝑖2𝑁, 𝑗𝑁, 𝑡), the stochastic binding/unbinding reactions 

are described by a master equation for this probability. We approximate this 𝑁-body 

probability by factorizing it into one-body probabilities as 

  

𝑃(𝑖11, 𝑖21, 𝑗1, ⋯ , 𝑖1𝑘, 𝑖2𝑘, 𝑗𝑘, ⋯ , 𝑖1𝑁 , 𝑖2𝑁 , 𝑗𝑁 , 𝑡) = ∏ 𝑃(𝑖1𝑘, 𝑖2𝑘, 𝑗𝑘 , 𝑡).               (S1)
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This Hartree-like approximation was used to describe the single-molecular stochastic 

reactions in the system of gene expression.1 We can further write 𝑃(𝑖1𝑘 = 0, 𝑖2𝑘 =

1, 𝑗𝑘, 𝑡) = 𝑃C6A2
(𝑘, 𝑡),  𝑃(𝑖1𝑘 = 0, 𝑖2𝑘 = 0, 𝑗𝑘, 𝑡) = 𝑃C6B0

(𝑘, 𝑡),  and 𝑃(𝑖1𝑘 = 𝑖, 𝑖2𝑘 =

0, 𝑗𝑘 = 𝑗, 𝑡) = 𝑃C6B𝑖A2𝑗
(𝑘, 𝑡)  assuming 𝑃(𝑖1𝑘 ≠ 0, 𝑖2𝑘 ≠ 0, 𝑗𝑘, 𝑡) = 0 . Because 

reactions in the CI domains and those in the CII domains are related only indirectly 

through the allosteric communication 𝑊(𝑘) , we can separately write the master 

equations for 𝑃C6A2
(𝑘, 𝑡)  and 𝑃C6B𝑖A2𝑗

(𝑘, 𝑡).  The equation for 𝑃C6A2
(𝑘, 𝑡)  is 
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𝑑

𝑑𝑡
𝑃C6A2

(𝑘, 𝑡) = ℎ𝐴𝑥𝑃C6B0
(𝑘, 𝑡) − 𝑓𝐴𝑃C6A2

(𝑘, 𝑡), whick leads to Eq. 2 under the quasi-

equilibrium approximation of KaiA binding/unbinding. With the same quasi-equilibrium 

approximation, KaiB binding/unbinding reactions are described without considering 

whether KaiA is bound on KaiB or not. Therefore, the master equations for 𝑃C6B𝑖A2𝑗
(𝑘, 𝑡) 

are summarized by writing 𝑃C6B𝑖
(𝑘, 𝑡) = ∑ 𝑃C6B𝑖A2𝑗

(𝑘, 𝑡)𝑖
𝑗=0 , which leads to Eq. 3. We 

should note that 𝑃C6B0
(𝑘, 𝑡) appearing in Eqs. 2, 3, and 5 relates 𝑃C6B𝑖

 and 𝑃C6A2
. 

  

For simplicity, we assume that KaiA dimer binds to and unbinds from every KaiB 

molecule without showing cooperative interactions between different KaiA dimers or 

between neighboring KaiB monomers on KaiC. Then, the ratio of the KaiA-bound KaiB 

to the KaiA-unbound KaiB should be 𝑔𝐵𝐴𝑥 = ℎ𝐵𝐴𝑥/𝑓𝐵𝐴. Therefore, if the number of 

KaiB molecules on the KaiC is 𝑖, the expected number of KaiA dimers bound in that 

KaiCBA complex is 𝑖 𝑔𝐵𝐴𝑥 (1 + 𝑔𝐵𝐴𝑥)⁄ . Then, the expectation value of the total number 

of KaiA dimers bound in KaiCBA complexes in the system should be 

 

𝑔𝐵𝐴𝑥

1 + 𝑔𝐵𝐴𝑥
∑ ∑ 𝑖𝑃C6B𝑖

(𝑘, 𝑡),

6

𝑖=1

𝑁

𝑘=1

                      (S2) 

 

where 𝑃C6B𝑖
(𝑘, 𝑡) is the probability that 𝑖 molecules of KaiB are bound on 𝑘th KaiC 

at time 𝑡. By dividing this factor with volume, we have the last term in Eq. 6. 

 

For discussing the structure change of the 𝑘th KaiC hexamer, we assume that free 

energy 𝐹𝑘 is affected by the level of phosphorylation 𝑈𝑘, probability of KaiA binding 

on the CII ring of KaiC hexamer 𝑝𝑘
𝐶𝐴, probability that KaiB binds to the CI domains of 

𝑗th subunit of KaiC hexamer 𝑝𝑘𝑗
𝐶𝐵, and the effect of ATP hydrolysis 𝑞𝑘 as 

 

𝐹𝑘 = −
1

6
∑ 𝑤𝑗(𝑘)

6

𝑗=1

(𝑐0 − 𝑐1𝑈𝑘 + 𝑐2𝑝𝑘
𝐶𝐴 − 𝑞𝑘)                                 

  +𝑐3 ∑ 𝑤𝑗(𝑘)

6

𝑗=1

𝑝𝑘𝑗
𝐶𝐵 − 𝐽 ∑ 𝑤𝑗(𝑘)𝑤𝑗+1(𝑘)

5

𝑗=1

,               (S3) 

 



S3 

 

where 𝑤𝑗(𝑘) is the structure order parameter of 𝑗th subunit of 𝑘th KaiC hexamer with 

𝑊(𝑘) = (1/6) ∑ 𝑤𝑗(𝑘)6
𝑗=1 . 𝐽 > 0 in Eq. S3 represents the cooperativity of structural 

transitions in neighboring subunits. We may regard 𝑤𝑗(𝑘) as an Ising spin and 𝑈𝑘, 𝑝𝑘
𝐶𝐴, 

𝑞𝑘, and 𝑝𝑘𝑗
𝐶𝐵 as external fields applied to spins. In our previous publication, the Monte 

Carlo-type simulation of this “spin” system was performed with Hamiltonian similar to 

Eq. S3 for analyzing the single-molecular KaiC oscillation.2 In the large 𝐽 limit, the 

cooperativity is strong enough to have 𝑤𝑗(𝑘) = 𝑊(𝑘) . Then, Eq. S3 is effectively 

represented by 

 

𝐻𝑘 = −𝑊(𝑘)(𝑐0 − 𝑐1𝑈𝑘 + 𝑐2𝑝𝑘
𝐶𝐴 − 𝑞𝑘) + 𝑐3𝑊(𝑘) ∑ 𝑝𝑘𝑗

𝐶𝐵

6

𝑗=1

.                    (S4) 

 

By writing 𝑝𝑘
𝐶𝐵 = ∑ 𝑝𝑘𝑗

𝐶𝐵6
𝑗=1  and 𝐶𝑘 = 𝑐0 − 𝑐1𝑈𝑘 + 𝑐2𝑝𝑘

𝐶𝐴 − 𝑐3𝑝𝑘
𝐶𝐵 − 𝑞𝑘,  we have 

𝐻𝑘 = −𝑊(𝑘)𝐶𝑘. The expectation value of 𝑊(𝑘) at temperature 𝑇 should be 

 

〈𝑊(𝑘)〉 = ∑ 𝑊exp (−
𝐻𝑘

𝑘B𝑇
)

1

𝑊=−1

∑ exp (−
𝐻𝑘

𝑘B𝑇
)

1

𝑊=−1

⁄ = tanh (
𝐶𝑘

𝑘B𝑇
).             (S4) 

 

If we regard the quasi-equilibrium value 〈𝑊(𝑘)〉 as 𝑊(𝑘, 𝑡) in the slow dynamics, then 

we have Eq. 7. 
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