Supplementary Materials

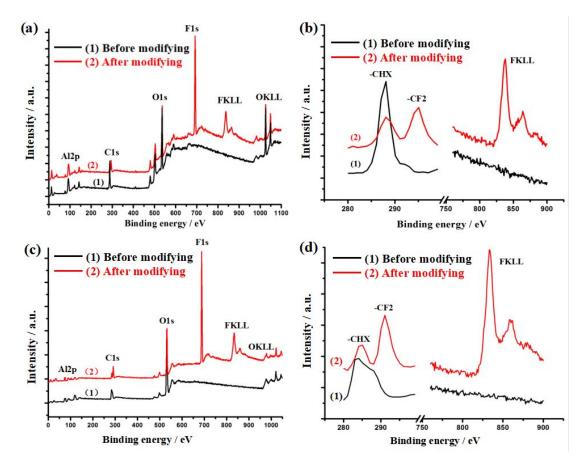
Rationally design nanostructure features on superhydrophobic surfaces for enhancing the self-propelling dynamics of condensed droplets

Yizhou Shen^{†,*}, Yuehan Xie[†], Jie Tao^{†,I,*}, Haifeng Chen[‡], Chunling Zhu[§], Mingming

Jin[†], Yang Lu[†]

[†] College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

[‡] Department of Materials Chemistry, Qiuzhen School, Huzhou University, 759, East2nd Road, Huzhou 313000, P. R. China


§ College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

¹ Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, P. R. China

* Professor Jie Tao, Tel/Fax: +86-25-5211 2911. E-mail: taojie@nuaa.edu.cn.

A/Professor Yizhou Shen, Tel: +86-25-5211 2911. E-mail: shenyizhou@nuaa.edu.cn.

Supplementary Figures

Figure. S1. The XPS spectrum (1) before and (2) after self-assembling with the hydrophobic groups for (a-b) SLP-surface and (c-d) OC-surface.

Supplementary Videos

Video S1. The process of spreading, contraction and rebounding when a droplet impacts on different surfaces.

Video S2. The condensed micro-droplets merging process on layered porous structural surface by a high-speed camera at side-view.

Video S3 The self-propelling bouncing behavior of the coalesced droplets on open nanocone superhydrophobic surface by a high-speed camera at side-view during the condensing process.