## Supporting Information

Anion Transport with Pnictogen Bonds in Direct Comparison with Chalcogen and Halogen Bonds<br>Lucia M. Lee, Maria Tsemperouli, Amalia I. Poblador-Bahamonde, Sebastian Benz, Naomi Sakai, Kaori Sugihara,* and Stefan Matile*<br>School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, CH-1211 Geneva, Switzerland

stefan.matile@unige.ch, kaori.sugihara@unige.ch

## Table of Content

1. Materials and Methods ..... S3
2. Transporters ..... S4
3. Anion Binding ..... S4
4. Anion Transport ..... S9
4.1. Vesicle Preparation ..... S9
4.2. Ion Transport Activity ..... S10
4.3. FCCP Assay ..... S11
4.4. Non-Specific Leakage ..... S18
5. Planar Bilayer Conductance Experiments ..... S19
6. Computational Data ..... S25
6.1. Methods ..... S25
6.2. Cartesian Coordinates of Nitrate Complexes ..... S25
6.3. Cartesian Coordinates of Bromide Complexes ..... S29
6.4. Cartesian Coordinates of Iodide Complexes ..... S30
7. Supporting References ..... S32

## 1. Materials and Methods

As in reference S1, Supporting Information. Reagents for synthesis of carriers were purchased from Merck, Apollo Scientific and Acros. Carrier 6 was purchased from Sigma Aldrich and used without further purification.

Buffer solutions were prepared using salts of the analytical grade from Merck and Acros Organics. Fluorophores, 8-hydroxy-1,3,6-pyrenetrisulfonate and (5)6-carboxyfluorescein were obtained from Merck, egg yolk phosphatidylcholine (EYPC), egg yolk phosphatidylglycerol (EYPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and a Mini-Extruder used for vesicle preparation were purchased from Avanti Polar Lipids. Fluorescence measurements were performed with a FluoroMax-4 spectrofluorometer from Horiba Scientific equipped with a stirrer and a temperature controller. Fluorescence spectra were corrected using instrumentsupplied correction factors, unless stated otherwise. All measurements were performed at 25 ${ }^{\circ} \mathrm{C}$. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 300 MHz spectrometer.

Abbreviations. BLM: Black lipid membranes; CF: 5(6)-Carboxyfluorescein; DMSO: Dimethyl sulfoxide; EYPC: Egg yolk phosphatidylcholine; EYPG: Egg yolk phosphotidylglycerol; FCCP: Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; HEPES: $N$-(2-Hydroxyethyl)piperazine- $N$ '-(2-ethanesulfonic acid); HPTS: 8-Hydroxy-1,3,6pyrenetrisulfonate; LUVs: Large unilamellar vesicles; POPC: 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; rt: Room temperature; TBA: tetrabutylammonium; THF: Tetrahydrofuran.

## 2. Transporters

Transporters 1-4 and 7 were prepared and characterized following the previously reported procedures. ${ }^{\mathrm{Sl}-\mathrm{S} 3}$

## 3. Anion Binding

The binding constants were obtained by a reported NMR titration method. ${ }^{\text {S1 }}$ Stock solutions of carriers $4(1.86 \mathrm{mM})$ and $\mathbf{6}(3.12 \mathrm{mM})$ were prepared in dry THF, and used to prepare solutions of TBAX $\left(\mathrm{X}=\mathrm{Br}, \mathrm{I}, \mathrm{NO}_{3}, 12 \mathrm{mM}\right)$. Various volumes of stock solution with or without TBAX were mixed in an NMR tube to reach the desired final TBAX concentration. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with each addition. Differences in chemical shift $\Delta \delta$ of the most responsive fluorine signal, in para position to the hetero atom, were plotted versus TBAX concentration, and curve-fitted to a 1:1 binding isotherm to determine the dissociation constants according to equation (S1):

$$
\begin{align*}
& \Delta \delta=\left(\Delta \delta_{\max } /[C]_{0}\right) \times\left(0.5 \times[\mathrm{A}]+0.5 \times[C]_{0}+K_{\mathrm{D}}\right)-\left(0.5 \times\left(\left(\left[\mathrm{A}^{2}\right)+(2 \times[\mathrm{A}]) \times\left(K_{\mathrm{D}}-\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.[C]_{0}\right)\right)+\left(K_{\mathrm{D}}+[C]_{0}\right)^{2}\right)^{0.5}\right)\right) \tag{S1}
\end{align*}
$$

where $\Delta \delta=\left|\delta-\Delta \delta_{0}\right|,[\mathrm{A}]=$ concentration of TBAX $(\mathrm{X}=\mathrm{Br}, \mathrm{I})$, and $[C]_{0}=$ concentration of carriers 4 and 6.


Figure S1. ${ }^{19} \mathrm{~F}$ NMR spectra of (A, B) a solution of carrier $4(1.86 \mathrm{mM})$ in THF with increasing concentration of $\mathrm{TBABr}(0-12.0 \mathrm{mM}$, bottom to top) and (C) nonlinear fitting of equation (S1) of changes in chemical shift $\Delta \delta$ versus TBABr concentration. $K_{\mathrm{D}}=1.71 \pm 0.05 \mathrm{mM}, \delta_{\max }$ $=4.10 \pm 0.03 \mathrm{ppm}, R=0.999$.


Figure S2. ${ }^{19}$ F NMR spectra of (A) a solution of carrier $\mathbf{4}(1.86 \mathrm{mM})$ in THF with increasing concentration of TBAI ( $0-12.0 \mathrm{mM}$, bottom to top) and (B) nonlinear fitting of equation (S1), of changes in chemical shift $\Delta \delta$ versus TBAI concentration. $K_{\mathrm{D}}=4.31 \pm 0.18 \mathrm{mM}, \delta_{\max }=2.82$ $\pm 0.04 \mathrm{ppm}, R=0.999$.


Figure S3. ${ }^{19}$ F NMR spectra of (A) a solution of carrier $6(3.12 \mathrm{mM})$ in THF with increasing concentration of $\mathrm{TBABr}(0-12.0 \mathrm{mM}$, bottom to top) and (B) nonlinear fitting of equation (S1), of changes in chemical shift $\Delta \delta$ versus TBABr concentration. $K_{\mathrm{D}}=2.02 \pm 0.14 \mathrm{mM}, \delta_{\max }$ $=3.13 \pm 0.06 \mathrm{ppm}, R=0.998$.


Figure S4. ${ }^{19}$ F NMR spectra of $(\mathrm{A})$ a solution of carrier $6(3.12 \mathrm{mM})$ in THF with increasing concentration of TBAI $(0-12.0 \mathrm{mM}$, bottom to top) and (B) nonlinear fitting of equation (S1), of changes in chemical shift $\Delta \delta$ versus TBAI concentration. $K_{\mathrm{D}}=6.32 \pm 0.36 \mathrm{mM}, \delta_{\max }=2.51$ $\pm 0.06 \mathrm{ppm}, R=0.999$.


Figure S5. ${ }^{19} \mathrm{~F}$ NMR spectra of carriers (A) $\mathbf{4}(1.86 \mathrm{mM})$ and (B) $\mathbf{6}(3.12 \mathrm{mM})$ with increasing concentration of $\mathrm{TBANO}_{3}(0-12 \mathrm{mM}$, bottom to top). No significant shifts were observed up to a concentration of 12.0 mM of $\mathrm{TBANO}_{3}$.

## 4. Anion Transport

### 4.1. Vesicle Preparation

EYPC-LUVs $\supset$ HPTS. The procedure was followed as reported in the literature. ${ }^{\mathrm{S4}} \mathrm{~A}$ solution of EYPC ( 25 mg ) in EtOH ( $25 \mu \mathrm{~L}$ ) was diluted in $\mathrm{MeOH} / \mathrm{CHCl}_{3}(1: 1,2 \mathrm{~mL})$. A thin lipid film was obtained by drying on a rotary evaporator $\left(40^{\circ} \mathrm{C}\right)$ and then in vacuo for 3 days. After hydration ( $>30 \mathrm{~min}$ ) with 1.0 mL buffer ( 10 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, 1.0 \mathrm{mM}$ HPTS, pH 7.0 ), the resulting suspension was subjected to $>5$ freeze-thaw cycles (liquid $\mathrm{N}_{2}, 37^{\circ} \mathrm{C}$ water bath) and $>15$ times extruded through a polycarbonate membrane (pore size 100 nm ). Extravesicular components were removed by size exclusion chromatography (Sephadex G-50, Sigma-Aldrich) with 10 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$. Final conditions: 5 mM EYPC, inside 10 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, 1.0 \mathrm{mM}$ HPTS, pH 7.0, outside: 10 mM HEPES, 100 $\mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$. The vesicles were used within the week of preparation.

EYPC/EYPG-LUVs $\boldsymbol{D H P T S}$. These vesicles were prepared following the procedure described above using a mixture of EYPC and EYPG (9:1).

POPC-LUVs $\supset$ CF. A thin film was prepared by evaporating a solution of POPC ( 25 mg ) in $\mathrm{MeOH} / \mathrm{CHCl}_{3}(1: 1,2 \mathrm{~mL})$ on a rotary evaporator $\left(40^{\circ} \mathrm{C}\right)$ and then in vacuo for 3 days. ${ }^{\mathrm{S} 2} \mathrm{The}$ film was then hydrated with 1.0 mL buffer ( 10 mM HEPES, $10 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM} \mathrm{CF}, \mathrm{pH} 7.4$ ), subjected to $>5$ freeze-thaw cycles (liquid $\mathrm{N}_{2}, 37^{\circ} \mathrm{C}$ water bath) and $>15$ times extruded through a polycarbonate membrane (pore size 100 nm ). Extravesicular components were removed by size exclusion chromatography (Sephadex G-50, Sigma-Aldrich) with 10 mM HEPES, 107 mM $\mathrm{NaCl}, \mathrm{pH}$ 7.4. Final conditions: 5 mM POPC, inside 10 mM HEPES, $10 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM} \mathrm{CF}$, pH 7.4, outside: 10 mM HEPES, $107 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$. The vesicles were used within the week of preparation.

### 4.2. Ion Transport Activity

Following established procedures, ${ }^{\text {S4-S6 }}$ to a gently stirred, thermostated buffer ( $1950 \mu \mathrm{~L}$, $25^{\circ} \mathrm{C}, 10 \mathrm{mM}$ HEPES, $100 \mathrm{mM} \mathrm{NaX}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or $\mathrm{NO}_{3}$, or 10 mM HEPES, $95 \mathrm{mM} \mathrm{NaI}, 5$ $\mathrm{mM} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{pH} 7.0$ ) in a disposable plastic cuvette, EYPC (or EYPC/EYPG)-LUVs $\supset H P T S$ ( $50 \mu \mathrm{~L}$ ) was added. The time-dependent change in fluorescence intensity ( $\lambda_{\mathrm{em}}=510 \mathrm{~nm}$ ) was monitored at two excitation wavelengths simultaneously $\left(I_{\mathrm{t}, 454}: \lambda_{\mathrm{ex}}=454 \mathrm{~nm}, I_{\mathrm{t}, 404}: \lambda_{\mathrm{ex}}=404\right.$ $\mathrm{nm})$, during addition of base ( $20 \mu \mathrm{~L}, 0.5 \mathrm{M} \mathrm{NaOH}$ ) at $t=0.5 \mathrm{~min}$, carrier ( $20 \mu \mathrm{~L}$, THF solution) at $t=1.5 \mathrm{~min}$, and gramicidin $\mathrm{D}(20 \mu \mathrm{~L}, 100 \mu \mathrm{M}$ in DMSO$)$ at $t=6 \mathrm{~min}$.

Time course of fluorescence intensity $I_{\mathrm{t}}$ were obtained first by ratiometric analysis $\left(R_{\mathrm{t}}=\right.$ $I_{\mathrm{t}, 454} / I_{\mathrm{t}, 404}$ ), followed by normalization according to equation (S2),

$$
\begin{equation*}
I_{\text {rel }}=\frac{\left(R_{t}-R_{0}\right)}{\left(R_{\infty}-R_{0}\right)} \tag{S2}
\end{equation*}
$$

where $R_{0}=R_{\mathrm{t}}$ at $t=1.5 \mathrm{~min}$, before addition of carrier and $R_{\infty}=R_{\mathrm{t}}$ at $t=8 \mathrm{~min}$ after addition of gramicidin D. $I_{\mathrm{rel}}$ at 6.5 min just before addition of gramicidin D was defined as transmembrane
activity $Y$, and analyzed with the Hill equation (S3) to give effective concentration $E C_{50}$ and the Hill coefficient $n$,

$$
\begin{equation*}
Y=Y_{\infty}+\frac{Y_{0}-Y_{\infty}}{\left(1+\frac{c}{E C_{50}}\right)^{n}} \tag{S3}
\end{equation*}
$$

where $Y_{0}$ is $Y$ in absence of carrier, $Y_{\infty}$ is $Y$ with excess carrier, and $c$ is the carrier concentration in a cuvette. Complete results for all compounds are shown in Table 1.

### 4.3. FCCP Assay

A solution of EYPC-LUVs $\supset$ HPTS ( $50 \mu \mathrm{~L}$ ) was added to a gently stirred, thermostated ( 25 $\left.{ }^{\circ} \mathrm{C}\right)$ buffer ( $1950 \mu \mathrm{~L}, 25^{\circ} \mathrm{C}, 10 \mathrm{mM}$ HEPES, $100 \mathrm{mM} \mathrm{NaX}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or $\mathrm{NO}_{3}$, or 10 mM HEPES, $95 \mathrm{mM} \mathrm{NaI}, 5 \mathrm{mM} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{pH} 7.0$ ) in a disposable plastic cuvette. ${ }^{\mathrm{S5}}$ To this solution, the base ( $20 \mu \mathrm{~L}, 0.5 \mathrm{M} \mathrm{NaOH}$ ) was added at $t=0.5 \mathrm{~min}$, followed by FCCP $(20 \mu \mathrm{~L}, 0.1 \mathrm{mM}$ in DMSO) at $t=0.9 \mathrm{~min}$, carrier ( $20 \mu \mathrm{~L}$, THF solution) at $t=1.9 \mathrm{~min}$, and gramicidin $\mathrm{D}(20$ $\mu \mathrm{L}, 100 \mu \mathrm{M}$ in DMSO) at $t=6 \mathrm{~min}$. Data were obtained and analyzed as described in the section 4.2.


Figure S6. Fluorescence traces for compounds 2, 4, and $\mathbf{6}$ in the HPTS assay (A-C respectively) and the FCCP assays (D-F respectively) in EYPC-LUVs $\supset H P T S$ in a NaCl buffer at different carrier concentrations. (A) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s}$ ), 2 (concentration in cuvette with increasing activity: $0,0.1,1,1.5,2,4,6$ and $10 \mu \mathrm{M}, 90$ s) and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPC-LUVs $\supset H P T S$ in a NaCl buffer ( 10 mM HEPES, 100 $\mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0)$. (B) Same for $4(0,0.04,0.06,0.1,0.4,0.8$ and $4 \mu \mathrm{M})$. (C) Same for $\mathbf{6}(0$, $40,100,150,400 \mu \mathrm{M}$, and 1 mM ). (D) Fractional emission $I_{\mathrm{rel}}$ during the addition of NaOH ( 5 $\mathrm{mM}, 30 \mathrm{~s}), \operatorname{FCCP}(1.0 \mu \mathrm{M}, 50 \mathrm{~s}), 2(0,0.004,0.01,0.03,0.08,0.4$ and $1 \mu \mathrm{M}, 90 \mathrm{~s})$ and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPC-LUVs $\supset H P T S$ in a NaCl buffer ( 10 mM HEPES, 100 $\mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0)$. (E) Same for $4(0,0.009,0.02,0.03,0.4,2$ and $8 \mu \mathrm{M})$. (F) Same for $\mathbf{6}(0$, $40,60,100,200$ and $400 \mu \mathrm{M})$.


Figure S7. Fluorescence traces for compounds 2, 4, and $\mathbf{6}$ in the HPTS assay (A-C respectively) and the FCCP assays (D-F respectively) in EYPC-LUVs $\supset H P T S$ in a $\mathrm{NaNO}_{3}$ buffer at different carrier concentrations. (A) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s}$ ), 2 (concentration in cuvette with increasing activity: $0,0.4,1,2,3,15$, and $80 \mu \mathrm{M}, 90$ s) and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPC-LUVs $\supset \mathrm{HPTS}$ in a $\mathrm{NaNO}_{3}$ buffer ( 10 mM HEPES, 100 $\left.\mathrm{mM} \mathrm{NaNO}_{3}, \mathrm{pH} 7.0\right)$. (B) Same for 4 (0, 0.1, $0.4,0.6,0.8,0.9,1$, and $10 \mu \mathrm{M}$ ). (C) Same for $\mathbf{6}$ ( $0,9,250,400,800 \mu \mathrm{M}, 2.5$ and 4 mM ). (D) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s}), \mathrm{FCCP}(1.0 \mu \mathrm{M}, 50 \mathrm{~s}), 2(0,0.04,0.1,0.3,0.6$ and $4 \mu \mathrm{M}, 90 \mathrm{~s})$ and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPC-LUVs $\supset H P T S$ in a $\mathrm{NaNO}_{3}$ buffer ( 10 mM HEPES, 100 $\mathrm{mM} \mathrm{NaNO}_{3}, \mathrm{pH} 7.0$ ). (E) Same for $4(0,0.004,0.008,0.02,0.05,0.2,0.4$, and $1 \mu \mathrm{M}$ ) . (F) Same for $\mathbf{6}(0,20,40,80 \mu \mathrm{M}, 2$ and 5 mM$)$.


Figure S8. Fluorescence traces for compounds 4, and $\mathbf{6}$ in the HPTS assay (A, B respectively) and the FCCP assays (D, F respectively) in EYPC-LUVs $\supset H P T S$ in a NaBr buffer at different carrier concentrations. (A) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s})$, 4 (concentration in cuvette with increasing activity: $0,0.1,0.2,0.4,0.6,0.8,2$ and $4 \mu \mathrm{M}, 90 \mathrm{~s}$ ) and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPC-LUVs $\supset H P T S$ in a NaBr buffer ( 10 mM HEPES, $100 \mathrm{mM} \mathrm{NaBr}, \mathrm{pH} 7.0$ ). (B) Same for 6 ( $0,80,250,300,400,800 \mu \mathrm{M}$, and 1 mM ). (C) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s})$, FCCP $(1.0 \mu \mathrm{M}, 50 \mathrm{~s}), 4(0$, $0.001,0.02,0.03,0.04$ and $2 \mu \mathrm{M}, 90 \mathrm{~s})$ and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPCLUVs $\supset H P T S$ in a NaBr buffer (10 mM HEPES, $100 \mathrm{mM} \mathrm{NaBr} ,\mathrm{pH} \mathrm{7.0)}. \mathrm{(D)} \mathrm{Same} \mathrm{for} 6$ (0, $0.8,80,100,500,800 \mu \mathrm{M})$.


Figure S9. Fluorescence traces for compounds 4, and $\mathbf{6}$ in the HPTS assay (A-C respectively) and the FCCP assays (D-F respectively) in EYPC-LUVs $\supset H P T S$ in a NaI buffer at different carrier concentrations. (A) Fractional emission $I_{\mathrm{rel}}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s})$, 4 (concentration in cuvette with increasing activity: $0,0.08,0.9,1,2$, and $4 \mu \mathrm{M}, 90$ s) and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPC-LUVs $\supset$ HPTS in a NaI buffer ( 10 mM HEPES, 95 mM NaI, $5 \mathrm{mM} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{pH} 7.0$ ). (B) Same for 6 ( $0,80,100,300,500$, and $800 \mu \mathrm{M}$ ). (C) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s}), \mathrm{FCCP}(1.0 \mu \mathrm{M}, 50 \mathrm{~s}), 4(0,0.008,0.04$, 0.08 , and $4 \mu \mathrm{M}, 90 \mathrm{~s})$ and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360 \mathrm{~s})$ to EYPC-LUVs $\supset H P T S$ in a NaI buffer ( 10 mM HEPES, 100 mM NaI, pH 7.0 ). (D) Same for 6 ( $0,200,400,600$, and $800 \mu \mathrm{M}$ ).


Figure S10. Combined dose response curves for carriers $2(\diamond \Delta), \mathbf{4}(\Delta \triangle)$ and $\mathbf{6}(\nabla \nabla)$ in the HPTS (solid) and FCCP (dotted) assays in EYPC-LUVs $\supset H P T S ~ s u s p e n d e d ~ i n ~(A) ~ a ~ N a C l ~(10 ~$ mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$ ), (B) a $\mathrm{NaNO}_{3}(10 \mathrm{mM}$ HEPES, $100 \mathrm{mM} \mathrm{NaNO} 3, \mathrm{pH} 7.0$ ), (C) a $\mathrm{NaBr}(10 \mathrm{mM}$ HEPES, $100 \mathrm{mM} \mathrm{NaBr}, \mathrm{pH} 7.0)$, and (D) a $\mathrm{NaI}(10 \mathrm{mM}$ HEPES, 95 mM $\mathrm{NaI}, 5 \mathrm{mM} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{pH} 7.0$ ) buffer.


Figure S11. Fluorescence traces for carriers 2, 4, and $\mathbf{6}$ in the HPTS assay (A-C respectively) in anionic EYPG (10\%) vesicles at different carrier concentrations. (A) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s}), \mathbf{2}$ (concentration in cuvette with increasing activity: $0,0.1,1,4,10,50$, and $100 \mu \mathrm{M}, 90 \mathrm{~s})$ and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}, 360$ s) to EYPG/EYPCLUVs $\supset$ HPTS in a NaCl buffer ( 10 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$ ). (B) Same for 4 ( 0 , $0.02,0.8,1,4,10$, and $100 \mu \mathrm{M})$. (C) Same for $6(0,100,400,500,600,700,800,900 \mu \mathrm{M}$, and 1 mM ).


Figure S12. Dose response curves for carriers $2\left({ }^{( }\right), \mathbf{4}(\boldsymbol{\Delta})$ and $6(\nabla)$ in the HPTS assay in $10 \%$ anionic EYPG vesicles as a function of carrier concentration.


Figure S13. Fluorescence traces for compounds 1, 3, and 7 in the HPTS assay (A-C respectively) in EYPC-LUVs $\supset H P T S$ in a NaCl buffer at different carrier concentrations. (A) Fractional emission $I_{\text {rel }}$ during the addition of $\mathrm{NaOH}(5 \mathrm{mM}, 30 \mathrm{~s}), \mathbf{1}$ (concentration in cuvette with increasing activity: $0,0.4,0.8,8,20,80$, and $400 \mu \mathrm{M}, 90 \mathrm{~s})$ and gramicidin $\mathrm{D}(1.0 \mu \mathrm{M}$, 360 s) to EYPC-LUVs $\supset H P T S$ in a NaCl buffer ( 10 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$ ). (B) Same for $3(0,0.1,0.4,0.8,1,10,40$ and $80 \mu \mathrm{M})$. (C) Same for $7(0,0.8,2,4,8,40,80$, and $400 \mu \mathrm{M})$.


Figure S14. Combined dose response curves for carriers $\mathbf{3}(-)$ and $7(\square)$ in the HPTS assay in EYPC-LUVs $\neg$ HPTS suspended in a NaCl buffer ( 10 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$ ).

### 4.4. Non-Specific Leakage

To gently stirred, thermostated buffer ( $1950 \mu \mathrm{~L}, 25^{\circ} \mathrm{C}, 10 \mathrm{mM}$ HEPES, 107 mM NaCl , pH 7.4 ) in a disposable plastic cuvette, POPC-LUV $\supset \mathrm{CF}(50 \mu \mathrm{~L})$ were added. ${ }^{\text {S6 }}$ The timedependent changes in fluorescence intensity ( $I_{\mathrm{t}}, \lambda_{\mathrm{ex}}=492 \mathrm{~nm}, \lambda_{\mathrm{em}}=517 \mathrm{~nm}$ ) were monitored
during the addition of the carrier at 100 s , and the addition of triton X-100 (40 $\mu \mathrm{L}, 1.2 \% \mathrm{aq})$ at $t=400 \mathrm{~s}$. Time courses of $I_{\mathrm{t}}$ were normalized to fractional intensities $I_{\mathrm{rel}}$ using equation (S2).


Figure S15. Change in emission intensity $I_{\mathrm{rel}}\left(\lambda_{\mathrm{ex}}=492 \mathrm{~nm}, \lambda_{\mathrm{em}}=517 \mathrm{~nm}\right)$ with time during the addition of $\mathbf{2}(10 \mathrm{mM}, \mathrm{A}), \mathbf{4}(1 \mathrm{mM}, \mathrm{B})$ and $\mathbf{6}(10 \mathrm{mM}, \mathrm{C})$ and excess triton X-100 to EYPC vesicles with internal, self-quenched 5(6)-carboxyfluorescein (CF).

## 5. Planar Bilayer Conductance Experiment

Conductance experiments were performed in black lipid membranes as previously described. ${ }^{\text {S6 }}$ Briefly, black lipid membranes (BLMs) were prepared by painting a solution of POPC ( $25 \mathrm{mg} / \mathrm{mL}$ ) in decane : hexane mixture ( $1: 1$ volume ratio) on a Teflon sheet with an aperture of a diameter $d=50 \mu \mathrm{~m}$ and a thickness $l=25 \mu \mathrm{~m}$, mounted on a home-made electrochemical chamber. ${ }^{56}$ The Teflon sheet is separating two compartments cis and trans, where each of them contains $2 \mathrm{M} \mathrm{NaCl}(10 \mathrm{mM}$ HEPES, pH 7.4$) . \mathrm{A} \mathrm{Ag} / \mathrm{AgCl}$ electrode was connected to each chamber through an agar salt bridge ( $2 \mathrm{M} \mathrm{NaCl}, 2 \%$ Agar). All the electrical measurements were performed with an Autolab PGSTAT302N potentiostat equipped with a FRA32 M module and ECD Module for low current recordings and Nova 1.11 software (Metrohm Ltd, Switzerland). The results were plotted with Igor Pro 7 analysis software (Wavemetrics, USA). The transporters were added to the cis compartment at negative holding potentials (trans side as ground), whereas the final concentration was 200, 300, 460, 500 and
$100 \mu \mathrm{M}$ for the carriers 4, 6, 7, $\mathbf{1}$ and 2, respectively. To determine ion selectivities of transporter 6, $\mathbf{4}$ and 2, transmembrane currents $(I)$ were measured at different applied voltages $(V)$ under asymmetric ionic conditions between the cis and trans compartments. Next the mean value of the current $I$ response was plotted as a function of the applied voltages $V$ and the reversal potentials ( $V_{\mathrm{r}}$ ) (which correspond to zero current voltages) were estimated after fitting the resulted $I-V$ curves with a polynomial function. Chloride vs sodium permeability ratios $P_{\mathrm{Cl}^{-}} / P_{\mathrm{Na}^{+}}$were calculated from the reversal potentials $\left(V_{\mathrm{r}}\right)$ obtained under varied NaCl concentration gradients by using the Goldman-Hodgkin-Katz (GHK) equation (S4), ${ }^{\text {S9 }}$

$$
\begin{equation*}
V_{\mathrm{r}}=\frac{R \cdot T}{F} \ln \frac{\left.P_{\mathrm{Na}+}+\left[\mathrm{Na}^{+}\right]_{\text {trans }}+P_{\mathrm{Cl}^{-} \cdot\left[\mathrm{Cl}^{-}\right.}\right]_{\text {cis }}}{P_{\mathrm{Na}}+\left[\mathrm{Na}^{+}\right]_{\text {cis }}+P_{\mathrm{cl}^{-}-} \cdot\left[\mathrm{Cl}^{-}\right]_{\text {trans }}} \tag{S4}
\end{equation*}
$$

where $P_{\mathrm{Na}^{+}}$and $P_{\mathrm{Cl}^{-}}$are the ion permeabilities of sodium and chloride ions, $V_{\mathrm{r}}$ is the reversal potential, $F$ the Faraday constant, $R$ the gas constant and $T$ the temperature in Kelvin. Next, anion selectivities were determined by measuring the reversal potentials upon exchange of the buffered NaCl solution in trans compartment with NaX (where $\mathrm{X}^{-}$is $\mathrm{NO}_{3}{ }^{-}, \mathrm{ClO}_{4}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}$ ). X anion $v s$ chloride permeability ratios $P_{\mathrm{X}^{-}} / P_{\mathrm{Cl}^{-}}$were then calculated by using the equation derived from the following GHK equation (S5),

$$
\begin{equation*}
P_{\mathrm{X}^{-}} / P_{\mathrm{Cl}^{-}}=\frac{\left[\mathrm{Cl}^{-}\right]_{\operatorname{cis}}}{\left[\mathrm{X}^{-}\right]_{\operatorname{trans}} \exp \left(\frac{V_{\mathrm{r}} \cdot F}{R \cdot T}\right)} \tag{S5}
\end{equation*}
$$

Formal gating charges were determined from $I-V$ profiles using the equation (S6)

$$
\begin{equation*}
I=g_{0} \cdot e^{\left(\frac{z \cdot}{} \frac{z^{\prime} \cdot e \cdot V}{k \cdot T}\right)} \tag{S6}
\end{equation*}
$$

where $I$ is the current (pA), $z_{\mathrm{g}}$ is the gating charge, $e$ is the elemental charge, $V$ is the applied voltage (V), $k$ is the Boltzmann constant and $T$ is the temperature in Kelvin.

All the values of reversal potentials, calculated permeabilities ratios and gating charges of carriers 6, $\mathbf{4}$ and $\mathbf{2}$ are summarized in Table S1.


Figure S16. Ion transport characteristics of $\mathbf{6}$ studied in planar conductance measurements. (A) Current of 6 with 2 M NaCl cis and 1 M NaCl trans and $V(t)=0(0),-25(90),+25(180),-50$ (240), $+50(380),-75(420),+75(500),-100(600),+100(700),-125(800),+125 \mathrm{mV}(900 \mathrm{~s})$. (B) I-V profile of $\mathbf{6}$ with 2 M NaCl cis and $2 \mathrm{M}(\mathrm{O}), 1 \mathrm{M}(\square)$ or 0.5 M NaCl trans ( $\bullet$ ). (C) Same with $2 \mathrm{M} \mathrm{NaNO}_{3}(\mathrm{O}), 2 \mathrm{M} \mathrm{NaClO}_{4}(\square)$ or $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ trans ( $\bullet$ ). (D) Relative ion permeability of 6 normalized by the largest value of the observed ion permeability.


Figure S17. Ion transport characteristics of $\mathbf{4}$ studied in planar conductance measurements. (A)
Current of $\mathbf{4}$ with 2 M NaCl cis and 1 M NaCl trans and $V(t)=0(0),-25(90),+25(180),-50$ (240), +50 (380), $-75(420),+75(500),-100(600),+100(700),-125(800),+125 \mathrm{mV}(900 \mathrm{~s})$.
(B) I-V profile of $\mathbf{4}$ with 2 M NaCl cis and $2 \mathrm{M}(\mathrm{O}), 1 \mathrm{M}(\square)$ or 0.5 M NaCl trans ( $\bullet$ ). (C) Same with $2 \mathrm{M} \mathrm{NaNO}_{3}(\mathrm{O}), 2 \mathrm{M} \mathrm{NaClO}_{4}(\square)$ or $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ trans (•). (D) Relative ion permeability of $\mathbf{4}$ normalized by the largest value of the observed ion permeability.


Figure S18. Ion transport characteristics of $\mathbf{2}$ studied in planar conductance measurements. (A) Current of $\mathbf{2}$ with 2 M NaCl cis and 1 M NaCl trans and $V(t)=0(0),-25(90),+25(180),-50$ (240), +50 (380), -75 (420), +75 (500), $-100(600),+100(700),-125(800),+125 \mathrm{mV}(900 \mathrm{~s})$.
(B) I-V profile of $\mathbf{2}$ with 2 M NaCl cis and $2 \mathrm{M}(\mathrm{O}), 1 \mathrm{M}(\square)$ or 0.5 M NaCl trans ( $\bullet$ ). (C) Same with $2 \mathrm{M} \mathrm{NaNO}_{3}(\mathrm{O}), 2 \mathrm{M} \mathrm{NaClO}_{4}(\square)$ or $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ trans (•). (D) Relative ion permeability of $\mathbf{2}$ normalized by the largest value of the observed ion permeability.

Table S1. Conductance Characteristics of Anion Transporters.

| Entry | $\mathrm{Cpd}^{\text {a }}$ | 2 M NaCl cis : <br> 1 M NaCl trans |  | 2 M NaCl cis : <br> 0.5 M NaCl trans |  | 2 M NaCl cis : <br> $2 \mathrm{M} \mathrm{NaNO}_{3}$ trans |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} V_{\mathrm{r}}^{b} \\ (\mathrm{mV}) \end{gathered}$ | $\begin{gathered} P_{\mathrm{Cl}^{-}} / \\ P_{\mathrm{Na}^{+c}} \end{gathered}$ | $\begin{gathered} V_{\mathrm{r}}^{b} \\ (\mathrm{mV}) \end{gathered}$ | $\begin{gathered} P_{\mathrm{Cl}^{-}} / \\ P_{\mathrm{Na}^{+}}+c \end{gathered}$ | $\begin{gathered} V_{\mathrm{r}}^{b} \\ (\mathrm{mV}) \end{gathered}$ | $\begin{array}{r} P_{\mathrm{NO}^{-}}{ }^{-c} \\ P_{\mathrm{Cl}^{-c}} \end{array}$ |
| 1 | $6^{e}$ | 11.6 | 5.0 | 19 | 4 | 31 | 0.30 |
|  |  | $\pm 0.5$ | $\pm 0.5$ | $\pm 3$ | $\pm 1$ | $\pm 4$ | $\pm 0.04$ |
| 2 | $4{ }^{f}$ | 14.5 | 10.4 | 25 | 7 | 38.8 | 0.22 |
|  |  | $\pm 0.2$ | $\pm 0.8$ | $\pm 2$ | $\pm 1$ | $\pm 0.1$ |  |
| 3 | $2^{e}$ | 6.0 | 2.1 | 9 | 1.8 | 23 | 0.40 |
|  |  | $\pm 0.5$ | $\pm 0.1$ | $\pm 1$ | $\pm 0.1$ | $\pm 3$ | $\pm 0.05$ |

## Table S1. Continued

| Entry | Cpd ${ }^{\text {a }}$ | 2 M NaCl cis : <br> $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ trans |  | $\begin{gathered} 2 \mathrm{M} \mathrm{NaCl} \text { cis }: 2 \mathrm{M} \\ \mathrm{NaClO}_{4} \text { trans } \end{gathered}$ |  | $z_{\mathrm{g}}{ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} V_{\mathrm{r}}^{b} \\ (\mathrm{mV}) \end{gathered}$ | $\begin{gathered} P_{\mathrm{SO} 4^{-2-/}} \\ P_{\mathrm{Cl}^{-c}} \end{gathered}$ | $\begin{gathered} V_{\mathrm{r}}^{b} \\ (\mathrm{mV}) \end{gathered}$ | $\begin{aligned} & P_{\mathrm{ClO}^{-}}-/ \\ & P_{\mathrm{Cl}^{-c}} \end{aligned}$ |  |
| 1 | $6{ }^{e}$ | 40 | 0.21 | 41 | 0.21 | 0.40 |
|  |  | $\pm 2$ | $\pm 0.02$ | $\pm 4$ | $\pm 0.03$ | $\pm 0.08$ |
| 2 | $4{ }^{f}$ | 54.1 | 0.12 | 15 | 0.56 | 0.72 |
|  |  | $\pm 0.6$ |  | $\pm 4$ | $\pm 0.08$ | $\pm 0.06$ |
| 3 | $2^{e}$ | 33 | 0.28 | 44 | 0.18 | 0.39 |
|  |  | $\pm 2$ | $\pm 0.03$ | $\pm 4$ | $\pm 0.03$ | $\pm 0.06$ |

${ }^{a}$ Compounds. See Figure 1 and 2 for structures. ${ }^{b}$ Reversal potentials $V_{\mathrm{r}}$ which correspond to zero current voltages as determined from the $I-V$ profiles (Figures 2, S16, S17, S18). ${ }^{c}$ Permeability ratios in planar bilayer conductance from the GHK equation applied to $V_{\mathrm{r}}$ with $\mathrm{NaCl}(2 \mathrm{M} \mathrm{cis})$ and $\mathrm{NaCl} / \mathrm{NaX}$ gradients in trans (where $\mathrm{X}: \mathrm{NO}_{3}{ }^{-}, \mathrm{ClO}_{4}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}$ ). ${ }^{d}$ Gating charge as determined by non-linear fitting to equation (S6). ${ }^{e}$ Except $z_{\mathrm{g}}$ 's (see $d$ ), reported are mean values $\pm$ standard deviations obtained from three independent experiments. ${ }^{f}$ Except $z g^{\prime}$ s (see $d$ ), reported are mean values $\pm$ standard deviations obtained from two independent experiments.

## 6. Computational Data

### 6.1. Methods

Calculations were performed using the Gaussian09 program, ${ }^{\text {S10 }}$ all structures were optimized with and without bromide and nitrate using M06-2X/6-311G**. The basis set aug_cc-pVTZ was used for heavy atoms such as $\mathrm{Br}, \mathrm{Se}, \mathrm{Sb}, \mathrm{Te}$, I. For each geometry optimization, frequency calculations were performed to confirm minima (no negative frequencies). Binding energies were compensated for the basis set superposition error (BSSE) with the counterpoise method. ${ }^{\text {S11 }}$

### 6.2. Cartesian Coordinates of Nitrate Complexes

## Carrier 2:

| C | -0.152585 | -2.537198 | -0.114773 |
| :--- | :---: | :---: | :---: |
| C | -0.635779 | -1.406308 | -0.750479 |
| C | -1.712144 | -1.603946 | -1.591506 |
| C | -2.292968 | -2.845787 | -1.809785 |
| C | -1.776467 | -3.948944 | -1.153440 |
| C | -0.696754 | -3.799224 | -0.297086 |
| Sb | 0.195484 | 0.720101 | -0.392303 |
| O | 1.489204 | 2.424483 | 0.643821 |
| N | 0.779905 | 3.333442 | 1.225778 |
| O | -0.433321 | 3.144018 | 1.334236 |
| F | -2.250714 | -0.566705 | -2.258951 |
| F | -3.332293 | -2.997394 | -2.636959 |
| F | -2.314454 | -5.155210 | -1.345868 |
| F | -0.205830 | -4.872318 | 0.330286 |
| F | 0.895132 | -2.452886 | 0.719275 |
| C | -0.092000 | 0.197403 | 1.706349 |
| C | -1.397784 | 0.158299 | 2.158471 |
| C | -1.730903 | -0.096004 | 3.477747 |
| C | -0.714825 | -0.321849 | 4.390944 |
| C | 0.604904 | -0.293338 | 3.975052 |


| C | 0.896421 | -0.035288 | 2.643257 |
| :--- | :--- | :--- | :--- |
| F | -2.404786 | 0.370020 | 1.297879 |
| F | 2.184730 | -0.036892 | 2.297580 |
| F | 1.577124 | -0.524164 | 4.860821 |
| F | -1.008075 | -0.572270 | 5.667933 |
| F | -3.003182 | -0.125530 | 3.881463 |
| C | 2.171043 | -0.041061 | -0.881105 |
| C | 2.267166 | -0.965081 | -1.926780 |
| C | 3.503241 | -1.396297 | -2.399905 |
| C | 4.672618 | -0.906194 | -1.831770 |
| C | 4.592613 | 0.023353 | -0.800664 |
| C | 3.356227 | 0.459961 | -0.333786 |
| H | 1.368103 | -1.366570 | -2.384220 |
| H | 1.548532 | -2.117959 | -3.208406 |
| H | 5.638567 | -1.243622 | -2.191398 |
| H | 5.499221 | 0.416351 | -0.353229 |
| H | 3.312108 | 1.192730 | 0.460134 |
| O | 1.340065 | 4.328545 | 1.637813 |

Carrier 4:

| C | -1.097180 | 0.977045 | 2.333173 |
| :--- | :---: | :---: | :---: |
| C | -0.142409 | 0.283200 | 1.606148 |
| C | 0.544688 | -0.705394 | 2.290359 |
| C | 0.298682 | -1.011731 | 3.620121 |
| C | -0.674963 | -0.307146 | 4.306736 |
| C | -1.380179 | 0.694254 | 3.660845 |
| Te | 0.299145 | 0.684384 | -0.521577 |
| O | 0.232324 | 1.170469 | -2.883438 |
| N | -0.113760 | 0.253365 | -3.721120 |
| O | -0.734272 | -0.725352 | -3.305477 |
| F | 1.497607 | -1.419140 | 1.675700 |
| F | 0.980977 | -1.973810 | 4.247284 |
| F | -0.927649 | -0.585946 | 5.586691 |
| F | -2.310313 | 1.379719 | 4.331487 |


| F | -1.797980 | 1.970607 | 1.771050 |
| :--- | :--- | :--- | :--- |
| C | -1.781293 | 0.600943 | -0.859597 |
| C | -2.487782 | -0.573779 | -0.661218 |
| C | -3.839186 | -0.669500 | -0.948016 |
| C | -4.505369 | 0.432682 | -1.454624 |
| C | -3.821919 | 1.617808 | -1.664043 |
| C | -2.471552 | 1.692280 | -1.360393 |
| F | -1.884308 | -1.662636 | -0.186807 |
| F | -1.866687 | 2.859720 | -1.554780 |
| F | -4.478688 | 2.680164 | -2.135380 |
| F | -5.807576 | 0.355597 | -1.730775 |
| F | -4.505020 | -1.809431 | -0.749152 |
| O | 0.184631 | 0.400207 | -4.893250 |

Carrier 6:
C
0.304881
0.414877
0.412745
0.300524

C
0.300524
0.188723
0.194004
$-0.233631$
5.045138

C
-1.613006
5.080030

C
C
-2.328334
3.895009
$-1.654492 \quad 2.688348$

0.523184
-0.273479
2.619212

C
F
F
F
I
N
F
F
0.520574
0.305953
0.019208
$-1.061776$
0.414037
3.824117
$-2.248845 \quad 6.248256$
-3.659209 3.929795
$-2.395401 \quad 1.578526$
$0.742300 \quad 0.753382$
$2.204291-2.012099$

| 0.092775 | 1.744321 | 3.851521 |
| :--- | :--- | :--- |
| 0.308677 | 0.455717 | 6.189196 |
| -2.095648 | 1.839273 | -1.444765 |
| -1.079742 | 2.792229 | -3.087221 |
| 0.064565 | 1.962352 | -1.46265 |

Carrier 7:
C
$-1.249271$
0.893141
2.353392

| C | -0.365449 | 0.103242 | 1.642205 |
| :---: | :---: | :---: | :---: |
| C | 0.265582 | -0.912809 | 2.337425 |
| C | 0.049730 | -1.130367 | 3.688446 |
| C | -0.835191 | -0.312263 | 4.371846 |
| C | -1.494126 | 0.705965 | 3.704892 |
| Sb | -0.094152 | 0.510382 | -0.484934 |
| C | 2.027387 | 0.088355 | -0.646199 |
| C | 2.495277 | -0.210094 | -1.911039 |
| C | 3.835711 | -0.382293 | -2.198199 |
| C | 4.757044 | -0.244534 | -1.172772 |
| C | 4.327485 | 0.059857 | 0.106915 |
| C | 2.971740 | 0.227379 | 0.353601 |
| F | 1.616393 | -0.360682 | -2.914448 |
| F | 4.252917 | -0.677969 | -3.430167 |
| F | 6.056495 | -0.407478 | -1.418857 |
| F | 5.223579 | 0.187318 | 1.087013 |
| F | 2.621508 | 0.523867 | 1.605995 |
| F | 1.126250 | -1.730873 | 1.720802 |
| F | 0.675737 | -2.111724 | 4.340325 |
| F | -1.057866 | -0.511732 | 5.670231 |
| F | -2.356153 | 1.478921 | 4.366892 |
| F | -1.924288 | 1.868539 | 1.736930 |
| C | -0.611383 | -1.741920 | -0.722264 |
| C | -1.957277 | -2.002039 | -0.543158 |
| C | -2.531515 | -3.256471 | -0.666678 |
| C | -1.715165 | -4.326002 | -0.993163 |
| C | -0.358882 | -4.120174 | -1.179999 |
| C | 0.163541 | -2.841497 | -1.040383 |
| F | -2.787026 | -0.987812 | -0.211309 |
| F | 1.489383 | -2.731766 | -1.218183 |
| F | 0.423326 | -5.158983 | -1.486204 |
| F | -2.231953 | -5.548994 | -1.123381 |
| F | -3.839402 | -3.453187 | -0.478923 |
| N | 1.203627 | 3.292200 | -0.316258 |

O
1.487225
4.410377
0.050876
O
1.321268
2.907575
$-1.485415$

### 6.3. Cartesian Coordinates of Bromide Complexes

Carrier 4:

| C | 0.291976 | 0.542854 | 2.874739 |
| :--- | :---: | :---: | :---: |
| C | -0.226405 | -0.284263 | 1.890052 |
| C | -0.318984 | -1.637294 | 2.180708 |
| C | 0.099048 | -2.158085 | 3.394781 |
| C | 0.606716 | -1.308110 | 4.361206 |
| C | 0.702287 | 0.047412 | 4.103249 |
| Te | -0.867302 | 0.502500 | 0.028343 |
| C | 0.653411 | -0.922892 | -0.945155 |
| C | 0.305644 | -1.599139 | -2.096943 |
| C | 1.187445 | -2.403745 | -2.803986 |
| C | 2.482544 | -2.552809 | -2.341607 |
| C | 2.875506 | -1.891340 | -1.190772 |
| C | 1.960274 | -1.090115 | -0.524140 |
| F | -0.938179 | -1.497309 | -2.598495 |
| F | 2.422005 | -0.459478 | 0.571821 |
| F | 4.133895 | -2.031133 | -0.751341 |
| F | 3.352482 | -3.322752 | -3.007174 |
| F | 0.810044 | -3.042119 | -3.920661 |
| F | -0.814603 | -2.502771 | 1.293310 |
| F | 0.005879 | -3.467662 | 3.651159 |
| F | 1.006448 | -1.797443 | 5.538155 |
| F | 1.209652 | 0.858059 | 5.036227 |
| Fr | 0.452890 | 1.842275 | 2.664838 |

Carrier 6:
C
0.227830
-0.101996
4.761476
C
0.493225
-1.460555
4.772655

| C | 0.499588 | -2.166037 | 3.581649 |
| :--- | :--- | :--- | :--- |
| C | 0.239697 | -1.501218 | 2.392392 |
| C | -0.029313 | -0.143120 | 2.347503 |
| C | -0.028291 | 0.534177 | 3.555846 |
| F | 0.741672 | -2.086931 | 5.925680 |
| F | 0.756360 | -3.477841 | 3.597026 |
| F | 0.259384 | -2.233722 | 1.274680 |
| I | -0.433586 | 0.876333 | 0.470551 |
| Br | -0.983461 | 2.261283 | -2.078000 |
| F | -0.277777 | 1.846176 | 3.606825 |
| F | 0.222698 | 0.575426 | 5.913894 |

### 6.4. Cartesian Coordinates of Iodide Complexes

Carrier 4:

| C | 0.451866 | 0.479986 | 2.741296 |
| :--- | :---: | :---: | :---: |
| C | -0.201280 | 0.312379 | 1.807750 |
| C | -0.461565 | -1.627941 | 2.151946 |
| C | -0.109986 | -2.144327 | 3.389598 |
| C | 0.521984 | -1.327322 | 4.309410 |
| C | 0.806751 | -0.010772 | 3.985910 |
| Te | -0.846286 | 0.475640 | -0.039998 |
| C | 0.663004 | -0.842551 | -0.994725 |
| C | 0.317342 | -1.627928 | -2.080016 |
| C | 1.221601 | -2.458765 | -2.723748 |
| C | 2.528268 | -2.515055 | -2.269802 |
| C | 2.914219 | -1.739332 | -1.189170 |
| C | 1.981772 | -0.914868 | -0.579051 |
| F | -0.934572 | -1.609725 | -2.560408 |
| F | 2.417349 | -0.168929 | 0.446075 |
| F | 4.179551 | -1.789934 | -0.763627 |
| F | 3.414255 | -3.307897 | -2.875121 |
| F | 0.854932 | -3.207298 | -3.767908 |
| F | -1.072376 | -2.452995 | 1.298152 |


| F | -0.377429 | -3.413883 | 3.705425 |
| :--- | ---: | ---: | ---: |
| F | 0.866468 | -1.809693 | 5.503268 |
| F | 1.430806 | 0.762186 | 4.875813 |
| F | 0.769589 | 1.738822 | 2.468185 |
| I | -2.813712 | 2.029371 | 1.879522 |

Carrier 6:

C
C
C
C
C
C
F
F
I
F
F

F
I
0.496407
-1.470209
4.786749
0.501863
-2.175273
3.595389
0.242101
-1.510125
2.406491
-0.025626
-0.024142
0.232063
0.757408
0.260331
-0.428470
-0.272675
0.227648
0.744720
-1.023601
-0.151807
2.365220
0.52659
3.572762
-0.111341
4.777233
-3.486819 3.608465
-2.239717 1.288192
$0.865516 \quad 0.496079$
1.837669
3.622954
0.565876
5.929186
-2.097323
5.938656
2.368934
-2.265200

## 7. References

(S1) Benz, S.; Poblador-Bahamonde, A. I; Low-Ders, N.; Matile, S. Catalysis with Pnictogen, Chalcogen and Halogen Bonds. Angew. Chem. Int. Ed. 2018, 57, 5408-5412.
(S2) Kemmitt, R.D.; Nichols, D. I.; Peacock, R.D. Preparation and Reaction of Tris(pentafluorophenyl)phosphine, Phenylbis(pentafluorophenyl)phosphine, and Diphenylpentafluorophenylphophine complexes of Rhodium. J. Chem Soc. A 1968, 2149-2152.
(S3) Tyrra, W. E. Oxidative Perfluoroorganylation Methods in Group 12-16 chemistry: the Reactions of Haloperfluoroorgnics and In and InBr, a Convenient New Route to $\operatorname{AgR}_{\mathrm{f}}\left(\mathrm{R}_{\mathrm{f}}=\mathrm{CF}_{3}, \mathrm{C} 6 \mathrm{~F} 5\right)$ and Reaction of $\mathrm{AgR}_{\mathrm{f}}$ with group 12-16 Elements. J. Fluor. Chem. 2001, 112, 149-152.
(S4) Benz, S.; Macchione, M.; Verolet, Q.; Mareda, J.; Sakai, N.; Matile, S. Anion Transport with Chalcogen Bonds. J. Am. Chem. Soc. 2016, 138, 9093-9096.
(S5) Vargas-Jentzsch, A.; Emery, D.; Mareda, J.; Nayak, S. K.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Transmembrane Anion Transport Mediated by Halogen-Bond Donors. Nat. Commun. 2012, 3, 905.
(S6) Macchione, M.; Tsemperouli, M.; Goujon, A.; Mallia, A. R.; Sakai, N.; Sugihara, K.; Matile, S. Mechanosensitive Oligodithienothiophenes: Transmembrane Anion Transport Along Chalcogen-Bonding Cascades. Helv. Chim. Acta 2018, 101, e1800014.
(S7) Perez-Velasco, A.; Gorteau, V.; Matile, S. Rigid Oligoperylenediimide Rods: Anion$\pi$ Slides with Photosynthetic Activity. Angew. Chem. Int. Ed. 2008, 47, 921-923.
(S8) Tsemperouli, M.; Sugihara, K. Characterization of di-ANEPPS with Nano-Black Lipid Membranes. Nanoscale 2018, 10, 1090-1098.
(a) Jin, T. Selective Transport of Potassium Ions Across a Planar Phospholipid Bilayer by a Calix[4]arene-crown-5 as a Synthetic Carrier. J. Am. Chem. Soc. 2002, 1, 151-154.
(b) Sakai, N.; Houdebert, D.; Matile, S. Voltage-Dependent Formation of Anion Channels by Synthetic Rigid-Rod Push-Pull $\beta$-Barrels. Chem. Eur. J. 2003, 9, 223-232.
(S10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, J. R.; Barone, V.; Mennucci, B.; Petersson, G. A.; Naktsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M; Nkajim, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J.: Brothers, E.; Kudin, N.; Staroverov, V. N.; Kobayashi, R.; Normnd, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2009.
(S11) Boys, S. F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some procedures with Reduced Errors. Mol. Phys. 1970, 19, 553-566.

