
Supporting Information

Complex Inverse Design of Meta-Optics by Segmented Hierarchical

Evolutionary Algorithm

Zhongwei Jin1⊥, Shengtao Mei1⊥, Shuqing Chen2⊥, Ying Li2⊥, Chen Zhang3, Yanliang He2, Xia Yu1,

Changyuan Yu1,4, Joel K. W. Yang5,6, Boris Luk’yanchuk7,8, Shumin Xiao3*, Cheng-Wei Qiu1, 9*

1Department of Electrical and Computer Engineering, National University of Singapore,

4 Engineering Drive 3, Singapore 117583, Singapore

2International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology,

Shenzhen University, Nanhai Ave 3688,Shenzhen,Guangdong,P.R.China,518060

3State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology

Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin

Institute of Technology, Shenzhen, Guangdong 518055, P.R. China

4Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung

Hom, Kowloon, Hong Kong.

5Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372

6Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and

Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore

 7Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang

Technological University, Singapore 637371, Singapore.

8Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.

9SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen

University, Shenzhen 518060, People’s Republic of China

⊥These authors contributed equally to this work.

*Corresponding authors: chengwei.qiu@nus.edu.sg; shumin.xiao@hit.edu.cn

mailto:chengwei.qiu@nus.edu.sg
mailto:shumin.xiao@hit.edu.cn

Part 1. Implementation of SHEA (segmented hierarchical evolutionary algorithm) for the

Broadband Si Hologram

Step 1: Reorganizing the Optimization Task to a Segmentation Hierarchy Task & Evaluating Error

Value based on Initial GenomeL

Since the original Genome pixel array size should be 𝑀 × 𝑀(𝑀 = 302), here in the lower segmentation,

we set GenomeL have 𝑁 × 𝑁 (we chose N to be 151 in this case) super-pixels, each super-pixel contains

𝑛 × 𝑛 (𝑛 = 2) pixels. While the target observation plane is set as the same size with the metasurface but

divided into (2𝑁 + 1) × (2𝑁 + 1) pixels for higher accuracy. Before launching the optimization

process, we first calculated the complex electric fields from every nanopillar of the metasurface to each

pixel of the target plane. And the complex electric fields from each nanopillar to each pixel on the target

plane contains x, y and z components. Therefore, in this case, the size of the initial complex electric fields

in the lower segmentation can be estimated as: 3 × (151 × 151 × 303 × 303) × 8/(1024)3 ≈

46.8GB, while the size of the initial complex electric fields in the higher segmentation can be estimated

as: 3 × (302 × 302 × 605 × 605) × 8/(1024)3 ≈ 746.2GB, both will exceed the RAM of a personal

computer. However, due to the symmetric property of the light field penetrating through the Si nanopillar

according to the Huygens-Fresnel principle, only the electrical fields of the center nanopillar on the

metasurface to the target plane need to be calculated and saved in a matrix, while the complex electrical

fields coming from all the other nanopillars can be obtained from the matrix through translation operation

by comparing the relative position of the nanopillar with the center one. Therefore, in the lower

segmentation, the size of the initial complex electric fields in the lower segmentation can be reduced to:

3 × ((2 × 303 − 1) × (2 × 303 − 1)) × 8/(1024)3 ≈ 8.4 MB, and the size of the initial complex

electric fields in the higher segmentation can be estimated as: 3 × ((2 × 605 − 1) × (2 × 605 − 1)) ×

8/(1024)3 ≈ 33.5 MB. Here, the initial matrices to save the complex fields of the center super-pixel

on metasurface to all the pixels on the observation plane in the lower segmentation are denoted as

𝐸𝑓𝑖𝑒𝑙𝑑1𝑥 , 𝐸𝑓𝑖𝑒𝑙𝑑1𝑦 and 𝐸𝑓𝑖𝑒𝑙𝑑1𝑧 for x, y and z components respectively. The intensity distribution

of the target image is saved as 𝑇𝑎𝑟𝑔𝑒𝑡1.

Code Section 1

𝐸𝑓𝑖𝑒𝑙𝑑1𝑥 = 𝑧𝑒𝑟𝑜𝑠(2(2𝑁 + 1) − 1, 2(2𝑁 + 1) − 1);

𝐸𝑓𝑖𝑒𝑙𝑑1𝑦 = 𝑧𝑒𝑟𝑜𝑠(2(2𝑁 + 1) − 1,2(2𝑁 + 1) − 1);

𝐸𝑓𝑖𝑒𝑙𝑑1𝑧 = 𝑧𝑒𝑟𝑜𝑠(2(2𝑁 + 1) − 1,2(2𝑁 + 1) − 1);

 𝑎 = 2;

for 𝑖𝑖 ∶ 1 → 2(2𝑁 + 1) − 1 do

for 𝑗𝑗 ∶ 1 → 2(2𝑁 + 1) − 1 do

Calculate the complex fields of the center super-pixel on metasurface to the pixel (ii, jj) on the

observation plane according to point-source model and saved in 𝐸𝑓𝑖𝑒𝑙𝑑1𝑥(𝑖𝑖, 𝑗𝑗) ,

𝐸𝑓𝑖𝑒𝑙𝑑1𝑦(𝑖𝑖, 𝑗𝑗) and 𝐸𝑓𝑖𝑒𝑙𝑑1𝑧(𝑖𝑖, 𝑗𝑗) respectively.

end

end

Randomly generate an 𝑁 × 𝑁 matrix GenomeL which only contains “0” or “1”;

𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 = 𝑧𝑒𝑟𝑜𝑠(2𝑁 + 1, 2𝑁 + 1);

𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 = 𝑧𝑒𝑟𝑜𝑠(2𝑁 + 1, 2𝑁 + 1);

𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 = 𝑧𝑒𝑟𝑜𝑠(2𝑁 + 1, 2𝑁 + 1);

for 𝑖𝑖 ∶ 1 → 𝑁 do

for 𝑗𝑗 ∶ 1 → 𝑁 do

if GenomeL (𝑖𝑖, 𝑗𝑗) = 1 do

 𝑚𝑥 = 𝑖𝑖 − (𝑁 + 1) 2⁄ ;

 𝑚𝑦 = 𝑗𝑗 − (𝑁 + 1) 2⁄ ;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 + 𝐸𝑓𝑖𝑒𝑙𝑑1𝑥((𝑁 + 1 − 𝑎 ∗ 𝑚𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑚𝑥),

(𝑁 + 1 − 𝑎 ∗ 𝑚𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑚𝑦));

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 + 𝐸𝑓𝑖𝑒𝑙𝑑1𝑦((𝑁 + 1 − 𝑎 ∗ 𝑚𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑚𝑥),

(𝑁 + 1 − 𝑎 ∗ 𝑚𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑚𝑦));

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 + 𝐸𝑓𝑖𝑒𝑙𝑑1𝑧((𝑁 + 1 − 𝑎 ∗ 𝑚𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑚𝑥),

(𝑁 + 1 − 𝑎 ∗ 𝑚𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑚𝑦));

 𝑇𝑎𝑟𝑔𝑒𝑡1 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 .∗ 𝑐𝑜𝑛𝑗(𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥) + 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 .∗ 𝑐𝑜𝑛𝑗(𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦) + 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 .∗

𝑐𝑜𝑛𝑗(𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧);

end

end

end

Evaluate the value of the fitness function F_L based on 𝑇𝑎𝑟𝑔𝑒𝑡1.

Step 2: Start Iterative Optimization in the Lower Segmentation until Reaching the Converging

Conditions of the Lower Segmentation

The converging condition in the lower segmentation is determined as when the value of

the fitness function 𝐹_𝐿 stays unchanged (considering accuracy in 3 decimal places of

F_L) for three rounds.

Code Section 2

𝐶𝑜𝑢𝑛𝑡_𝐿 = 0; 𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐿 = 0;

While 1

Randomly generate a 1 × 𝑁2 mutation matrix 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛1 where integers from 1 to 𝑁2 are arranged

in the matrix in a random sequence;

for 𝑗𝑗: 1 → 𝑁2 do

 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1 = 𝑚𝑜𝑑(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛1(1, 𝑗𝑗), 𝑁) + 1;

 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1 = 𝑐𝑒𝑖𝑙(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛1(1, 𝑗𝑗)/𝑁);

 𝑛𝑥 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1 − (𝑁 + 1) 2⁄ ;

 𝑛𝑦 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1 − (𝑁 + 1) 2⁄ ;

 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 + (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗ 𝐸𝑓𝑖𝑒𝑙𝑑1𝑥((𝑁 + 1 − 𝑎 ∗

𝑛𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑁 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑦));

 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 + (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗ 𝐸𝑓𝑖𝑒𝑙𝑑1𝑦((𝑁 + 1 − 𝑎 ∗

𝑛𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑁 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑦));

 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 + (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗ 𝐸𝑓𝑖𝑒𝑙𝑑1𝑧((𝑁 + 1 − 𝑎 ∗

𝑛𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑁 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑦));

 𝑁𝑒𝑤_𝑇𝑎𝑟𝑔𝑒𝑡1 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥.∗ 𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥) + 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 .∗

𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦) + 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 .∗ 𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧);

Calculate 𝑁𝑒𝑤_𝐹_𝐿 according to New_𝑇𝑎𝑟𝑔𝑒𝑡1 ;

If 𝑁𝑒𝑤_𝐹_𝐿 > 𝐹_𝐿 do

 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐿 = 𝐺𝑒𝑛𝑜𝑚𝑒𝐿

 If 𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) == 1 do

 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) = 0;

 else 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) = 1;

 end

 𝐺𝑒𝑛𝑜𝑚𝑒𝐿 = 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐿;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧;

 𝐹_𝐿 = 𝑁𝑒𝑤_𝐹_𝐿;

end

𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐿 = 𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐿 + 1;

If 𝐹_𝐿(𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐿) == 𝐹_𝐿(𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐿 − 1)

𝐶𝑜𝑢𝑛𝑡_𝐿 = 𝐶𝑜𝑢𝑛𝑡_𝐿 + 1;

else 𝐶𝑜𝑢𝑛𝑡_𝐿 = 0

end

If 𝐶𝑜𝑢𝑛𝑡_𝐿 == 3

break;

end

end

Step 3 Generate Initial GenomeH in the Higher Segmentation Based on the Final Evolutionary

Result of GenomeL from the Lower Segmentation

 In the higher segmentation, the pixel size on the metasurface is 𝑀 × 𝑀 . While the target

observation plane is set as the same size with the metasurface but divided into

(2𝑀 + 1) × (2𝑀 + 1) pixels for higher accuracy and the intensity distribution of the target

image is saved as 𝑇𝑎𝑟𝑔𝑒𝑡2.

Code Section 3

𝐺𝑒𝑛𝑜𝑚𝑒𝐻 = 𝑧𝑒𝑟𝑜𝑠(𝑀, 𝑀);

for 𝑖𝑖 ∶ 1 → 𝑁 do

 for 𝑗𝑗 ∶ 1 → 𝑁 do

 𝐺𝑒𝑛𝑜𝑚𝑒𝐻(2(𝑖𝑖 − 1) + 1, 2(𝑗𝑗 − 1) + 1) = 𝐺𝑒𝑛𝑜𝑚𝑒𝐻(2(𝑖𝑖 − 1) + 1, 2(𝑗𝑗 − 1) + 2) =

 𝐺𝑒𝑛𝑜𝑚𝑒𝐻(2(𝑖𝑖 − 1) + 2, 2(𝑗𝑗 − 1) + 1) = 𝐺𝑒𝑛𝑜𝑚𝑒𝐻(2(𝑖𝑖 − 1) + 2, 2(𝑗𝑗 − 1) + 2) =

 𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑖𝑖, 𝑗𝑗) ;

end

end

𝐸𝑓𝑖𝑒𝑙𝑑2𝑥 = 𝑧𝑒𝑟𝑜𝑠(2(2𝑀 + 1) − 1,2(2𝑀 + 1) − 1);

𝐸𝑓𝑖𝑒𝑙𝑑2𝑦 = 𝑧𝑒𝑟𝑜𝑠(2(2𝑀 + 1) − 1,2(2𝑀 + 1) − 1);

𝐸𝑓𝑖𝑒𝑙𝑑2𝑧 = 𝑧𝑒𝑟𝑜𝑠(2(2𝑀 + 1) − 1,2(2𝑀 + 1) − 1);

for 𝑖𝑖 ∶ 1 → 2(2𝑀 + 1) − 1 do

for 𝑗𝑗 ∶ 1 → 2(2𝑀 + 1) − 1 do

Calculate the complex fields of the center pixel on metasurface to the pixel (ii, jj) on the

observation plane according to point-source model and saved in 𝐸𝑓𝑖𝑒𝑙𝑑2𝑥(𝑖𝑖, 𝑗𝑗) ,

𝐸𝑓𝑖𝑒𝑙𝑑2𝑦(𝑖𝑖, 𝑗𝑗) and 𝐸𝑓𝑖𝑒𝑙𝑑2𝑧(𝑖𝑖, 𝑗𝑗) respectively.

end

end

𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 = 𝑧𝑒𝑟𝑜𝑠(2𝑀 + 1, 2𝑀 + 1);

𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 = 𝑧𝑒𝑟𝑜𝑠(2𝑀 + 1, 2𝑀 + 1);

𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 = 𝑧𝑒𝑟𝑜𝑠(2𝑀 + 1, 2𝑀 + 1);

for 𝑖𝑖 ∶ 1 → 𝑀 do

for 𝑗𝑗 ∶ 1 → 𝑀 do

if 𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑖𝑖, 𝑗𝑗) = 1 do

 𝑚𝑥 = 𝑖𝑖 − (𝑀 + 1) 2⁄ ;

 𝑚𝑦 = 𝑗𝑗 − (𝑀 + 1) 2⁄ ;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 + 𝐸𝑓𝑖𝑒𝑙𝑑2𝑥((𝑀 + 1 − 𝑎 ∗ 𝑚𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑚𝑥),

(𝑀 + 1 − 𝑎 ∗ 𝑚𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑚𝑦))

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 + 𝐸𝑓𝑖𝑒𝑙𝑑2𝑦((𝑀 + 1 − 𝑎 ∗ 𝑚𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑚𝑥),

(𝑀 + 1 − 𝑎 ∗ 𝑚𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑚𝑦));

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 + 𝐸𝑓𝑖𝑒𝑙𝑑2𝑧((𝑀 + 1 − 𝑎 ∗ 𝑚𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑚𝑥),

(𝑀 + 1 − 𝑎 ∗ 𝑚𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑚𝑦));

 𝑇𝑎𝑟𝑔𝑒𝑡2 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥.∗ 𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥) + 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 .∗

𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦) + 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 .∗ 𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧);

end

end

end

Evaluate the value of the fitness function F_H based on 𝑇𝑎𝑟𝑔𝑒𝑡2.

Step 4: Start Iterative Optimization in the Higher Segmentation until Reaching the Converging

Conditions of the Higher Segmentation

The converging condition in the higher segmentation is determined as when the value

of the fitness function 𝐹_𝐻 stays unchanged (considering accuracy in 3 decimal places

of F_H) for three rounds.

Code Section 4

𝐶𝑜𝑢𝑛𝑡_𝐻 = 0; 𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐻 = 0;

While 1

Randomly generate an 1 × 𝑀2 mutation matrix 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛2 where integers from 1 to 𝑀2 are

arranged in the matrix in a random sequence;

for 𝑗𝑗: 1 → 𝑀2 do

 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2 = 𝑚𝑜𝑑(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛2(1, 𝑗𝑗), 𝑀) + 1;

 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2 = 𝑐𝑒𝑖𝑙(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛2(1, 𝑗𝑗)/𝑀);

 𝑛𝑥 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2 − (𝑀 + 1) 2⁄ ;

 𝑛𝑦 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2 − (𝑀 + 1) 2⁄ ;

 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 + (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2) ∗ 𝐸𝑓𝑖𝑒𝑙𝑑2𝑥((𝑀 + 1 −

𝑎 ∗ 𝑛𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑀 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑦));

 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 + (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2) ∗ 𝐸𝑓𝑖𝑒𝑙𝑑2𝑦((𝑀 + 1 − 𝑎 ∗

𝑛𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑀 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑦));

 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 + (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2) ∗ 𝐸𝑓𝑖𝑒𝑙𝑑2𝑧((𝑀 + 1 − 𝑎 ∗

𝑛𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑀 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑦));

 𝑁𝑒𝑤_𝑇𝑎𝑟𝑔𝑒𝑡2 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 .∗ 𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥) + 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 .∗

𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦) + 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 .∗ 𝑐𝑜𝑛𝑗(𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧);

Calculate 𝑁𝑒𝑤_𝐹_𝐻 according to 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻 and 𝑁𝑒𝑤_𝑇𝑎𝑟𝑔𝑒𝑡2 ;

If 𝑁𝑒𝑤_𝐹_𝐻 > 𝐹_𝐻 do

 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐻 = 𝐺𝑒𝑛𝑜𝑚𝑒𝐻

 If 𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2) == 1 do

 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2) = 0;

 else 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋2, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌2) = 1;

 end

 𝐺𝑒𝑛𝑜𝑚𝑒𝐻 = 𝑁𝑒𝑤_𝐺𝑒𝑛𝑜𝑚𝑒𝐻;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦;

 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 = 𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧;

 𝐹_𝐻 = 𝑁𝑒𝑤_𝐹_𝐻;

end

end

𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐻 = 𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐻 + 1;

If 𝐹_𝐿(𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐻) == 𝐹_𝐿(𝑁𝑢𝑚_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐻 − 1)

𝐶𝑜𝑢𝑛𝑡_𝐻 = 𝐶𝑜𝑢𝑛𝑡_𝐻 + 1;

else 𝐶𝑜𝑢𝑛𝑡_𝐻 = 0

end

If 𝐶𝑜𝑢𝑛𝑡_𝐻 == 3

break;

end

end

Part 2. Discussion of Using Nanohole Structures for Full-Color Meta-Hologram

Figure S1. Transmission Efficiencies of Nanohole Structures Drilled on Aluminum Film. The red, green,

and blue solid lines represent the transmission efficiencies of nanoholes optimized for 633nm, 532nm

and 488nm respectively.

Table S1. Structural Dimensions and Transmission Efficiencies

In this section, we discuss how to use nanohole structures drilled on aluminum film to design full-color

meta-holograms. Since the transmitted spectrum of nanohole structures relies primarily on the periods of

the nanoholes, all the data provided in Figure S1 and Table S1 are the results from 5 × 5 arrays in order

to maintain the periodicity of the nanoholes. This will decrease the resolution of the holographic image

under the same-area pattern. Additionally, from Figure S1 and table S1, it can be seen that by using

nanohole structures, we cannot directly decompose the color pictures into its three original component

(Red, Green, and Blue), otherwise strong cross-talk between different colors will happen. Meanwhile,

the transmission efficiencies for the blue light is extremely small, efficiency balance between different

colors cannot be achieved from structural designs. Hence, we chose Si for our hologram devices in the

main text.

Part 3. Experimental Setup for Measuring the Broadband Meta-hologram

Figure S2. Schematic of experimental setup for broadband Si hologram. HWP: half-wave plate; LP:

linear polarizer; QWP: quarter-wave plate;

Part 4. Detailed Conversion Efficiencies of Si Nanopillars for Full-color Meta-hologram

Table S2. Conversion Efficiencies of Si Nanopillars in Different Super-cells

Part 5. Discussion on Applying SHEA for Phase-controlled Optical Devices

Our proposed SHEA can also be employed for designing phase-controlled optical devices as long as

coupling with appropriate analytical models. For binary phase-controlled optical devices, we can use “0”

and “1” to stand for meta-atoms with “0” and “π” phase change respectively. For n-step phase-controlled

optical devices, we can use an n-digit binary code to represent the status of each pixel. For example, for

an 8-step phase-controlled optical device, a 3-digit binary code can represent the status of each pixel

(“000”, “001”, “010”, “100”, “011”, “110”, “101”and “111” to represent meta-atoms with phase change

of “0”, “π/4”, “π/2”, “3π/4”, “π”, “5π/4”, “3π/2”, “7π/4” respectively). For a n-step phase-controlled

meta-hologram design, to update the phase change induced through each mutation, the major change of

implementation in the lower segmentation during each mutation operation should be:

𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑥 + (exp (1𝑖 ∗
𝜋

2𝑛) − 1) ∗ (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗

𝐸𝑓𝑖𝑒𝑙𝑑1𝑥((𝑁 + 1 − 𝑎 ∗ 𝑛𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑁 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑦));

𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑦 + (exp (1𝑖 ∗
𝜋

2𝑛) − 1) ∗ (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗

𝐸𝑓𝑖𝑒𝑙𝑑1𝑦((𝑁 + 1 − 𝑎 ∗ 𝑛𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑁 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑦));

𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐿𝑧 + (exp (1𝑖 ∗
𝜋

2𝑛) − 1) ∗ (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐿(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗

𝐸𝑓𝑖𝑒𝑙𝑑1𝑧((𝑁 + 1 − 𝑎 ∗ 𝑛𝑥): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑁 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑁 + 1 − 𝑎 ∗ 𝑛𝑦));

To update the phase change induced through mutation, the major change of implementation in the higher

segmentation during each mutation operation should be:

𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑥 + (exp (1𝑖 ∗
𝜋

2𝑛) − 1) ∗ (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗

𝐸𝑓𝑖𝑒𝑙𝑑2𝑥((𝑀 + 1 − 𝑎 ∗ 𝑛𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑀 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑦));

𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑦 + (exp (1𝑖 ∗
𝜋

2𝑛) − 1) ∗ (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗

𝐸𝑓𝑖𝑒𝑙𝑑2𝑦((𝑀 + 1 − 𝑎 ∗ 𝑛𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑀 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑦));

𝑁𝑒𝑤_𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 = 𝐸𝑓𝑖𝑒𝑙𝑑_𝐻𝑧 + (exp (1𝑖 ∗
𝜋

2𝑛) − 1) ∗ (−1)𝐺𝑒𝑛𝑜𝑚𝑒𝐻(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑋1,𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑌1) ∗

𝐸𝑓𝑖𝑒𝑙𝑑2𝑧((𝑀 + 1 − 𝑎 ∗ 𝑛𝑥): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑥), (𝑀 + 1 − 𝑎 ∗ 𝑛𝑦): (3𝑀 + 1 − 𝑎 ∗ 𝑛𝑦));

Figure S3. Simulated Binary Phase-controlled Meta-hologram based on SHEA. Emblem used with

permission from Seven Lions Music LLC.

As a typical proof-of-concept examples, Figure S4 shows the reconstructed simulated meta-hologram

image of a 302 × 302 pixelated binary phase-controlled meta-hologram designed based on SHEA. The

reconstructed binary phase-controlled meta-hologram is designed at 𝜆 = 633𝑛𝑚 wavelength’s

incidence, focal plane is designed at 𝑧 = 45𝜇𝑚, while the dimension of each pixel is 300 × 300𝑛𝑚.

Part 6. Discussion on Absence of Comparison between GA and SHEA

According to previous reports,1-2 where the authors applied genetic algorithm (they named it evolutionary

algorithm, but the gist and process is the same as genetic algorithm) to solve inverse design problems for

a 33 × 33 pixelated metasurface, they used 600 initial population. And their problem has 233×33 ≈

1.72 × 10320 total possible solutions. Our problem has 2302×302 ≈ 1.72 × 1026800 total possible

solutions. Therefore, we infer that the appropriate initial population in our problem would be far more

than 600 and would easily exceed the RAM of a regular personal computer. On the other hand, before

launching the evolutionary process, as mentioned in the first part of the Supporting Information, we first

need to calculate the complex electric fields from every nanopillar of the metasurface to every pixel of

the target plane, which contains x, y and z components. If we directly save the complex electric fields in

a matrix, the size of the matrix can be estimated as: 3 × (302 × 302 × 605 × 605) × 8/(1024)3 ≈

746.2GB, which would far exceed the RAM of a personal computer. In order to solve this problem, we

took advantage of the symmetric property of the light field penetrating through the Si nanopillar

according to the Huygens-Fresnel principle, and only the electrical fields of the center nanopillar on the

metasurface to the target plane need to be calculated and saved in a matrix. Therefore, the complex

electrical fields coming from all the other nanopillars can be obtained from the matrix through translation

operation by comparing the relative position of the nanopillar with the center one. And the total electric

fields on the target plane can be obtained through adding up all the fields contributed from each nanopillar.

Therefore, the size of the initial matrix can be reduced to 3 × ((2 × 605 − 1) × (2 × 605 − 1)) × 8/

(1024)3 ≈ 33.5MB. And we have proved that in SHEA and modified GA, when the initial population

is only one, this strategy is very efficient. However, in GA, since the initial population is much larger

than one, nested for loops (instead of matrix dot production) have to be implemented to calculate the

reconstructed intensity profile and fitness value for every genome, which could be very time-consuming.

In order to have a valid comparison between SHEA and GA, we tried to implement GA to design the

same broadband Si meta-hologram shown in the main text based on a 300 × 300 pixelated metasurface

with 100 initial population. However, it would take more than 11 hours to finish one generation on

average on our computer, and convergence rate of GA is much slower even than that of modified GA. To

further prove this, we make a comparison between GA and modified GA solving 33 × 33 pixelated

meta-holograms so that the RAM won’t be a limitation which affect the optimization performance. The

dimensions of each pixel is 300nm × 300nm , and the target plane is at z = 6μm . The results are

provided in figure S7.

Figure S4. Comparison of GA and modified GA. (a) Convergence curve of GA. The inset picture is the

reconstructed hologram image based on final optimized genome. (b) Convergence curve of Modified GA.

The inset picture is the reconstructed hologram picture based on final optimized genome. Emblem used

with permission from Seven Lions Music LLC.

Figure S4 shows the comparison of GA and modified GA using correlation coefficient as the fitness

function. In GA, the optimization process runs 600 generations and then reach a steady value, the

simulation stops when the fitness value keeps unchanged for 30 generations. While in modified GA, the

optimization process only needs 16 generations to reach a steady value (here, since the pixel number is

small, we considered accuracy in 4 decimal places of the value of the fitness function for better optimized

performance), and the simulation stops when the fitness value keeps unchanged for 3 generations. In GA,

the average running time of one generation is around 61 seconds, while in modified GA, it only takes

around 0.5 seconds to finish one generation. The final fitness value in GA is around 0.84, while the final

fitness value in modified GA is around 0.93. Therefore, it can be concluded that when solving small-

pixelated complex inverse problems, the convergence rate and computing speed of modified GA is better

than that of GA. Thus we can infer that when dealing with complex large-pixelated inverse problems,

SHEA should behave better than GA at convergence rate and computing speed, meanwhile, it has less

stringent requirement of CPU speed and memory.

References:

1. Huntington, M. D.; Lauhon, L. J.; Odom, T. W., Subwavelength Lattice Optics by Evolutionary

Design. Nano Lett. 2014, 14, 7195-7200.

2. Hu, J.; Liu, C.-H.; Ren, X.; Lauhon, L. J.; Odom, T. W., Plasmonic Lattice Lenses for

Multiwavelength Achromatic Focusing. ACS Nano 2016, 10, 10275-10282.

