Infrared Detection with Temperature Sweep for Stability Determination of Ru-ON Metastable States

Vasily Vorobyev^{*,†,‡,§}, Nina I. Alferova[‡], and Vyacheslav A. Emelyanov^{†,‡}

[†]Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia [‡]Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia

[§]Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43402, United States

Table of content

Table of content	S2
Table S1	S2
DSC of fac -K ₂ [RuNO(NO ₂) ₂ Cl ₃] (10)	S3
Isothermal IR of Ru-ON in cis- and trans-[RuNO(NH ₃) ₂ (NO ₂) ₂ OH]	S4
Comments to the heating of KBr disk	S5
Comments to the data processing	S5
cis-Cs[RuNO(NH ₃)Cl ₄]·H ₂ O (4)	S6
mer(cis)-[RuNO(NH ₃) ₂ Cl ₃] (1)	S7
$fac-[RuNO(NH_3)_3(NO_3)_2]NO_3 \cdot H_2O(18)$	
Normalized MS1 absorptions in the tested mixtures	S7
Schematic drawing of the studied complexes	S10

Table S1

The studied complexes with **GS** and **MS1** spectroscopic properties and stability (ordered by **MS1** wavenumber). The accuracy of E_a , k_o , and T_d are on 5 kJ mol⁻¹, 1, and 3 K levels.

N	Complex and synthetic reference	ν(NO) GS , cm ⁻¹	ν(NO) MS1 , cm ⁻¹	E _a , kJ mol ⁻¹	$\log k_o$	<i>Т</i> _{<i>d</i>} , К	MS1 Stability
1	<i>trans</i> -[RuNO(NH ₃) ₄ OH]Cl ₂ ¹	1849	1716	87.8	14.8	258	[2]
2	trans-[RuNO(NH ₃) ₂ (NO ₂) ₂ OH] ³	1859	1736	55.4	11.0	206	a)
		1879	1758	57.5	13.0	188	
3	cis -[{RuNO(NH ₃) ₂ Cl ₂ } ₂ (H ₃ O ₂)]Cl ⁴	1872	1740	69.0	12.0	240	b)
4	<i>cis</i> -Cs[RuNO(NH ₃)Cl ₄]·H ₂ O ^c	1881	1743	53.6	12.4	182	b)
5	mer-[RuNO(NH ₃) ₃ Cl ₂]Cl·H ₂ O ⁵	1888	1755	59.9	10.9	225	b)
6	mer(trans)-[RuNO(NH ₃) ₂ Cl ₃] ⁶	1884	1756	46.5	9.3	197	b)
7	fac-[RuNO(NH ₃) ₂ Cl ₃] ⁷	1884	1758	57.7	11.8	203	b)
8	cis-[RuNO(NH ₃) ₂ (NO ₂) ₂ OH] ⁸	1882	1758	54.9	10.4	214	a)
		1907	1780	54.2	10.2	214	
9	tr-[RuNO(NH ₃) ₂ Cl ₂ (H ₂ O)]Cl·2H ₂ O6	1903	1770	94.1	18.1	233	b)
10	fac-K ₂ [RuNO(NO ₂) ₂ Cl ₃] ⁹	1900	1774	60.5	13.5	192	d)
11	<i>mer(cis)</i> -[RuNO(NH ₃) ₂ Cl ₃] ^c	1904	1778	47.2	10.8	181	b)
12	mer-[RuNO(NH ₃) ₃ Cl(H ₂ O)]Cl ₂ ¹⁰	1923	1780	62.6	10.8	237	b)
13	tr-[RuNO(NH ₃) ₂ (NO ₃) ₂ (H ₂ O)]NO ₃ ·H ₂ O ₃	1923	1790	74.3	12.3	254	b)
14	$[RuNO(NH_3)_5]Cl_3 \cdot H_2O^n$	1911	1799	70.4	12.0	245	[12]
15	mer-[RuNO(NH ₃) ₃ (NO ₂)(H ₂ O)](NO ₃) ₂ ¹³	1930	1810	47.4	8.2	220	b)
16	fac-[RuNO(NH ₃) ₂ (NO ₃) ₃] ¹⁴	1938	1813	64.8	12.2	223	b)
17	fac-[RuNO(NH ₃) ₃ (NO ₂) ₂]NO ₃ ¹⁵	1926	1813	71.6	12.7	239	b)
18	fac-[RuNO(NH ₃) ₃ (NO ₃) ₂]NO ₃ ·H ₂ O ^c	1936	1818	37.3	6.5	199	b)

[a] E_a and k_o found from isothermal IR experiments in this work [b] E_a and k_o found by proposed IR detection with temperature swipe [c] structure and synthesis mentioned in the supporting information [d] E_a and k_o found by DSC in this work

DSC of fac-K₂[RuNO(NO₂)₂Cl₃] (10)

The kinetic and thermal effects of the **MS1**-to-**GS** transition were studied using a NETZSCH DSC 204 F1 Phoenix differential scanning calorimeter. The heat-flow between open aluminum crucibles with powdered samples (1-3 mg) was recorded (Figure S1). For the generation of the *O*-coordinated nitrosyl species in the solid phase, the samples was irradiated in a liquid nitrogen bath with 443 nm light, same as in the IR experiments. Then, the sample was transferred to the instrument and heated up at a constant heat rate of 6, 9, or 12 K/min; the Ar gas flow was 25 mL/min. To increase the accuracy, measurements were performed without supplying liquid or gaseous nitrogen into the cell during the experiment. To calibrate the sample holder sensor and temperature scale, standard samples were melted (C_6H_{12} , Hg, In) or the crystal-to-crystal transition was measured (KNO₃).

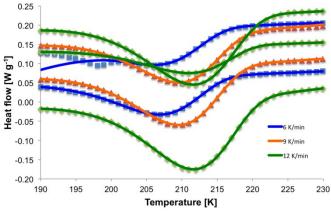


Figure S1. The experimental DSC data for the **MS1** decay in fac-K₂[RuNO(NO₂)₂Cl₃] (**10**) are in dots. Solid lines are the first order kinetic fit with $E_a = 60.5\pm1.9$ kJ mol⁻¹ and log $k_o = 13.46\pm0.49$.

Processing of the experimental data was performed in Microsoft Excel for Mac 2011 based on the following equations and assumptions. The rate of the MS1-to-GS transition obeys the first-order reaction with the rate constant following the Arrhenius law $k = k_0$. $e^{-\overline{RT}}$ (Eq. S₁), where k_o and E_a are pre-exponential factor and activation energy. The actual rotation from 0° to 180° passes the 90° Ru-N-O angle, where the MS2 local minima is positioned. In the case of $[RuNO(CN)_5]^{2-}$ and $[OsNO(CN)_5]^{2-}$, the thermal decay of the **MS1** ends up in the MS₂ rather than in the ground state since the MS₂ is more stable (T_d are 240 and 220 K) than the corresponding MS1 (230 and 190 K). ¹⁶ These two complexes are exceptional exemplars of the thermal MS1-to-MS2 transformation; however, the most nitrosyl ruthenium complexes passes MS2 on the way to GS without hesitation because the decay of MS_2 is generally faster than it's thermal generation from MS_1 . Thus, the implemented model took in account the MS1 as a reactant and GS as a product. In the case of MS₂ being more stable than MS₁, an additional thermal effect is expected to be observed at higher temperatures with comparable integral intensity. In terms of the proposed method based on IR detection with temperature sweep, passing by the MS2 intermediate state would not have an impact on the monitored nitrosyl valence vibration (**MS2** absorbs about 300 cm⁻¹ lower than **GS**). In terms of the observed kinetics, the **MS2** being a product would not have impact on the depletion rate of **MS1** because the possible **MS2**-to-**MS1** transformation is photodriven.¹⁷

Once the sample being heated up to a certain temperature, the **MS1** begin to rotate back to ground state with stored heat being released **MS1** \rightarrow **GS** + Q with a rate law expressed as $-\frac{d\mathbf{MS1}}{dt} = k(T) \cdot [\mathbf{MS1}]$, where k(T) is dependent on the temperature. Multiplying by enthalpy of the **MS1**-to-**GS** transition, ΔH , gives the heat flow associated with the **MS1** decay $\dot{H} = \frac{dQ}{dt} = k(T) \cdot \Delta H \cdot [\mathbf{MS1}]$ (Eq. S2). Time, recorded temperature and heat flow are the instrument output which were fitted with a set of three parameters (k_o , E_a , and ΔH), variable baseline (simple linear f(*T*) function) and Eq. S1 and S2. The starting **MS1** concentration was taken as unity which degrades on each time point according to the calculated k(T) at this point as $[\mathbf{MS1}](t) = [\mathbf{MS1}](t - \Delta t) \cdot e^{-k(T) \cdot \Delta t}$.

It was hard to solve the system of Eq. S1 and S2 numerically, but one iterative formula can be derived. The temperature at which the maximum heat flow occurs is equal to T_{max} = $\frac{E_a}{R \cdot \ln \frac{R \cdot k_0 \cdot T_{max}^2}{heat rate \cdot E_a}}$. This formula is useful for connecting of the old data of the **MS1** decay

where the peak maximum is reported at the 5 K/min heat rate. To the accuracy of 2 K, the peak maximum is shifted to the higher temperature by 15 K at this specific heat rate compare to T_d . Also, the maximum heat flow shifts to the higher temperature as the heating goes up as observed on the Figure S1.

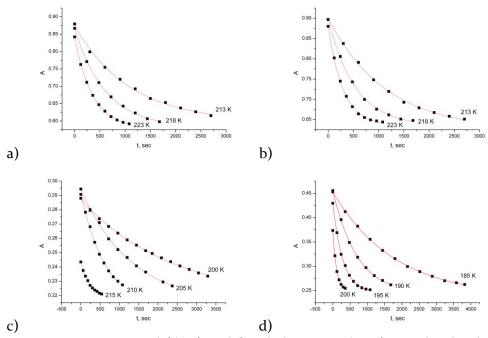


Figure S2. Experimental (dots) and fitted absorption loss (unimolecular, lines) of the Ru-ON states in *cis*-[RuNO(NH₃)₂(NO₂)₂OH] (8). (v(NO) positioned at 1760 cm⁻¹ in a), 1781 cm⁻¹ in b)). and *trans*-[RuNO(NH₃)₂(NO₂)₂OH] (2) (v(NO) at 1736 cm⁻¹ in c), 1756 cm⁻¹ in d)).

Comments to the heating of KBr disk

Addition of the nitrosyl complexes with known thermal stability reveals the heating profile based on the known **MS** decay. Since the tested complex is mixed in the same disk, the T(t) is the same for all mixed-in complexes and the thermal stability can be evaluated from the observed absorbance loss of the corresponding v(NO).

The pressed KBr disc has polycrystalline nature and contains absorbed water up to 0.033%.¹⁸ The disk shrinks while cooling in the liquid nitrogen. Upon transferring to the warm sample holder, the crystals thermally expand and cause disk opacification. Microscopic cracks work as a fingerprint on the optic cuvette. In terms of the IR spectroscopy, smaller amounts of light are transmitted at every wavelength. Once the temperature hits -12.6 °C, the ice melts to give a saturated KBr solution on the crystal surfaces. Fractures made by thermal shrinking-expansion are filled by this solution, making the disk more transparent, and in turn, the spectral baseline goes back to the normal values. The disk pressed with higher pressure from perfectly dry, well-grounded KBr would not have that baseline fluctuation. But the fluctuation provides one more temperature point needed for the heat rate evaluation.

The Gram-Schmidt reconstruction of the IR data extracts the thermal baseline variation into a separate data set. The spectral data is no longer dependent on the background and the extracted background absorption has a pronounced minimum. This point has reproducible temperature of 258.1(1.5) K among ten measurements. The temperature value was derived from the studies in which the temperature function can be derived based only on the known **MS1** properties. For example, the known thermal properties of the metastable states in the complexes 1 and 14 allows to derive the temperature profile in the mixture of the complexes 1, 14, 16 or in the mixture of 1, 3, 14 (Fig. S5B, S5C). Once the average of ten ice-melting points was calculated, the ice-melting point as 258.1 K was used as a reference point and the data was re-fitted using new reference ice-melting point. Difference of 2.5 K from the minimum point on the KBr-water phase diagram can be attributed to the local defects.

Going back to the T(t) function, the only variable for adjustment is the starting time. The starting temperature (78 K), the sample holder temperature (293 K), and the icemelting (258.1 K) time point are known. The starting time was adjusted based on a mixedin compound with known **MS1** thermal properties. Based on the known T(t) function, the first-order kinetic model requires two variables, E_a and k_o , to define the decay of a chosen **MS1** fraction from unity to zero. The E_a and k_o were adjusted for the model to match the normalized experimental **MS1** absorption curve.

Comments to the data processing

The input data contained Gram-Schmidt intensities, $I_{G-S}(t)$, and integrated absorption of the **MS1** bands under study, A(t). Integration was done in the program set provided by the manufacturer of the IR instrument (VERTEX 80v). Processing of the experimental data was performed in Microsoft Excel for Mac 2011 based on the following equations and assumptions. The minimum point of the $I_{G-S}(t)$ curve was set as 258.1 K for $t_{ice melting}$. For the initial guess, the starting time, t_{start} , was set for the moment of random jumps on $I_{G-S}(t)$ and A(t) curves. At this moment, the sample was installed in the holder and the scanning light was blocked during installation period. To find the heating rate constant of $T(t) = T_{end} + (T_{start} - T_{end}) \cdot e^{-k \cdot t}$ equation (Eq. S3), the k equal to $\ln((T_{start} - T_{end})/(258.1 - T_{end}))/(t_{ice}$ melting - t_{start}) (Eq. S4) was derived. Later on, the t_{start} will be adjusted for better match through changes in Eq. S4 leading to changes in T(t) function. The amount of a chosen **MS1**, $\omega(t)$, was set to unity at t=0. At a moment t, the rate constant of the **MS1**-to-**GS** conversion is equal to $k(t)=k_0 \exp[-E_a/RT(t-t_{start})]$ (Eq. S5), where T(t) comes from Eq. S3; E_a and k_o correspond to the chosen **MS1**. If these values are not known, they will be subject of adjustment. At the next time step, t+dt, some **MS1** rotate back to **GS** and $\omega(t+dt)=\omega(t)\cdot\exp[dt\cdot k(t+dt)]$ (Eq. 4), where k(t+dt) is Eq. S5. From a known amount of the chosen **MS1**, the absorbance curve was found as $A_{fit}(t) = \omega(t)\cdot(A_{start}-A_{end})+A_{end}$ (Eq. S7), where A_{start} and A_{end} are adjustable initial and final absorbance.

The residual sum of squares of modeled $A_{fit}(t)$ and experimental A(t) was minimized by adjustment of parameters. For the compounds acting as internal temperature probe in the studied KBr disk, the parameters to adjust were A_{start} , A_{end} , and t_{start} . Availability of long time periods before and after **MS**₁ decay gives precise estimation of the first two parameters. For the several internal standards in the disk, the residual sum of squares was minimized for two and more modeled $A_{fit}(t)$ and experimental A(t) by adjustment of individual A_{start} and A_{end} for each compound and a single t_{start} for the whole KBr disk. The A_{start} and A_{end} were used later to plot normalized experimental absorbance $A_{normalized}(t) =$ $(A(t)-A_{end})/(A_{start}-A_{end})$ (Eq. S8).

For the complexes with unknown **MS1** thermal stability parameters, the residual sum of squares of modeled $A_{fit}(t)$ and experimental A(t) was minimized by adjustment of different set of parameters. The A_{start} , A_{end} , E_a , and k_o were adjusted. The t_{start} was used at it was found from the known complexes adjustment. The normalized absorption was calculated from Eq. S8.

cis-Cs[RuNO(NH₃)Cl₄]·H₂O (4)

The complex *cis*-Cs[RuNO(NH₃)Cl₄]·H₂O (4) obtained as a minor product in the reaction of *trans*-[RuNO(NH₃)₄OH]Cl₂ with 16 M HNO₃ (Kabin E. V., et al. *Russ. J. Inorg. Chem.* **2012**, *57*(8), 1146). Excess of nitric acid was removed by reaction with excess of hydrochloric acid; the [RuNOCl₅]²⁻ anion was precipitated as insoluble Cs₂[RuNOCl₅] after addition of CsCl. The desired monoammine complex was the only soluble ruthenium complex after the performed manipulations. Yield was 10%. The compound was recrystallized from water to obtain single crystals suitable for X-ray studies (Fig. S₃).

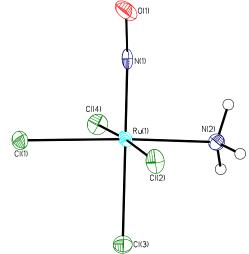


Fig. S₃. The structure of the tetrachloroamminenitrosylruthenate in *cis*-Cs[RuNO(NH₃)Cl₄]·H₂O (**4**).

mer(cis)-[RuNO(NH₃)₂Cl₃] (11)

The complex mer(cis)-[RuNO(NH₃)₂Cl₃] with trans-ON-Ru-NH₃ coordinate was synthesized in the modified procedure of fac-[RuNO(NH₃)₃Cl₂]Cl synthesis (Vorobyev V., et al. *Eur. J. Inorg. Chem.* **2017**, (5), 971). The mixture of concentrated ammonia with sodium hexanitroruthenate was neutralized by excess of hydrochloric acid after the ruthenium complexes dissolved. The mixture was kept in the ice bath to avoid overheating. Insoluble trichloro complex precipitated after gentle heating of the acidic solution. Suitable for X-ray crystals were obtained by recrystallization in 6 M HCl (Fig. S4).

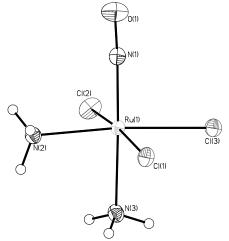
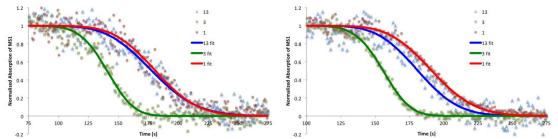



Figure S4. The structure of *mer(cis)*-[RuNO(NH₃)₂Cl₃] (**11**).

fac-[RuNO(NH₃)₃(NO₃)₂]NO₃·H₂O (18)

The facial triammine complex was synthesized by using of 3 M nitric acid instead of hydrochloric acid in the *fac*-[RuNO(NH₃)₃Cl₂]Cl synthesis (Vorobyev V., et al. *Eur. J. Inorg. Chem.* **2017**, (5), 971). Yield was 84%. Unfortunately, the complex crystallizes in highly symmetric F-43m space group with randomly distorted ligands around the central ruthenium atom. The composition of the complex was validated by elemental analysis. Found: N – 25.8(4), H – 2.9(5), calculated: N – 25.4, H – 2.9%.

Normalized MS1 absorptions in the tested mixtures

Figure S5A. Two independent studies of the mixture of *trans*-[RuNO(NH₃)₄OH]Cl₂ (**1**), *cis*-[{RuNO(NH₃)₂Cl₂}₂(H₃O₂)]Cl (**3**), and *trans*-[RuNO(NH₃)₂(NO₃)₂(H₂O)]NO₃·H₂O (**13**). The complex **1** was an internal standard.

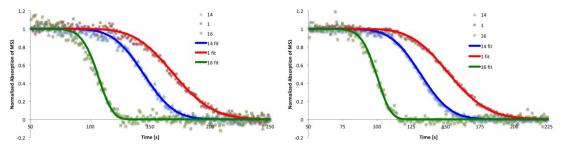


Figure S5B. Two independent studies of the mixture of *trans*-[RuNO(NH₃)₄OH]Cl₂ (1), [RuNO(NH₃)₅]Cl₃·H₂O (14), and *fac*-[RuNO(NH₃)₂(NO₃)₃] (16). The complexes 1 and 14 were internal standards.

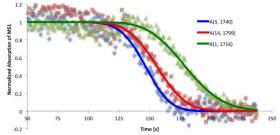


Figure S5C. Mixture of *trans*-[RuNO(NH₃)₄OH]Cl₂ (**1**), *cis*-[{RuNO(NH₃)₂Cl₂}₂(H₃O₂)]Cl (**3**), [RuNO(NH₃)₅]Cl₃·H₂O (**14**). The complexes **1** and **14** were internal standards.

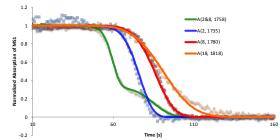


Figure S₅D. Mixture of *trans*-[RuNO(NH₃)₂(NO₂)₂OH] (**2**), *cis*-[RuNO(NH₃)₂(NO₂)₂OH] (**8**), and *fac*-[RuNO(NH₃)₃(NO₃)₂]NO₃·H₂O (**18**). The complexes **2** and **8** were internal standards.

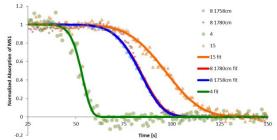


Figure S₅E. Mixture of *cis*-Cs[RuNO(NH₃)Cl₄]·H₂O (**4**), *cis*-[RuNO(NH₃)₂(NO₂)₂OH] (**8**), and *mer*-[RuNO(NH₃)₃(NO₂)(H₂O)](NO₃)₂ (**15**). The complex **8** was an internal standard.

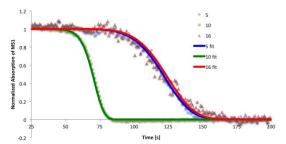


Figure S₅F. Mixture of *mer*-[RuNO(NH₃)₃Cl₂]Cl·H₂O (**5**), *fac*-K₂[RuNO(NO₂)₂Cl₃] (**10**), and *fac*-[RuNO(NH₃)₂(NO₃)₃] (**16**). The complex **10** was an internal standard.

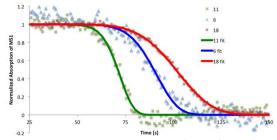


Figure S₅G. Mixture of mer(trans)-[RuNO(NH₃)₂Cl₃] (6), mer(cis)-[RuNO(NH₃)₂Cl₃] (**11**), and fac-[RuNO(NH₃)₃(NO₃)₂]NO₃·H₂O (**18**). The complex **18** was an internal standard since it was studied in other mixture (Fig. S₅D).

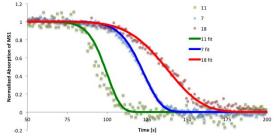


Figure S₅H. Mixture of fac-[RuNO(NH₃)₂Cl₃] (7), mer(cis)-[RuNO(NH₃)₂Cl₃] (11), and fac-[RuNO(NH₃)₃(NO₃)₂]NO₃·H₂O (18). The complex 18 was an internal standard since it was studied in other mixture (Fig. S₅D).

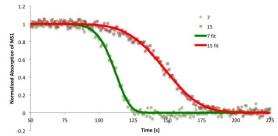
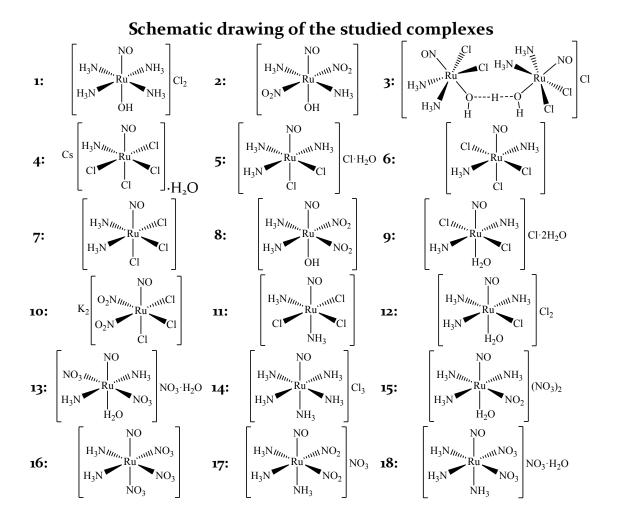



Figure S₅I. Mixture of fac-[RuNO(NH₃)₂Cl₃] (7) and mer-[RuNO(NH₃)₃(NO₂)(H₂O)](NO₃)₂ (**15**). The complex **15** was an internal standard since it was studied in other mixture (Fig. S₅E).

References

(1) Il'yin, M. A.; Emel'anov, V. A.; Belyaev, A. V.; Makhinya, A. N.; Tkachev, S. V.; Alferova, N. I. New method for the synthesis of *trans*-hydroxotetraamminenitrosoruthenium(II) dichloride and its characterization. *Russ. J. Inorg. Chem.* **2008**, *53*(7), 1070.

(2) Schaniel, D.; Woike, T.; Boskovic, C.; Güdel, H. U. Evidence for two light-induced metastable states in Cl₃[Ru(NH₃)₅NO]H₂O. *Chem. Phys. Lett.* **2004**, 390(4-6) 347.

(3) Il'in, M. A.; Kabin, E. V.; Emel'yanov, V. A.; Baidina, I. A.; Vorob'yov, V. A. *trans*-dinitro-and *trans*-dinitratoruthenium complexes [RuNO(NH₃)₂(NO₂)₂(OH)] and [RuNO(NH₃)₂(H₂O)(NO₃)₂]NO₃·H₂O. *J. Struct. Chem.* **2009**, 50(2), 328.

(4) Vorobyev, V.; Emelyanov, V. A.; Valuev, I. A.; Baidina, I. A. Nitrosyl cis-dichlorodiammine ruthenium complex with bridging $H_3O_2^-$ ligand. *Inorg. Chem. Commun.* **2017**, *76*, 40.

(5) Vorobyev, V.; Emelyanov, V. A.; Plusnina, O. A.; Makarov, E. M.; Baidina, I. A.; Smolentsev, A. I.; Tkachev, S. V.; Asanova, T. I. Triammine fac and mer Coordination for Ruthenium–Nitrosyl Complexes: Synthesis and Characterization of [RuNO(NH₃)₃Cl₂]Cl. *Eur. J. Inorg. Chem.* **2017**, (5), 971.

(6) Il'In, M. A.; Emel'yanov, V. A.; Baidina, I. A. Structure and synthesis of nitrosoruthenium transdiammines $[Ru(NO)(NH_3)_2Cl_3]$ and $[Ru(NO)(NH_3)_2(H_2O)Cl_2]Cl\cdot H_2O$. *J. Struct. Chem.* **2008**, 49(6), 1090.

(7) Sinitsyjn, N. M.; Svetlov, A. A.; Bryjkova, N. V. Synthesis and investigation into diammine complexes of nitrosylosmium and nitrosylruthenium. *Koord. Khim.* **1976**, 2(5), 662.

(8) Vorobyev, V.; Kostin, G. A.; Kuratieva, N. V.; Emelyanov, V. A. Two Oxygen-Coordinated Metastable Ru-ON States for Ruthenium Mononitrosyl Complex. *Inorg. Chem.* **2016**, *55*(18), *9158*.

(9) Emel'yanov, V. A.; Baidina, I. A.; Gromilov, S. A.; Virovets, A. V.; Belyaev, A. V. Synthesis, Formation Mechanism, and Crystal Structure of the Nitrosoruthenium(II) Nitrochloride Complex *Fac*- $K_2[RuNO(NO_2)_2Cl_3]$. *J. Struct. Chem.* **2002**, 43(2), 304.

(10) Emel'yanov, V. A.; Baidina, I. A.; Gromilov, S. A.; Vasiliev, A. D.; Belyaev, A. V. Synthesis and Crystal Structure of Nitrosoruthenium Triammino Complex [RuNO(NH₃)₃Cl(H₂O)]Cl₂. *J. Struct. Chem.* **2000**, *41*(6), 1030.

(11) Il'in, M. A.; Emel'yanov, V. A.; Baidina, I. A.; Alferova, N. I.; Korol'kov, I. V. Study of nitrosation of hexaammineruthenium(II): Crystal structure of *trans*-[RuNO(NH₃)₄Cl]Cl₂. *Russ. J. Inorg. Chem.* **2007**, 52(1), 62.

(12) Schaniel, D.; Woike, T.; Boskovic, C.; Güdel, H. U. Evidence for two light-induced metastable states in Cl₃[Ru(NH₃)₅NO]H₂O. *Chem. Phys. Lett.* **2004**, 390(4-6) 347.

(13) Vorobyev, V.; Kabin, E. V.; Emelyanov, V. A.; Baidina, I. A.; Korolkov, I. V. Synthesis and crystal structure of mer-nitroaquatriamminenitrosylruthenium(II) nitrate $[RuNO(NH_3)_3(NO_2)(H_2O)](NO_3)_2$. Inorg. Chem. Commun. 2016, 68, 1.

(14) Kabin, E. V.; Emel'yanov, V. A.; Vorob'yev, V. A.; Alferova, N. I.; Tkachev, S. V.; Baidina, I. A. Reaction of *trans*-[RuNO(NH₃)₄(OH)]Cl₂ with nitric acid and synthesis of ammine (nitrato)nitrosoruthenium complexes. *Russ. J. Inorg. Chem.* **2012**, 57(8), 1146.

(15) Vorobyev, V.; Baidina, I. A.; Korolkov, I. V.; Emelyanov, V. A. to be published

(16) Güida, J. A.; Piro, O. E.; Schaiquevich, P. S.; Aymonino, P. J. Infrared absorption spectra of electronically excited long-lived metastable states in $Na_2[Ru(CN)_5NO]\cdot 2H_2O$. *Solid State Commun.* 1997, 101(6), 471; Güida, J. A.; Piro, O. E.; Aymonino, P. J. Infrared absorption spectra of sodium pentacyanonitrosylosmate(II) dihydrate in two excited electronic metastable states. *Inorg. Chem.* 1995, 34(16), 4113.

(17) Sanz García, J.; Alary, F.; Boggio-Pasqua, M.; Dixon, I. M.; Malfant, I.; Heully, J. L. Establishing the two-photon linkage isomerization mechanism in the nitrosyl complex *trans*- $[RuCl(NO)(py)_4]^{2+}$ by DFT and TDDFT. *Inorg. Chem.* **2015**, *54*(17), 8310; Talotta, F.; Heully, J. L.; Alary, F.; Dixon, I. M.; González, L.; Boggio-Pasqua, M. Linkage photoisomerization mechanism in a photochromic ruthenium nitrosyl complex: new insights from an MS-CASPT2 study. *J. Chem. Theory Comput.* **2017**, *13*(12), 6120.

(18) Van der Maas, J. H.; Tolk, A. The influence of moisture on potassium bromide disks used in infrared spectrometry. *Spectrochim. Acta*, **1962**, *18*(2), 235.