Supporting Information # Mechanically-Controllable Strong 2D Ferroelectricity and Optical Properties of Semiconducting BiN Monolayer Peng Chen, Xue-Jing Zhang, and Bang-Gui Liu* Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China *Email: bgliu@iphy.ac.cn #### 1. Total-energy comparison of the BiN monolayer with other similar 2D structures | | BiN | CuI-like
[1] | SiP-like
[2] | InSe-like
[3] | GeTe-like
[4] | GaSe-like
[5] | BN-like
[6] | |---------------------|-----------|-----------------|-----------------|------------------|------------------|------------------|----------------| | Energy
(eV/f.u.) | -11.78267 | -11.56397 | -11.44983 | -11.05758 | -11.04598 | -11.02103 | -10.44433 | - [1] Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered γ -CuI, npj 2D Materials and Applications 2, 16 (2018) - [2] Two-dimensional SiP: an unexplored direct bandgap semiconductor, 2D Mater. **4**, 015030 (2017) - [3] InSe: a two-dimensional material with strong interlayer coupling, Nanoscale **10**, 7991 (2018) - [4] Sonication-assisted liquid-phase exfoliated α -GeTe: a two-dimensional material with high Fe3+ sensitivity, Nanoscale **10**, 15989 (2018) - [5] Multifunctional 2D- Materials: Gallium Selenide, Materials Today: Proceedings 4, 5471(2017) - [6] B/C/N Materials Based on the Graphite Network, Adv Mater 8, 9 (1997) #### 2. Structural parameters under uniaxial stress. | Strain | -5.0% | -2.0% | 0.0% | 2.0% | -2.0% | 0.0% | 2.0% | 5.0% | |---------------------|---|--|---|---|---|---|---|---| | Lattice
constant | a=3.2960
b=3.6767
c=15.000
γ =90 | a=3.4000
b=3.6478
c=15.000
γ =90 | a=3.4694
b=3.6287
c=15.000
γ =90 | a=3.5388
b=3.6070
c=15.000
γ =90 | a=3.5380
b=3.4749
c=15.000
γ =90 | a=3.6287
b=3.4694
c=15.000
γ =90 | a=3.7194
b=3.4619
c=15.000
γ =90 | a=3.8101
b=3.4556
c=15.000
γ =90 | | Wyckoff
position | Bi:
0.0000
0.5527
0.4617
N:
0.0000
0.4473
0.6055 | Bi
0.0000
0.5551
0.4626
N:
0.0000
0.4449
0.6059 | Bi:
0.0000
0.5567
0.4631
N:
0.0000
0.4433
0.6062 | Bi:
0.0000
0.5578
0.4637
N:
0.0000
0.4422
0.6064 | Bi:
0.0489
0.5000
0.6376
N:
0.9511
0.5000
0.4938 | Bi:
0.0567
0.5000
0.6369
N:
0.9433
0.5000
0.4938 | Bi:
0.0630
0.5000
0.6361
N:
0.9370
0.5000
0.4938 | Bi:
0.0689
0.5000
0.6354
N:
0.9311
0.5000
0.4939 | Eight structures are given in the table. All of them are from the lowest energy phases from fig3 (a). More precisely, the first 4 structures belong to the ferroelectric [010] phase under strain, and the remaining 4 structures belong to the ferroelectric [100] phase. The 3rd and 6th columns describe the minima of the [010] and [100] phases, respectively. The 4th and 5th columns describe the two phases the crossing at the transition point in fig3 (a). ### 3. Effect of the spin-orbits coupling on the band structures The band structures and density of states (DOS) of the BiN monolayer without and with (the left and the right) the spin-orbit coupling (soc).