Supporting Information

Air Cathode Catalysts of Microbial Fuel Cell by Nitrogen-Doped Carbon Aerogels

Wei Yang ^{a,b,c}, Yi Peng^c, Yudong Zhang ^{a,b}, Jia En Lu^c, Jun Li^{* a,b} and Shaowei Chen^{*c}

^a Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. E-mail: lijun@cqu.edu.cn

^b Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China

^c Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, USA. E-mail: <u>shaowei@ucsc.edu</u>

Summary

- Five pages
- Two tables
- Three figures.

Table S1. Fitting results of the EIS data

	Pt/C	NCA800	
R _o (Ω)	14.58	16.32	
C _{dl} (F⋅s ⁿ⁻¹)	1.26	0.60	
n ₁	0.26	1	
R _{in} (Ω)	4.89	0.84	
Cad (F·S ⁿ⁻¹)	0.19	0.11	
N ₂	0.95	0.71	
R _{ct} (Ω)	0.71	1.05	
W (Ω·s ^{-1/2})	26.22	23.93	
R _t (Ω)	46.40	42.14	

Catalyst	Cathode substrate	Anode material	P _{max} (mW m ^{−2})	Loading (mg cm ⁻²)	MSP (mW g ⁻¹)	Ref.
NCA800	Carbon cloth	Carbon cloth	1048 ± 47	2	52.4	this work
Cellulose-derived carbon	Carbon cloth	Carbon fiber brush	2293 ± 50	20	11.47	1
Sewage sludge biochar	Carbon cloth	Carbon cloth	500 ± 17	5	10	2
Activated carbon nanofibers	Carbon cloth	Carbon cloth	803	12	6.67	3
Nitrogen-doped activated carbon	Carbon cloth	Carbon brush	650 ± 20	5	12.4	4
Carbon nanotube	Carbon cloth	Carbon paper	84.8	0.5	16.96	5
nitrogen-doped carbon nanosheet on graphene	stainless steel net	carbon brush	1159.34	5	23.19	6
Activated carbon/carbon black	stainless steel mesh	graphite fiber brush	1560 ± 40	42.86	3.64	7
Bamboo charcoal	stainless steel mesh	carbon brush	1719 ± 82	50	3.44	8
Biocarbon from plant moss	Carbon cloth	Carbon cloth	703 ± 16	2	35.15	9

Table S2 Comparison of MSP between NCA800 and literature results

Fig. S1 LSV curves of (a) NCA600, (b) NCA700 and (c) NCA900 at different rotation rates at the potential scan rate of 10 mV s⁻¹ in oxygen-saturated 0.1 M NaOH.

Fig. S2 Cyclic voltammograms of (a) NCA600, (b) NCA700, (c) NCA800 and (d) NCA900 within the potential range of +1.0 to +1.1 V at various scan rates.

Fig. S3 Polarization curves of anode and cathode at different current densities. Note that the measurements were conducted in duplicate and the error bars of the cathode potentials were smaller than the symbol size.

1. Liu, Q.; Zhou, Y.; Chen, S.; Wang, Z.; Hou, H.; Zhao, F., Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell. *J Power Sources* **2015**, *273*, 1189-1193.

2. Yuan, Y.; Yuan, T.; Wang, D.; Tang, J.; Zhou, S., Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. *Bioresour Technol* **2013**, *144*, 115-120.

3. Santoro, C.; Stadlhofer, A.; Hacker, V.; Squadrito, G.; Schroder, U.; Li, B., Activated carbon nanofibers (ACNF) as cathode for single chamber microbial fuel cells (SCMFCs). *J Power Sources* **2013**, *243*, 499-507.

4. Zhang, B.; Wen, Z.; Ci, S.; Mao, S.; Chen, J.; He, Z., Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. *Acs Appl Mater Interfaces* **2014**, *6*, 7464-7470.

5. Ghasemi, M.; Ismail, M.; Kamarudin, S. K.; Saeedfar, K.; Daud, W. R. W.; Hassan, S. H. A.; Heng, L. Y.; Alam, J.; Oh, S. E., Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. *Appl Energy* **2013**, *102*, 1050-1056.

6. Wen, Q.; Wang, S. Y.; Yan, J.; Cong, L. J.; Chen, Y.; Xi, H. Y., Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells. *Bioelectrochemistry* **2014**, *95*, 23-28.

7. Zhang, X.; Xia, X.; Ivanov, I.; Huang, X.; Logan, B. E., Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. *Environ Sci Technol* **2014**, *48*, 2075-2081.

8. Yang, W.; Li, J.; Ye, D.; Zhu, X.; Liao, Q., Bamboo charcoal as a cost-effective catalyst for an air-cathode of microbial fuel cells. *Electrochim Acta* **2017**, *224*, 585-592.

9. Zhou, L.; Fu, P.; Wen, D.; Yuan, Y.; Zhou, S., Self-constructed carbon nanoparticles-coated porous biocarbon from plant moss as advanced oxygen reduction catalysts. *Appl Catal B: Environ* **2016**, *181*, 635-643.