1	Supporting Information for Publication
2	
3 4	Methane emissions reductions from alternate wetting and drying of rice fields detected using the eddy covariance method
5	
6	*Benjamin R.K. Runkle ¹ , Kosana Suvočarev ¹ , Michele L. Reba ⁴ , Colby W. Reavis ¹ , S. Faye
7	Smith ^{1,2,3} , Yin-Lin Chiu ⁴ , Bryant Fong ⁴
8	
9	¹ Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR
10	72701, USA
11	² Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville,
12	AR 72701, USA
13	³ Environmental Dynamics Program, University of Arkansas, Fayetteville, AR 72701, USA
14	⁴ USDA-ARS Delta Water Management Research Unit, Jonesboro, AR, 72401, USA
15	
16	*Corresponding author: Benjamin R. K. Runkle, 231 ENGR Hall, University of Arkansas,
17	Fayetteville, AR 72701, 479-575-2878, <u>brrunkle@uark.edu</u>
18	
19	Number of Pages: 6
20	Number of Tables: 3

21 Number of Figures: 4

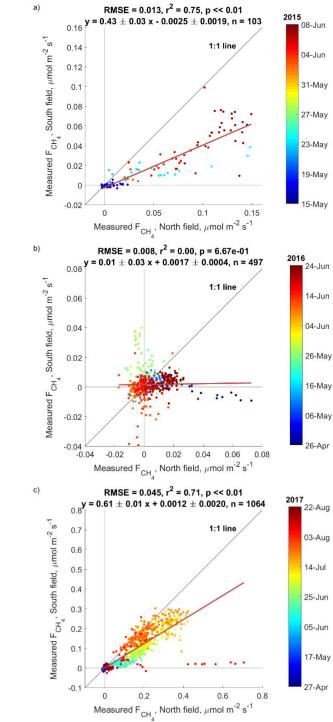
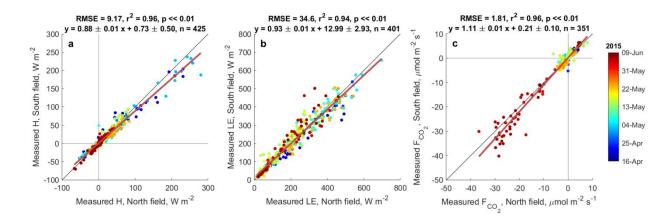

Supplemental information 22

Table S1: Agronomic calendar of farm activities on each site (both are 700 m West to East, 350 m 23

North to South); each field was planted with RiceTec Hybrid 745. Applications are given in units 24 mmonium phosphate.

25	kg ł	1a ⁻¹ ;	DAP	is	dian

0 /		4 4		1		
Field treatment and name	Plant date, DOY	Herbicide Trade name (chemical, rate)	Insecticide (rate)	Fungicide (rate)	Fertilizer type (rate)	First permanent flood initiated
North field, DF	April 8, 2015 (98)	April 9: Command (clomazone, 0.98) April 9: Roundup (glyphosate, 2.35) May 2: Command (clomazone, 0.70) May 2: Riceshot (propanil, 2.35) May 2: Clearpath (imazethapyr, 0.56) May 13: Riceshot (propanil, 4.69) May 13: Newpath (imazethapyr, 0.28)	July 6: Lambda cyhalothrin (0.27) July 21; Lambda cyhalothrin (0.27)	July 6: Propiconazole (0.42)	May 1: DAP (112) May 14: Urea (112) May 30: Urea (101) June 3: Urea (101)	May 16
South field, AWD	April 7, 2015 (97)	April 9: Command (clomazone, 0.98) April 9: Roundup (glyphosate, 2.35) May 2: Command (clomazone, 0.70) May 2: Riceshot (propanil, 2.35) May 2: Clearpath (imazethapyr, 0.56) May 14: Riceshot (propanil, 4.69) May 14: Newpath (imazethapyr, 0.28)	July 6: Lambda cyhalothrin (0.27), July 21; Lambda cyhalothrin (0.27)	July 6: Propiconazole (0.42)	May 1: DAP (112) May 14: Urea (112) May 30: Urea (101) June 3: Urea (101)	May 16
North field, AWD	April 23, 2016 (114)	April 23: Command (clomazone, 1.05) April 23: Powermax (glyphosate, 1.54) May 20: Command (clomazone, 0.56) May 20: Riceshot (propanil, 7.04) May 20: Newpath (imazethapyr, 0.28) June 6: Riceshot (propanil, 4.69) June 6: Newpath (imazethapyr, 0.28) July 16: Bolero (thiobencarb, 0.07)	July 25: Lambda cyhalothrin (0.27) Aug. 9: Lambda cyhalothrin (0.27)	July 25: Propiconazole (0.42)	May 21: DAP (101) June 14: Urea (224) June 22: Urea (112)	June 14
South field, AWD	April 23, 2016 (114)	April 23: Command (clomazone, 1.05) April 23: Powermax (glyphosate, 1.54) May 20: Command (clomazone, 0.56) May 20: Riceshot (propanil, 7.04) May 20: Newpath (imazethapyr, 0.28) June 8: Riceshot (propanil, 4.69) June 8: Newpath (imazethapyr, 0.28) July 16: Bolero (thiobencarb, 0.07)	July 21; Lambda cyhalothrin (0.27) Aug. 9: Lambda cyhalothrin (0.27)	July 21: Propiconazole (0.42)	May 21: DAP (101) June 14: Urea (224) June 22: Urea (112)	June 16
North field, DF	Apr 10, 2017 (100)	April 10: Powermax (glyphosate, 1.68) April 10: Command (clomazone, 0.89) April 19: Command (clomazone, 0.56) April 19: Riceshot (propanil, 2.35) April 19: Newpath (imazethapyr, 0.28) May 8: Command (clomazone, 0.42) May 8: Riceshot (propanil, 2.35) May 8: Newpath (imazethapyr, 0.28)	July 11: Lambda cyhalothrin (0.27)	July 11: Propiconazole (0.42)	May 10: DAP (112) May 16: Urea (112) May 23: Urea (112) June 2: Urea (112)	May 18
South field, DF	Apr 9, 2017 (99)	April 9: Powermax (glyphosate, 1.68) April 9: Command (clomazone, 0.89) April 19: Command (clomazone, 0.56) April 19: Riceshot (propanil, 2.35) April 19: Newpath (imazethapyr, 0.28) May 8: Command (clomazone, 0.42) May 8: Riceshot (propanil, 2.35) May 8: Newpath (imazethapyr, 0.28)	July 11: Lambda cyhalothrin (0.27)	July 11: Propiconazole (0.42)	May 10: DAP (112) May 16: Urea (112) May 23: Urea (112) June 2: Urea (112)	April 30


27

0 Figure S1: Comparison of turbulent CH₄ fluxes (F_{CH4}) between two fields during the identical-treatment

31 phase in 2015, 2016, and 2017 (note change in axis limis between graphs)

32

33 Figure S2: Comparison of turbulent fluxes between two fields during the identical-treatment phase in 2015:

34 (a) Sensible heat H (b) latent energy LE, and (c) CO₂ exchange (F_{CO2}).

35

36 Table S2: Soil characteristics, taken by aggregating push probe samples at two depth intervals in

37 each field; OM is organic matter determined by loss on ignition. All terms are significantly

different (P < 0.05) between the different fields at the same depth interval except for %N at 10-20
cm on 23-Mar-2017. Methods are described in the main text

Depth	Field	n	OM %	C %	N %	EC, µmhos	Na,
interval	riciu	п	0111, 70	C, 70	14, 70	cm ⁻¹	mg kg-1
0.10 am	North	6	4.4 ± 0.4			420 ± 41	159 ± 23
0-10 cm	South	5	2.9 ± 0.1	Noton	lyrad	188 ± 27	66 ± 7
10.20 am	North	6	2.7 ± 0.4	Not alla	llyzeu	578 ± 232	230 ± 50
10-20 cm	South	5	1.5 ± 0.4			165 ± 19	79 ± 10
0.10	North	30	3.9 ± 0.6	1.41 ± 0.40	0.10 ± 0.03	537 ± 78	167 ± 23
0-10 cm	South	21	2.7 ± 0.3	1.05 ± 0.25	0.08 ± 0.02	323 ± 56	86 ± 16
10.20 am	North	30	2.8 ± 0.5	0.66 ± 0.34	0.05 ± 0.02	466 ± 117	196 ± 51
10-20 cm	South	21	1.8 ± 0.7	0.39 ± 0.23	0.04 ± 0.02	236 ± 70	91 ± 27
0-10 cm	North	21	4.2 ± 0.5	1.63 ± 0.41	0.13 ± 0.03	534 ± 120	234 ± 36
	South	21	3.0 ± 0.4	1.26 ± 0.30	0.10 ± 0.02	359 ± 64	105 ± 24
10.20 am	North	21	2.9 ± 0.4	0.68 ± 0.35	0.06 ± 0.02	692 ± 132	295 ± 55
10-20 cm	South	21	2.0 ± 0.4	0.48 ± 0.27	0.06 ± 0.02	376 ± 71	125 ± 34
	interval 0-10 cm 10-20 cm 0-10 cm 10-20 cm	intervalField0-10 cmNorth South10-20 cmNorth South0-10 cmNorth South10-20 cmNorth South0-10 cmNorth South0-10 cmNorth South10-20 cmNorth South10-20 cmNorth South	intervalFieldn $0-10 \text{ cm}$ North6 $0-10 \text{ cm}$ North5 $10-20 \text{ cm}$ North30 $0-10 \text{ cm}$ North30 $10-20 \text{ cm}$ North30 $10-20 \text{ cm}$ North21 $10-10 \text{ cm}$ North21 $0-10 \text{ cm}$ North21 $10-20 \text{ cm}$ North21 $10-20 \text{ cm}$ North21	intervalFieldnOM, % $0-10 \text{ cm}$ North6 4.4 ± 0.4 $0-10 \text{ cm}$ South5 2.9 ± 0.1 $10-20 \text{ cm}$ North6 2.7 ± 0.4 $0-10 \text{ cm}$ North30 3.9 ± 0.6 $0-10 \text{ cm}$ North30 2.8 ± 0.5 $10-20 \text{ cm}$ North30 2.8 ± 0.5 $0-10 \text{ cm}$ North21 1.8 ± 0.7 $0-10 \text{ cm}$ North21 3.0 ± 0.4 $10-20 \text{ cm}$ North21 2.9 ± 0.4	intervalFieldnOM, %C, %0-10 cmNorth6 4.4 ± 0.4 Noth0-10 cmSouth5 2.9 ± 0.1 Not and10-20 cmNorth6 2.7 ± 0.4 Not and0-10 cmNorth30 3.9 ± 0.6 1.41 ± 0.40 0-10 cmNorth30 2.8 ± 0.5 0.66 ± 0.34 10-20 cmNorth30 2.8 ± 0.5 0.66 ± 0.34 10-20 cmNorth21 1.8 ± 0.7 0.39 ± 0.23 0-10 cmNorth21 2.9 ± 0.4 1.26 ± 0.30 10-20 cmNorth21 2.9 ± 0.4 0.68 ± 0.35	intervalFieldnOM, %C, %N, %0-10 cmNorth6 4.4 ± 0.4 South5 2.9 ± 0.1 Not analyzed10-20 cmNorth6 2.7 ± 0.4 SouthNot analyzed0-10 cmNorth30 3.9 ± 0.6 South 1.41 ± 0.40 1.05 ± 0.25 0.10 ± 0.03 0.08 ± 0.02 0-10 cmNorth30 2.8 ± 0.5 South 0.66 ± 0.34 1.8 ± 0.7 0.05 ± 0.02 0.39 ± 0.23 10-20 cmNorth21 4.2 ± 0.5 3.0 ± 0.4 1.63 ± 0.41 1.26 ± 0.30 0.10 ± 0.02 0.10 ± 0.02 0-10 cmNorth21 2.9 ± 0.4 0.68 ± 0.35 0.06 ± 0.02	intervalFieldnOM, %C, %N, %cm ⁻¹ 0-10 cmNorth6 4.4 ± 0.4 420 ± 41 0-10 cmSouth5 2.9 ± 0.1 Not analyzed 188 ± 27 10-20 cmNorth6 2.7 ± 0.4 Not analyzed 578 ± 232 10-20 cmNorth30 3.9 ± 0.6 1.41 ± 0.40 0.10 ± 0.03 537 ± 78 0-10 cmNorth30 2.8 ± 0.5 0.66 ± 0.34 0.05 ± 0.02 323 ± 56 10-20 cmNorth30 2.8 ± 0.5 0.66 ± 0.34 0.05 ± 0.02 466 ± 117 10-20 cmNorth21 1.8 ± 0.7 0.39 ± 0.23 0.04 ± 0.02 236 ± 70 0-10 cmNorth21 4.2 ± 0.5 1.63 ± 0.41 0.13 ± 0.03 534 ± 120 0-10 cmNorth21 2.9 ± 0.4 0.68 ± 0.35 0.06 ± 0.02 692 ± 132

40

41

42 Yield measurements

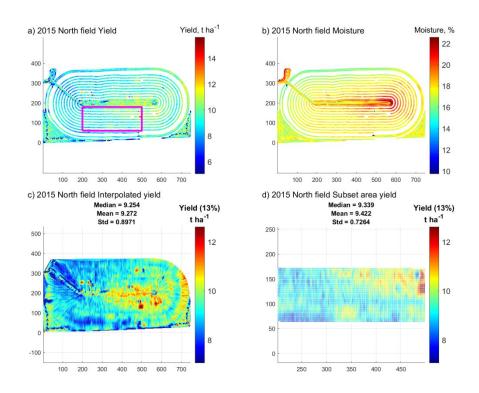
43 The yield estimates (Table S3) are made from a harvest monitoring device on the harvesting combine that

had good coverage of the field in 2015 and 2017 (example in Figure S3) but poor coverage in 2016

45 (Figure S4). The combine's measurement points (in black in the images) are interpolated into a grid that is

used to generate a mean value for each field in 2015. A subarea that had good measurement coverage in

47 2016 is selected (in pink) in all years, for each field. Assuming that measurements in this subarea are


48 linearly scaled to the field-wide yield, we generate a ratio of the full-field mean to the sub-area mean

49 yield. The average of this ratio in 2015 and 2017 is applied in 2016 from its sub-area mean yield to

- 50 generate a full area mean. In all years there are not significant yield differences between the fields. The
- sub-area in the northern field averaged 95.4% of the field-averaged yield, and the southern field's sub-
- 52 area averaged 104.1% of the field-averaged yield.
- 53 Table S3: Yield in t ha⁻¹ for the two study fields in 2015 and 2016, standard error estimates on the
- 54 2015 ratio and 2016 calculated mean are determined through the propagation of error assuming
- 55 there is no correlation in error structure between the subarea error and the full area error, and
- 56 using the standard deviation of points interpolated from the harvest monitoring combine.

Field	Year	Whole-field mean, t ha ⁻¹	Subarea mean, t ha ⁻¹	Ratio of full/subarea yield	Mean ratio full/subarea yield to apply in 2016	2016 subarea mean, t ha ⁻¹	2016 calculated whole-field mean
North	2015	9.27 ± 0.90	9.42 ± 0.73	98.4 ± 12.2%	95.4 ± 16.7%	11.53 ± 2.10	11.00 ± 2.78
	2017	9.80 ± 1.00	10.61 ± 0.73	92.3 ± 11.4%			
South	2015	9.67 ± 1.11	8.85 ± 0.59	$109.3 \pm 14.5\%$	104.1 ± 18.5%	10.56 ± 1.65	10.99 ± 2.61
	2017	10.58 ± 1.07	10.70 ± 0.67	98.9 ± 11.7%			

57

58

59 Figure S3: Harvest map of dry yield for the North field in 2015: (a) Yield points taken

- 60 approximately 2 m apart, measured during harvest via automated and GPS-enabled yield monitor.
- 61 (b) Moisture points; (c) Interpolated yield across the whole field; (d) Yield of area subset from pink
- 62 rectangle of plot (a).

64 Figure S4: Harvest yield map and measurements (2016): (a) the yield maps are interpolated from

points, but because of technical difficulties the full field was not captured. This error is corrected by

66 focusing on the pink rectangle area, which we assume scales to the whole-field harvest in a similar

- 67 manner in each year. (b) harvest moisture map; (c) interpolated whole field yield; (d) subset area
- 68 yield.

69

63