Supporting Information

Metal-involving Bifurcated Halogen Bonding C–Br••• η^2 (Cl–Pt)

Uladzislava Dabranskaya[¶], Daniil M. Ivanov[¶], Alexander S. Novikov[¶],

Yury V. Matveychuk[‡], Vadim Yu. Kukushkin[¶]*

Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034
Saint Petersburg, Russian Federation
Research and Education Center "Nanotechnology", South Ural State University, Lenin Av., 76, 454080, Chelyabinsk, Russian Federation

Structure	1•CBr ₄ •CHCl ₃	2• 2CBr ₄	3 •2CBr ₄
CCDC number	1843328	1843330	1879337
Empirical formula	$C_8H_{13}Br_4Cl_5N_4Pt$	$C_{12}H_{20}Br_8Cl_2N_4Pt$	$C_{12}H_{16}Br_8Cl_2N_4Pt$
Formula weight	857.20	1125.59	1121.47
Temperature/K	100(2)	200(2)	100(2)
Crystal system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	P2 ₁
a/Å	7.9983(6)	8.0320(6)	8.5953(2)
b/Å	8.0773(6)	8.5980(6)	16.2039(3)
c/Å	19.2449(14)	11.6600(7)	10.0203(2)
$\alpha/^{\circ}$	79.420(7)	76.646(6)	90
β/°	83.272(6)	88.965(5)	111.979(3)
$\gamma/^{\circ}$	63.302(8)	65.283(7)	90
Volume/Å ³	1091.02(16)	708.87(9)	1294.17(5)
Ζ	2	1	2
$\rho_{calc}g/cm^3$	2.609	2.637	2.868
μ/mm^{-1}	14.366	24.273	17.985
F(000)	784.0	512.0	1008.0
Crystal size/mm ³	$0.43 \times 0.41 \times 0.27$	$0.16 \times 0.14 \times 0.11$	$0.15 \times 0.14 \times 0.1$
Radiation	MoKa ($\lambda = 0.7107$)	$CuK\alpha \ (\lambda = 1.5418)$	MoK α (λ = 0.7107)
20 range for data collection/°	5.706 to 52.994	7.824 to 152.622	5.028 to 55.496
Index ranges	$-10 \le h \le 10,$ $-10 \le k \le 9,$ $-23 \le l \le 24$	$-10 \le h \le 10,$ $-10 \le k \le 10,$ $-14 \le 1 \le 14$	$-11 \le h \le 11,$ $-21 \le k \le 21,$ $-12 \le l \le 13$
Reflections collected	8618	7662	13791
Independent reflections	4509 [$R_{int} = 0.0405$, $R_{sigma} = 0.0655$]	2946 [$R_{int} = 0.0523$, $R_{sigma} = 0.0472$]	$\begin{array}{l} 6079 \; [R_{int} = 0.0345, \\ R_{sigma} = 0.0491] \end{array}$
Data/restraints/parameters	4509/0/206	2946/3/136	6079/1/244
Goodness-of-fit on F ²	1.011	1.039	1.020
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0378,$ w $R_2 = 0.0720$	$R_1 = 0.0371,$ $wR_2 = 0.0922$	$R_1 = 0.0293,$ $wR_2 = 0.0561$
Final R indexes [all data]	$R_1 = 0.0511,$ $wR_2 = 0.0773$	$R_1 = 0.0430,$ $wR_2 = 0.0968$	$R_1 = 0.0336,$ $wR_2 = 0.0574$
Largest diff. peak/hole / $e\!\cdot\! {\hat A}^{-3}$	2.26/-1.36	1.08/-1.29	1.07/-1.17

 Table 1S. Crystal data and structure refinement for 1•CBr₄•CHCl₃, 2•2CBr₄, and 3•2CBr₄.

Structure	Br ₃ C–Br•••Cl–Pt	d(Br•••Cl), Å	∠(C–Br•••Cl),°	∠(Br•••Cl–Pt),°	$E_{int}^{\ b}$	E_{int}^{c}	$ E^{V}_{cont} ^{d}$	$ E^G_{cont} ^e$
1•CHCl ₃ •CBr ₄	C1S-Br2S•••Cl1-Pt1	3.350(2)	157.7(3)	79.30(5)	1.9	1.9	2.2	2.5
	C1S-Br4S•••Cl1A-Pt1A	3.0991(15)	173.6(2)	123.93(8)	3.1	3.2	4.0	4.7
	C1S-Br1S•••Cl1A-Pt1A	3.1797(16)	175.9(3)	88.17(5)	2.5	2.7	3.3	3.9
	C1S-Br3S•••Cl1A-Pt1A	3.131(2)	173.2(2)	121.28(7)	2.8	3.0	3.6	4.3
2• 2CBr ₄	C1S-Br3S•••Cl1-Pt1	3.5254(15)	159.5(2)	135.93(7)	1.3	1.4	1.6	2.0
	C1S-Br1S•••Cl1-Pt1	3.294(2)	173.0(2)	124.68(7)	1.9	2.2	2.8	3.3
	C1S-Br2S•••Cl1-Pt1	3.4685(19)	167.13(17)	77.56(4)	1.6	1.6	1.7	2.1
	C1S-Br4S•••Cl1-Pt1	3.4485(19)	161.18(19)	142.67(7)	1.3	1.6	1.6	2.1
3 •2CBr ₄	C1S-Br3S•••Cl1-Pt1	3.582(2)	172.0(4)	83.30(7)	1.9	2.2		
	C2S-Br5S•••Cl1-Pt1	3.128(2)	177.0(3)	116.63(9)	2.8	3.0		
	C2S-Br8S•••Cl1-Pt1	3.176(3)	167.3(3)	97.44(9)	2.8	2.7		
	C1S-Br1S•••Cl2-Pt1	3.119(2)	175.6(3)	116.93(9)	2.8	3.0		
	C1S-Br2S···Cl2-Pt1	3.186(3)	172.8(6)	102.09(9)	2.5	2.7		
	C2S-Br6S•••Cl2-Pt1	3.305(2)	157.2(3)	105.52(6)	1.9	2.2		
	C2S-Br7S···Cl2-Pt1	3.499(2)	176.1(3)	82.44(6)	1.3	1.3		
	Comparison ^a	3.6 (Br•••Cl)	180	90				
^a Comparison wit	th the sum of Bondi vdW radi	i and with the ty	pical XB's angle.					
	1 (2.4.2	-						

Table 2S. Parameters and calculated energies (kcal/mol) of the Br₃C–Br•••Cl–Pt XBs.

^b $E_{int} = -V(\mathbf{r})/2$, ¹ see section 2.4.2

^c $E_{int} = 0.429 G(\mathbf{r})^2$, see section 2.4.2

 $^{d} |E_{cont}^{V}| = |0.58V(r_{bcp})|^{3}$ see section 2.4.3

 $|E^{G}_{cont}| = |-0.57G(r_{bcp})|^{3}$ see section 2.4.3

Table 3S. Parameters and calculated energies (kcal/mol) of the Br₃C–Br•••Pt XBs.

Structure	C–Br•••Pt	d(Br•••Pt), Å	∠(C–Br•••Pt),°	E_{int}^{b}	E_{int}^{c}	$ E^{V}_{cont} ^{d}$	$ E^{G}_{cont} ^{e}$
1•CHCl ₃ •CBr ₄	C1S-Br2S•••Pt1	3.6982(8)	161.27(18)	1.3	1.1	1.5	1.8
2 •2CBr ₄	C1S-Br2S•••Pt1	3.7273(9)	155.33(18)	1.3	1.1	1.5	1.7
	Comparison ^a	3.6	180				

^a Comparison with the sum of Bondi vdW radii and with the typical XB's angle.

 $^{d} |E^{V}_{cont}| = |0.58V(r_{bcp})|^{3}$ see section 2.4.3

 $|E^{G}_{cont}| = |-0.57G(r_{bcp})|^{3}$ see section 2.4.3

Table 4S. Parameters and calculated energies (kcal/mol) of the Br₃C–Br•••Br–Br₃C XBs.

Structure	C–Br•••Br–C	d(Br•••Br), Å	∠(C–Br•••Br),°	∠(Br•••Br–C),°	$E_{int}^{\ b}$	E_{int}^{c}	$ E^{V}_{cont} ^{d}$	$ E^{G}_{cont} ^{e}$
2 •2CBr ₄	C1S-Br2S•••Br4S-C1S	3.7219(11)	110.19(18)	140.9(2)	1.3	1.1	1.2	1.6
3 •2CBr ₄	C1S-Br4S•••Br8S-C2S	3.4091(13)	169.0(3)	99.9(3)	2.2	1.9		
	C1S-Br3S•••Br8S-C2S	3.6529(14)	134.4(4)	117.3(3)	1.6	1.3		
	Comparison ^a	3.7	90	180				

^a Comparison with the sum of Bondi vdW radii and with the typical XB's angle.

^b $E_{int} = -V(\mathbf{r})/2$,¹ see section 2.4.2

^c $E_{int} = 0.429 G(\mathbf{r})^2$, see section 2.4.2

 ${}^{d} |E^{V}_{cont}| = |0.58V(r_{bcp})|,^{3} \text{ see section } 2.4.3$ ${}^{e} |E^{G}_{cont}| = |-0.57G(r_{bcp})|,^{3} \text{ see section } 2.4.3$

^b $E_{int} = -V(r)/2$,¹ see section 2.4.2

^c $E_{int} = 0.429 G(\mathbf{r})^2$, see section 2.4.2

¹ Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285, 170-173 (1998).

² Vener, M. V.; Egorova, A. N.; Churakov, A. V.; Tsirelson, V. G. Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comput. Chem. 33, 2303–2309 (2012).

³ Bartashevich, E. V; Tsirelson, V. G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 83, 1181-1203 (2014).

Atom	X	Y	Z					
	$1 \cdot (CBr_4)_2 \cdot (CHCl_3)_4$							
Pt	6.940995	5.018738	9.451493					
Cl	7.389009	7.188968	8.810681					
N	5.377508	5.673150	10.442009					
N	3.403542	6.672325	11.523260					
С	2.102981	6.434551	10.916474					
Н	2.217736	5.960994	10.088523					
Н	1.671153	7.275098	10.746347					
Н	1.561525	5.911493	11.511918					
С	4.464045	6.140468	10.986415					
С	3.439686	7.330398	12.833237					
Н	3.015399	8.189191	12.770857					
Н	4.352352	7.443029	13.109220					
Н	2.975147	6.789137	13.475938					
Cl	6.492981	2.848508	10.092304					
N	8.504481	4.364327	8.460976					
N	10.478447	3.365152	7.379725					
С	11.779009	3.602926	7.986511					
Н	11.664254	4.076483	8.814462					
Н	12.210837	2.762379	8.156638					
Н	12.320464	4.125984	7.391067					
С	9.417944	3.897009	7.916570					
С	10.442304	2.707079	6.069748					
Н	10.866590	1.848286	6.132128					
Н	9.529638	2.594447	5.793765					
Н	10.906842	3.248340	5.427047					
Br	6.533754	7.390343	3.135816					
Br	8.148628	4.669248	3.319364					
Br	4.995829	4.645966	3.366433					
Br	6.620145	5.814781	5.854065					
С	6.578524	5.619599	3.952614					
Cl	1.908441	2.382777	11.013824					
Cl	3.609179	0.740887	12.709422					
Cl	3.466680	3.601459	13.111299					
<u> </u>	3.416164	2.306187	11.922113					
H	4.160144	2.431451	11.296424					
	3.975248	7.654700	7.889161					
	2.2/4510	9.296589	6.193563					
	2.417009	6.436018	5.791686					
	2.467525	7.731290	6.980872					
H	1.723546	7.606026	7.606561					
	9.906/41	2.382777	11.013824					
	11.60/4/9	0./4088/	12.709422					
	11.464980	3.601459	13.111299					
	11.414464	2.306187	11.922113					
H	12.158444	2.431451	11.296424					
Br	7.348235	2.647134	15.767169					

 Table 5S. Cartesian atomic coordinates of model supramolecular associates.

Br	5.733361	5.368229	15.583621
Br	8.886161	5.391511	15.536552
Br	7.261844	4.222696	13.048920
C	7.303465	4.417878	14.950371
Cl	11.973548	7.654700	7.889161
Cl	10.272810	9.296589	6.193563
Cl	10.415309	6.436018	5.791686
С	10.465825	7.731290	6.980872
Н	9.721846	7.606026	7.606561
	1•(CH	$Br_4)_6$	
Pt	5.443549	10.824233	0.000000
Cl	6.238769	10.291304	2.086133
N	5.239594	8.910846	-0.432878
N	5.117235	6.590224	-1.171985
С	5.203482	7.821625	-0.763681
С	5.724531	5.503497	-0.383731
Н	6.457075	5.123456	-0.875208
Н	5.066473	4.824310	-0.215494
Н	6.044727	5.853782	0.449891
С	4.613268	6.281510	-2.510316
Н	4.285652	7.084783	-2.920511
Н	3.901830	5.641931	-2.444156
Н	5.323971	5.917193	-3.041490
Cl	4.648328	11.357162	-2.086133
N	5.647504	12.737620	0.432878
N	5.769862	15.058242	1.171985
С	5.683616	13.826841	0.763681
С	5.162567	16.144970	0.383731
Н	4.430022	16.525011	0.875208
Н	5.820625	16.824157	0.215494
Н	4.842370	15.794684	-0.449891
С	6.273829	15.366956	2.510316
Н	6.601445	14.563683	2.920511
Н	6.985267	16.006535	2.444156
Н	5.563127	15.731273	3.041490
Br	6.533754	7.390343	3.135816
Br	8.148628	4.669248	3.319364
Br	4.995829	4.645966	3.366433
Br	6.620145	5.814781	5.854065
С	6.578524	5.619599	3.952614
Br	10.162786	14.606498	3.135816
Br	11.777661	11.885404	3.319364
Br	8 624861	11 862121	3 366433
Br	10 249178	13 030936	5,854065
C	10 207556	12 835754	3 952614
Br	2 164486	14 606498	3 135816
Br	3 779361	11 885404	3 319364
Br	0.626561	11.862121	3 366433
Br	2,250878	13 030936	5 854065
C	2.200076	12.835754	3 952614
	2.207230	12.000707	5.752017

Br	4.353343	14.258124	-3.135816
Br	2.738469	16.979218	-3.319364
Br	5.891269	17.002501	-3.366433
Br	4.266952	15.833685	-5.854065
С	4.308573	16.028868	-3.952614
Br	0.724311	7.041968	-3.135816
Br	-0.890564	9.763062	-3.319364
Br	2.262236	9.786345	-3.366433
Br	0.637920	8.617530	-5.854065
С	0.679541	8.812712	-3.952614
Br	8.722611	7.041968	-3.135816
Br	7.107736	9.763062	-3.319364
Br	10.260536	9.786345	-3.366433
Br	8.636220	8.617530	-5.854065
С	8.677841	8.812712	-3.952614
	2• (CE	$(3r_4)_8$	
Pt	7.716447	9.244155	5.649941
Cl	7.865496	8.119618	7.653975
N	9.531123	8.704951	5.180996
N	11.603665	7.928526	4.131237
С	10.505228	8.321318	4.684931
С	12.221363	8.761100	3.084868
Н	13.185438	8.739139	3.192217
Н	11.930980	9.679656	3.198996
С	11.872544	8.307231	1.711932
Н	12.302709	8.883484	1.071229
Н	10.924646	8.349469	1.592153
Н	12.177962	7.408458	1.586503
С	12.168155	6.620478	4.405824
Н	12.154121	6.099661	3.587712
Н	13.096204	6.732516	4.665721
C	11.485758	5.872017	5.442023
Н	11.253852	6.464238	6.162955
H	12 059795	5 178839	5 769720
H	10.684582	5.483459	5.080427
Cl	7 567398	10 368693	3 645907
N	5 901771	9 783360	6 118886
N	3.829229	10.559784	7.168645
C	4,927666	10.166993	6,614951
Ċ	3.211531	9.727211	8.215014
H	2.247456	9.749172	8.107665
H	3.501914	8.808655	8,100885
C	3 560350	10 181079	9 587950
H	3 130185	9 604827	10 228653
Н	4 508248	10 138842	9 707728
H	3 254932	11 079853	9 713378
C	3 264738	11.867833	6 894058
Н	3 278773	12 388650	7 712169
Н	2 336680	11 75570/	6 634161
	2.550009	12 61620/	5 857850
	5.74/150	12.010274	5.057059

Н	4.179042	12.024073	5.136926
Н	3.373099	13.309472	5.530162
Н	4.748312	13.004852	6.219455
Br	3.994685	3.614076	8.670399
Br	5.410567	6.407338	9.029509
Br	2.280712	6.186359	9.297769
Br	4.130236	4.948465	11.530964
С	3.956736	5.298673	9.624109
Br	8.053687	9.931684	13.929364
Br	6.637805	7.138423	13.570254
Br	9.767660	7.359401	13.301995
Br	7.918136	8.597295	11.068799
С	8.091636	8.247087	12.975654
Br	12.026685	3.614076	8.670399
Br	13.442567	6.407338	9.029509
Br	10.312712	6.186359	9.297769
Br	12.162236	4.948465	11.530964
С	11.988736	5.298673	9.624109
Br	3.406209	14.874234	2.629482
Br	1.990327	12.080973	2.270372
Br	5.120182	12.301951	2.002113
Br	3.270658	13.539845	-0.231083
С	3.444158	13.189637	1.675772
Br	7.379207	8.556627	-2.629482
Br	8.795089	11.349888	-2.270372
Br	5.665234	11.128910	-2.002113
Br	7.514758	9.891015	0.231083
С	7.341258	10.241224	-1.675772
Br	11.438209	14.874234	2.629482
Br	10.022327	12.080973	2.270372
Br	13.152182	12.301951	2.002113
Br	11.302658	13.539845	-0.231083
С	11.476158	13.189637	1.675772
Br	7.843070	7.063947	2.629482
Br	6.427188	4.270686	2.270372
Br	9.557043	4.491664	2.002113
Br	7.707520	5.729558	-0.231083
С	7.881020	5.379350	1.675772
Br	7.589824	11.424363	8.670399
Br	9.005706	14.217625	9.029509
Br	5.875851	13.996646	9.297769
Br	7.725374	12.758752	11.530964
С	7.551874	13.108960	9.624109
	3• (CE	Br ₄) ₇	
Pt	2.977887	8.071811	2.479022
Cl	3.320895	6.256326	3.868274
Cl	2.634775	9.908685	1.121549
<u>N</u>	1.338649	7.230180	1.800796
N	4.630130	8.884598	3.141637
N	-0.704196	6.227159	0.907832

С	0.384224	6.748924	1.386372
С	8.268327	10.890641	5.465575
Н	8.477660	11.778615	5.794513
Н	8.598649	10.232763	6.097434
С	-2.748867	5.070200	0.800973
Н	-2.528554	4.138476	0.951504
Н	-3.700157	5.198211	0.943142
С	5.603779	9.294557	3.597876
С	-1.922755	5.992202	1.729248
Н	-2.391050	6.821842	1.914159
Н	-1.707116	5.553077	2.566460
С	6.752997	10.726982	5.239779
Н	6.315984	10.372116	6.028673
Н	6.339568	11.571205	4.999115
С	8.043715	9.535995	3.498451
Н	8.004837	9.604052	2.532080
Н	8.405041	8.670707	3.744690
С	-2.342605	5.507706	-0.597478
Н	-2.802465	6.322762	-0.853009
Н	-2.540795	4.815799	-1.247920
С	-0.842283	5.739421	-0.487832
Н	-0.346700	4.917884	-0.625354
Н	-0.540319	6.405402	-1.125266
С	8.856310	10.670268	4.102434
Н	9.792357	10.423969	4.168407
Н	8.781101	11.472361	3.562566
N	6.703094	9.764470	4.115443
Br	5.978111	6.209172	5.501350
Br	7.561256	4.377322	7.569943
Br	9.140820	6.070953	5.421531
Br	7.661589	7.514559	7.828633
С	7.588658	6.040814	6.549027
Br	-1.683890	8.714133	-2.938327
Br	-0.017810	9.951301	-0.535779
Br	-3.173559	9.834795	-0.380137
Br	-1.806244	11.817990	-2.394093
С	-1.641053	10.078826	-1.564779
Br	6.911410	8.714133	-2.938327
Br	8.577490	9.951301	-0.535779
Br	5.421741	9.834795	-0.380137
Br	6.789056	11.817990	-2.394093
С	6.954247	10.078826	-1.564779
Br	1.133076	6.209172	-3.790686
Br	2.716221	4.377322	-1.722093
Br	4.295785	6.070953	-3.870504
Br	2.816554	7.514559	-1.463403
С	2.743623	6.040814	-2.743009
Br	3.161145	8.714133	6.353708
Br	4.827225	9.951301	8.756257
Br	1.671476	9.834795	8.911898

Br	3.038791	11.817990	6.897943
С	3.203982	10.078826	7.727257
Br	-2.617189	6.209172	5.501350
Br	-1.034044	4.377322	7.569943
Br	0.545520	6.070953	5.421531
Br	-0.933711	7.514559	7.828633
С	-1.006642	6.040814	6.549027
Br	1.683890	0.612183	2.938327
Br	0.017810	1.849351	0.535779
Br	3.173559	1.732845	0.380137
Br	1.806244	3.716040	2.394093
С	1.641053	1.976876	1.564779