Supporting Information

Ni(II), Hg(II), and Pb(II) Coordination in the Prokaryotic Zinc-Finger Ros87

Valeria Sivo¹, Gianluca D'Abrosca¹, Ilaria Baglivo¹, Rosa Iacovino¹, Paolo V. Pedone¹, Roberto Fattorusso^{1,2}, Luigi Russo¹, Gaetano Malgieri¹, Carla Isernia^{1,2*}.

¹Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania 'L. Vanvitelli', via Vivaldi 43, 81100 Caserta, Italy

²Interuniversity Research Centre on Bioactive Peptides - University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy

*to whom correspondence should be addressed.

Carla Isernia, Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania 'L. Vanvitelli', via Vivaldi 43, 81100 Caserta, Italy

e-mail: carla.isernia@unicampania.it

Table S1.	Dissociation	constants	for both	xenobiotic	and	native	metal	ions	found	in	literature	for
eukaryotic	classical zinc	finger do	mains.									

Zinc Finger	Binding mode	Zn(II)	Ni(II)	Pb(II)	Buffer and pH	Ref.
Sp1-3	ССНН	6*10 ⁻¹⁰	4*10 ⁻⁶		50 mM HEPES, 50 mM NaCl pH 7.0	66
Cp-1	ССНН	5.7*10 ^{-12 (a)}	1.6*10 ^{-6(b)}	5*10 ^{-11(c)}	(a) 100 mM HEPES, 50 mM NaCl pH 7.0	(a) 67
					(b) 100 mM HEPES, 50 mM NaCl pH 7.0	(b) 68
					(c) 10 mM Bis-Tris pH7.0	(c) 38
TFIIIA	ССНН	1.0*10-8	2.3*10 ⁻⁵		(a) 50 mM HEPES, 50 mM KCl, pH 7.0	4
MTF1-1	ССНН	2.0*10 ⁻¹⁰	2.1*10 ⁻⁵		50 mM HEPES, 100 mM NaCl or NaClO $_4$	62
					рН 7.4	
Sp1-3	ССНН	5.0*10 ⁻⁹	2.9*10 ⁻⁶		50 mM HEPES, 100 mM NaCl or NaClO ₄	62
					рН 7.4	
ZF133-11	ССНН	2.2*10 ⁻¹⁰	3.2*10 ⁻⁶		50 mM HEPES, 100 mM NaCl or NaClO ₄	62
					pH 7.4	
ZF278-1	ССНН	6.3*10 ⁻¹¹	3.5*10 ⁻⁶		50 mM HEPES, 100 mM NaCl or NaClO ₄	62
					рН 7.4	
TFIIIA-F3	ССНН	4.0*10 ⁻⁸		2.0*10 ⁻⁹	20 mM HEPES pH 7.4	22

Residue		^N H PCS (ppm)	¹⁵ N PCS (ppm)
ALA	1		
VAL	2		
ASN	3		
VAL	4		
GLU	5	-0.007	0.094
LYS	6	-0.108	-0.371
GLN	7	0.270	0.208
LYS	8	-0.123	-0.082
PRO	9		
ALA	10	-0.122	-0.321
VAL	11	-0.162	-0.827
SER	12	-0.066	-0.414
VAL	13	-0.029	0.091
ARG	14		
LYS	15		
SER	16	-0.031	-0.168
VAL	17		
GLN	18	0.133	0.045
ASP	19	0.103	0.141
ASP	20	0.148	0.605
HIS	21	0.105	0.052
ILE	22		
VAL	23	0.454	1.734
CYS	24		
LEU	25	0.212	0.685
GLU	26		
CYS	27		
GLY	28		
GLY	29		
SER	30	0.584	0.655
PHE	31	0.802	0.630
LYS	32	0.576	1.104
SER	33	0.492	1.731
LEU	34	0.849	1.353
LYS	35	0.364	0.564
ARG	36		
HIS	37		
LEU	38	0.330	0.001
THR	39		

 Table S2. Experimental ^NH and N PCSs measured for Ni(II)-Ros87.

THR	40	-0.329	-0.111	
HIS	41	-1.024	-1.105	
HIS	42			
SER	43			
MET	44	-0.528	-0.724	
THR	45	-0.238	-0.394	
PRO	46			
GLU	47	-0.122	-0.208	
GLU	48	-0.249	-0.344	
TYR	49			
ARG	50	-0.327	-0.348	
GLU	51	-0.242	-0.264	
LYS	52	-0.220	-0.803	
TRP	53	-0.420	-0.403	
ASP	54	-0.225	-0.244	
LEU	55	-0.050	-0.124	
PRO	56			
VAL	57			
ASP	58	-0.028	-0.104	
TYR	59	0.005	0.104	
PRO	60			
MET	61			
VAL	62			
ALA	63	0.366	0.351	
PRO	64			
ALA	65	0.134	0.039	
TYR	66			
ALA	67	0.069	0.092	
GLU	68	0.010	0.224	
ALA	69	0.085	0.019	
ARG	70	0.054	0.098	
SER	71	0.150	0.078	
ARG	72	0.043	0.071	
LEU	73	0.026	0.042	
ALA	74	0.031	0.097	
LYS	75	-0.026	-0.110	
GLU	76	-0.019	-0.127	
MET	77	-0.020	-0.181	
GLY	78	-0.032	-0.094	
LEU	79	-0.008	0.005	
GLY	80	0.016	0.094	
GLN	81	0.010	0.064	
ARG	82	0.062	0.041	
ARG	83			
LYS	84	-0.002	0.002	
ALA	85			
SER	86			
ARG	87	-0.002	-0.020	

Figure S1. Primary sequence of Ros protein. The region expressed (Ros87) is colored in red and the residues involved in the zinc coordination are underlined.

¹ MTETAYGNAQDLLVELTADIVAAYVSNHVVPVTELPGLISDVHTALSGTS

⁵¹ APASVAVNVEKQKPAVSVRKSVQDDHIV<u>C</u>LE<u>C</u>GGSFKSLKR<u>H</u>LTTH<u>H</u>SMT

¹⁰¹ PEEYREKWDLPVDYPMVAPAYAEARSRLAKEMGLGQRRKANR

Figure S2. Far-UV CD spectra of Apo-Ros87 (red line), Hg(II)-Ros87 (green), Pb(II)-Ros87 (yellow), Ni(II)-Ros87 (orange) and Zn(II)-Ros87 (violet). All the spectra were acquired at 298K, normalized against the protein concentration and presented as molar ellipticity using the software Spectragryph (F. Menges "Spectragryph - optical spectroscopy software", Version 1.2.9, 2016-2018, http://www.effemm2.de/spectragryph/).

Figure S3. Portions of the ¹H-¹⁵N HSQC spectrum of apo-Ros87 in presence of 2.4 molar equivalents of Pb(II). The spectrum was acquired using 13.8 ms tranfer delay to allow the coherence transfer from the H_{ϵ 1} and H_{δ 2} histidine side chain protons to N_{ϵ 2} and N_{δ 1} through the ²J_{HN} coupling constant. The observed chemical shift patterns indicate that three of the four histidine side chains are mostly in N_{ϵ 2}-H tautomer forms, whereas the forth appear in a protonated state.

Figure S4. U.V.-Vis spectra of apo-Ros87 titration with NiCl₂. The inset shows a magnification of the visible region.