Supporting Information

Linker Competition within a Metal-Organic Framework for Topological Insights

a. Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheri-dan Road, Evanston, Illinois 60208, United States.
b. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
c. Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China.

Corresponding author e-mail: o-farha@northwestern.edu

Table of Contents

I) Materials
II) Linker Synthesis and Characterization
III) MOF Synthesis Protocols
IV) Material Characterization
V) $\quad \mathrm{N}_{2}$ sorption Experiments
VI) ${ }^{1} \mathrm{H}$ NMR
VII) PXRD Patterns
VIII) SEM Images

I) Materials

All chemicals and solvents were obtained from commercial suppliers and used without further purification. Zirconium(IV) oxynitrate hydrate (99\%), formic acid ($\geq 96 \%$), 1,2,4,5-tetrakis(4carboxyphenyl)benzene (TCPB) ($\geq 98 \%$), p-tolylmagnesium bromide solution (1.0 M in DMF), hexabromobenzene (98%), 1,2,4,5-tetrabromobenzene (97%), bromine (reagent grade), and carbon tetrachloride (99.9\%), sulfuric acid- d_{2} solution ($96-98 \mathrm{wt} . \%$ in $\mathrm{D}_{2} \mathrm{O}, 99.5$ atom \% D), and dimethyl sulfoxide-d ${ }_{6}(99.9$ atom $\%$ D) were purchased from Sigma-Aldrich. $N, N-$ dimethylformamide (DMF) (99.9\%), acetone (99.8\%), hydrochloric acid (36.5-38\%), nitric acid ($67-70 \%$), chloroform (99.8%), and hexane (98.5%) were purchased from Fisher Chemical. Deionized water was used as the water source.

II) Linker Synthesis and characterization

1,2,4,5-tetrakis(4-carboxyphenyl)benzene $\mathbf{L 1}$ and 1,2,4,5-tetrakis(4-carboxyphenyl)- 3,6dibromobenzene $\mathbf{L} \mathbf{2}$ were synthesized according to literature procedure. ${ }^{1}$

Figure S1: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum of $\mathbf{L} 1$ DMSO-d ${ }_{6}$.

Figure S2: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum of $\mathbf{L} 1$ DMSO- d_{6}.

III) MOF Synthesis Protocols

Competition Reaction for Simultaneous Nucleation of L1 and L2

Zirconium oxynitrate hydrate ($79.7 \mathrm{mg}, 0.345 \mathrm{mmol}$) was placed in a 2 -dram vial. 1 mL of N, N dimethylformamide was added and the solution was sonicated until solubility was achieved. 1 mL of formic acid was added to the vial, which turned clear shortly thereafter. $\mathrm{The} \mathrm{Zr}_{6}$ node solution was sonicated if any remaining particles were not yet soluble. The vial was placed in an $80^{\circ} \mathrm{C}$ oven for 1 hour. A L1 solution was prepared by adding $14.9 \mathrm{mg}(0.0267 \mathrm{mmol})$ of $\mathbf{L} 1$ to 1 mL of N, N - dimethylformamide and was sonicated until soluble. A $\mathbf{L} 2$ solution was prepared by adding 19.1 mg (0.0267 mmol) of $\mathbf{L} \mathbf{2}$ to 1 mL of N, N - dimethylformamide and sonicated to ensure solubility. After the Zr_{6} node solution was removed from the oven and cooled to room temperature, $200 \mu \mathrm{~L}$ aliquots of the solution were placed in nine separate 0.5 dram vials. The following amounts of $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{2}$ (in $\mu \mathrm{L}$) were added to each of the nine vials: 20, 180; 40, 160; 60, 140; 80, 120; 100, $100 ; 120,80 ; 140,60 ; 160,40 ; 180,20$. The vials were then placed in a $100^{\circ} \mathrm{C}$ oven for 16 hours. Solutions were removed from the oven and cooled to room temperature. The mixtures were placed in 1.5 mL centrifuge tubes and centrifuged for five minutes to remove the supernatant. Then, the resultant white powder was washed with N, N-dimethylformamide ($1.5 \mathrm{~mL} \times 2$) and acetone (1.5 $\mathrm{mL} \times 2$). The material was then dried in a vacuum oven at $80^{\circ} \mathrm{C}$ for 1 hour.

To obtain adequate material for N_{2} isotherm measurement of a specific ratio, the above procedure was repeated using the specific $\mathbf{L} 1: \mathbf{L} 2$ ratio of interest on the same scale but repeated 10 times. The reacted solutions were then combined into a 15 mL centrifuge tube and washed with DMF (5
$\mathrm{mL} \times 3$) and acetone ($5 \mathrm{~mL} \times 3$). The material soaked in acetone overnight, followed by washing with acetone ($5 \mathrm{~mL} x 3$). The material was then dried in the vacuum oven for 1 hour at $80{ }^{\circ} \mathrm{C}$. The material was then activated by heating at $120{ }^{\circ} \mathrm{C}$ for overnight under high vacuum on a Micromeritics Smart Vacprep.

Competition Reaction for Prior Seeding of L1

Zirconium oxynitrate hydrate ($79.7 \mathrm{mg}, 0.345 \mathrm{mmol}$) was placed in a 2-dram vial. 1 mL of N, N dimethylformamide was added and the solution was sonicated until solubility was achieved. 1 mL of formic acid was added to the vial, which turned clear shortly thereafter. $\mathrm{The}^{\mathrm{Zr}} \mathrm{Zr}_{6}$ node solution was sonicated if any remaining particles were not yet soluble. The vial was placed in an $80^{\circ} \mathrm{C}$ oven for 1 hour. A $\mathbf{L 1}$ solution was prepared by adding $14.9 \mathrm{mg}(0.0267 \mathrm{mmol})$ of $\mathbf{L} 1$ to 1 mL of N, N - dimethylformamide and was sonicated until soluble. After the Zr_{6} node solution was removed from the oven and cooled to room temperature, $200 \mu \mathrm{~L}$ aliquots of the solution were placed in nine separate 0.5 dram vials. The following amounts of $\mathbf{L 1}$ (in $\mu \mathrm{L}$) were added to each of the nine vials: $20,40,60,80,100,120,140,160$, and 180 . The vials were then placed in a $100{ }^{\circ} \mathrm{C}$ oven for 30 minutes. The vials were removed from the oven and cooled to room temperature. A $\mathbf{L} 2$ solution was prepared by adding $19.1 \mathrm{mg}(0.0267 \mathrm{mmol})$ of $\mathbf{L} \mathbf{2}$ to 1 mL of N, N - dimethylformamide and sonicated to ensure solubility. The $\mathbf{L 1}$ nucleated systems were removed from the oven and cooled to room temperature. Then, aliquots of $\mathbf{L} \mathbf{2}$ (in $\mu \mathrm{L}$) were added in the following order to the vials containing the above specific amounts of $\mathbf{L} 1$ in solution: 180, 160, 140, 120, 100, 80, 60, 40, and 20. The vials were then placed in a $100^{\circ} \mathrm{C}$ oven for 16 hours to react. Upon reaction completion, the vials were removed from the oven and cooled to room temperature. The mixtures were placed in 1.5 mL centrifuge tubes and centrifuged for five minutes to remove the supernatant. Then, the resultant white powder was washed with N, N-dimethylformamide ($1.5 \mathrm{~mL} \times 2$) and acetone (1.5 $\mathrm{mL} \times 2$). The material was then dried in a vacuum oven at $80^{\circ} \mathrm{C}$ for 1 hour.

To obtain adequate material for N_{2} isotherm measurement of a specific ratio, the above procedure was repeated using the specific $\mathbf{L} 1: \mathbf{L} \mathbf{2}$ ratio of interest on the same scale but repeated 10 times. The reacted solutions were then combined into a 15 mL centrifuge tube and washed with DMF (5 $\mathrm{mL} x 3$) and acetone ($5 \mathrm{~mL} \times 3$). The material soaked in acetone overnight, followed by washing with acetone ($5 \mathrm{~mL} \times 3$). The material was then dried in the vacuum oven for 1 hour at $80^{\circ} \mathrm{C}$. The material was then activated by heating at $120{ }^{\circ} \mathrm{C}$ for overnight under high vacuum on a Micromeritics Smart Vacprep.

Competition Reaction for Prior Seeding of L2

Zirconium oxynitrate hydrate ($79.7 \mathrm{mg}, 0.345 \mathrm{mmol}$) was placed in a 2-dram vial. 1 mL of N, N dimethylformamide was added and the solution was sonicated until solubility was achieved. 1 mL of formic acid was added to the vial, which turned clear shortly thereafter. $\mathrm{The}^{\mathrm{Zr}} \mathrm{Zr}_{6}$ node solution was sonicated if any remaining particles were not yet soluble. The vial was placed in an $80^{\circ} \mathrm{C}$ oven for 1 hour. A $\mathbf{L} \mathbf{2}$ solution was prepared by adding $19.1 \mathrm{mg}(0.0267 \mathrm{mmol})$ of $\mathbf{L} \mathbf{2}$ to 1 mL of N, N - dimethylformamide and was sonicated until soluble. After the Zr_{6} node solution was removed from the oven and cooled to room temperature, $200 \mu \mathrm{~L}$ aliquots of the solution were placed in nine separate 0.5 dram vials. The following amounts of $\mathbf{L} \mathbf{2}$ (in $\mu \mathrm{L}$) were added to each of the nine vials:
$20,40,60,80,100,120,140,160$, and 180 . The vials were then placed in a $100^{\circ} \mathrm{C}$ oven for 30 minutes. The vials were removed from the oven and cooled to room temperature. A L1 solution was prepared by adding $19.1 \mathrm{mg}(0.0267 \mathrm{mmol})$ of $\mathbf{L} 1$ to 1 mL of N, N - dimethylformamide and sonicated to ensure solubility. The $\mathbf{L} 2$ nucleated systems were removed from the oven and cooled to room temperature. Then, aliquots of $\mathbf{L} \mathbf{1}$ (in $\mu \mathrm{L}$) were added in the following order to the vials containing the above specific amounts of $\mathbf{L} 2$ in solution: 180, 160, 140, 120, 100, 80, 60, 40, and 20. The vials were then placed in a $100^{\circ} \mathrm{C}$ oven for 16 hours to react. Upon reaction completion, the vials were removed from the oven and cooled to room temperature. The mixtures were placed in 1.5 mL centrifuge tubes and centrifuged for five minutes to remove the supernatant. Then, the resultant white powder was washed with N, N-dimethylformamide ($1.5 \mathrm{~mL} \times 2$) and acetone (1.5 $\mathrm{mL} \times 2$). The material was then dried in a vacuum oven at $80^{\circ} \mathrm{C}$ for 1 hour.

To obtain adequate material for N_{2} isotherm measurement of a specific ratio, the above procedure was repeated using the specific $\mathbf{L} \mathbf{1} \mathbf{L} \mathbf{L} 2$ ratio of interest on the same scale but repeated 10 times. The reacted solutions were then combined into a 15 mL centrifuge tube and washed with DMF (5 $\mathrm{mL} \times 3$) and acetone ($5 \mathrm{~mL} \times 3$). The material soaked in acetone overnight, followed by washing with acetone ($5 \mathrm{~mL} \times 3$). The material was then dried in the vacuum oven for 1 hour at $80^{\circ} \mathrm{C}$. The material was then activated by heating at $120{ }^{\circ} \mathrm{C}$ for overnight under high vacuum on a Micromeritics Smart Vacprep.

NU-903 and NU-1008 Syntheses
The pure phase synthesis of NU-903 and NU-1008 were preformed following published procedure. ${ }^{1}$

IV) Methods for Material Characterization

Powder X-ray Diffraction Analysis

Powder X-ray diffraction (PXRD) patterns of the samples were measured by a STOE-STADI MP powder diffractometer operating at 40 kV voltage and 40 mA current with $\mathrm{Cu}-\mathrm{K} \alpha 1 \mathrm{X}$-ray radiation ($\lambda=0.154056 \mathrm{~nm}$) in transmission geometry.

N_{2} Sorption Isotherm Measurements

N_{2} adsorption and desorption isotherms on activated materials were measured on a Micromeritics Tristar (Micromeritics, Norcross, GA) instrument at 77 K. Around 20 mg of sample was used in each measurement and the specific surface areas were determined using the Brunauer-Emmett-Teller model from the N_{2} sorption data in the region $\mathrm{P} / \mathrm{P}_{0}=0.005-0.05$. Pore size distributions were obtained using DFT calculations using a carbon slit-pore model with a N_{2} kernel.

${ }^{1} \mathrm{H}$ NMR

MOF samples (1 mg) were digested with 8 drops of $\mathrm{D}_{2} \mathrm{SO}_{4}$. After sonication for $20 \mathrm{~min}, 600 \mu \mathrm{~L}$ of DMSO- d_{6} was added into the mixture. Proton NMR spectra were collected on a Bruker Avance III 500 MHz system equipped with DCH CryoProbe and automated with a BACS-60 autosampler.

Transmission Electron Imaging

Transmission electron microscopy (TEM) images were collected at Northwestern University's EPIC /NUANCE facility using a Hitachi HD2300 STEM using a standard copper mesh sample holder at 200 kV .

Scanning Electron Microscope Imaging

Prior to observation, the samples were coated with OsO 4 ($\sim 9 \mathrm{~nm}$) in a Denton Desk III TSC Sputter Coater. Scanning electron microscopy (SEM) images were acquired from a Hitachi SU8030 scanning electron microscope.

V) \mathbf{N}_{2} Sorption Experiments

Figure S3: N_{2} Isotherm of $30 \% \mathbf{L 2}$ prior nucleation followed by $70 \% \mathbf{L 1}$. Reported BET surface area of $1245 \mathrm{~m}^{2} / \mathrm{g}$

Figure S4: Pore Size Distribution of $30 \% \mathbf{L} 2$ prior nucleation followed by $70 \% \mathbf{L 1}$.

Figure S5: N_{2} Isotherm of $30 \% \mathbf{L 1}$ prior nucleation followed by $70 \% \mathbf{L 2}$. Reported BET surface area of $1280 \mathrm{~m}^{2} / \mathrm{g}$

Figure S6: Pore Size Distribution of 30\% L1 prior nucleation followed by $70 \% \mathbf{L 2}$.

Figure S7: Cumulative pore volume and differential pore volume vs. pore width for simultaneous nucleation of $70 \% \mathbf{L 1}: 30 \% \mathbf{L 2}$.

Cumulative Pore Volume vs. Pore Width

Figure S8: Cumulative pore volume and differential pore volume vs. pore width for simultaneous nucleation of $50 \% \mathbf{L 1}: 50 \% \mathbf{L 2}$.

Figure S9: Cumulative pore volume and differential pore volume vs. pore width for simultaneous nucleation of $30 \% \mathbf{L 1}: 70 \% \mathbf{L 2}$.

Figure S10: Isotherm and pore size distribution (inset) of NU-1008 with a BET surface area of $1420 \mathrm{~m}^{2} / \mathrm{g}$.

Figure S11: Isotherm and pore size distribution (inset) of NU-903 with a BET surface area of $1140 \mathrm{~m}^{2} / \mathrm{g}$
VI) ${ }^{1} \mathrm{H}$ NMR Spectra

Figure S12: Stacked $500 \mathrm{MHz}^{1} \mathrm{H}$ spectra of $\mathbf{L} 1$ (bottom) and $\mathbf{L} 2$ (top) in DMSO-d ${ }_{6}$.

Figure S13: $10 \% \mathbf{L} 1: 90 \% \mathbf{L} \mathbf{2}$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO- d_{6}

Figure S14: $20 \% \mathbf{L} 1: 80 \% \mathbf{L} \mathbf{2}$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO-d 6

Figure S15: $30 \% \mathbf{L 1}: 70 \% \mathbf{L} \mathbf{2}$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO- d_{6}

Figure S16: 40% L1: $60 \% \mathbf{L 2}$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO- d_{6}

Figure S17: 50\% L1: 50\% L2 simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO-d ${ }_{6}$

Figure S18: $60 \% \mathbf{L 1}: 40 \% \mathbf{L} \mathbf{2}$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO-d ${ }_{6}$

Figure S19: 70\% L1: $30 \% \mathbf{L} \mathbf{2}$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO- d_{6}

Figure S20: $80 \% \mathbf{L 1}: \mathbf{2 0 \%} \mathbf{L} \mathbf{2}$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO- d_{6}

Figure S21: $90 \% \mathbf{L} 1: 10 \% \mathbf{L} 2$ simultaneous nucleation MOF digested in $\mathrm{D}_{2} \mathrm{SO}_{4} /$ DMSO-d 6

Figure S22: Stacked ${ }^{1} \mathrm{H}$ NMR spectra of time $=0 \mathrm{~min}$ (bottom) and time $=30 \mathrm{~min}$ (top) of 50% $\mathbf{L} 1$ nucleation of Zr_{6} node solution, (* refers to $\mathbf{L} 1$ peaks, ** refers to internal standard 1-bromo-3,5-difluorobenzene)
VII) PXRD Patterns

Figure S23: PXRD patterns of pure-phase NU-903, NU-1008, and 1:1 L1: L2 under simultaneous nucleation.
—Simulated NU-903 - 1:1 L1: L2
$-2 x$ dilution of 1:1 L1:L2 $-2 x$ concentration of L1:L2

Figure S24: PXRD patterns examining the role of absolute concentration of the linker in solution to determine a possible change in kinetic product for the $1: 1 \mathbf{L} 1: \mathbf{L} 2$ reaction conducted under simultaneous nucleation. While the $9,10,12.8$, and 13.42θ peaks increase in intensity, the prediction of these shifts from the simulated pattern suggests that a change in the concentration of the system can slightly affect the crystallinity of the MOF particle, yet we did not observe a
phase change.
VIII) SEM Images

Figure S25: Image of simultaneous nucleation of 50% L1: $50 \% \mathbf{L 2}$.

Figure S26: Image of simultaneous nucleation of $30 \% \mathbf{L 1}: 70 \% \mathbf{L 2}$.

Figure S27: Image of simultaneous nucleation of $50 \% \mathbf{L 1}: 50 \% \mathbf{L 2}$ with 2x concentration of system.

Figure S28 Image of simultaneous nucleation of $50 \% \mathbf{L} 1: 50 \% \mathbf{L} 2$ with $2 x$ dilution of system.

References

1. Lyu, J.; Zhang, X.; Otake, K.-i.; Wang, X.; Li, P.; Li, Z.; Chen, Z.; Zhang, Y.; Wasson, M. C.; Yang, Y.; Bai, P.; Guo, X.; Islamoglu, T.; Farha, O. K., Topology and porosity control of metal-organic frameworks through linker functionalization. Chem. Sci. 2019, 10.1039/C8SC04220A.
