Supplementary Information Broadband Emission in Hybrid Organic-Inorganic Halides of Group 12 Metals

Rachel Roccanova, ${ }^{1}$ Matthew Houck, ${ }^{1}$ Aymen Yangui, ${ }^{1}$ Dan Han, ${ }^{2,3,4}$ Hongliang Shi, ${ }^{5}$ Yuntao Wu, ${ }^{6,7}$ Daniel T. Glatzhofer, ${ }^{1}$ Douglas R. Powell, ${ }^{1}$ Shiyou Chen, ${ }^{3}$ Houcem Fourati, ${ }^{8}$ Alain Lusson, ${ }^{8}$ Kamel Boukheddaden, ${ }^{8}$ Mao-Hua Du, ${ }^{4 *}$ Bayrammurad Saparov ${ }^{1 *}$
${ }^{1}$ Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
${ }^{2}$ Key Laboratory of Polar Materials and Devices (Ministry of Education), East China Normal University, Shanghai 200241, China
${ }^{3}$ Department of Physics, East China Normal University, Shanghai 200241, China
${ }^{4}$ Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{5}$ Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China
${ }^{6}$ Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996, USA
${ }^{7}$ Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
${ }^{8}$ Groupe d’Etudes de la Matière Condensée, UMR CNRS 8653-Université de Versailles Saint Quentin En Yvelines, Université Paris-Saclay, 45 Avenue des États-Unis, 78035 Versailles, France

Synthesis of trimethyl(2,3,4,5,6-pentamethylbenzyl)ammonium bromide and iodide salts

Scheme S1. Syntheses of the bromide ((R)Br, 3) and iodide ((R)I, 5) salts used in the formation of the target hybrid organic-inorganic compounds.

Synthesis of 1-(bromomethyl)-2,3,4,5,6-pentamethylbenzene (2): A three necked round bottom flask fitted with a reflux condenser was charged with $2.00 \mathrm{~g}(13.5 \mathrm{mmol})$ pentamethylbenzene (1), 0.626 g (20.8 mmol) paraformaldehyde, 0.226 g (0.620 mmol) cetyltrimethylammonium bromide (CTAB), cyclohexane (20 mL), acetic acid (10 mL), and phosphoric acid $(0.5 \mathrm{~mL})$. The reaction mixture was stirred vigorously (magnetic) and 10 mL of 48% hydrobromic acid was added using a dropping funnel attached to a side arm of the flask. The mixture was heated to $80^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled using an ice bath, diluted with 20 mL of water, transferred to an Erlenmeyer flask, and extracted three times with dichloromethane using a separatory funnel. The combined organic layers were dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, which was removed by vacuum filtration, and the filtrate was concentrated under reduced pressure to give product $\mathbf{2}$ in 94% yield as a white
polycrystalline solid. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ matched that reported in the literature (Figure S1). ${ }^{1}$

Synthesis of trimethyl (2,3,4,5,6-pentamethylbenzyl) ammonium bromide ((R)Br, 3): A round bottom flask was charged with $1.00 \mathrm{~g}(4.10 \mathrm{mmol})$ bromide 2 and THF (50 mL). The reaction flask was sealed with a rubber septum and an excess of trimethylamine gas was introduced into the reaction flask through a cannula needle. The reaction mixture was stirred magnetically overnight at room temperature. The white solid that formed was collected by gentle vacuum filtration and dried under reduced pressure. Product 3 was obtained in 89% yield as the monohydrate; mp 219$220{ }^{\circ} \mathrm{C}$ (lit mp 221-222 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl} 3, \delta, \mathrm{ppm}): 2.24(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH} 3), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45$ (s, 6H, CH3), 3.37 (s, 9H, N-CH3), 5.04 (s, 2H, CH2-N) (Figure S2). ${ }^{2}$

Synthesis of N,N,2,3,4,5,6-heptamethyl-benzylamine (4): A 100 mL round bottom flask was charged with 1.00 g of $\mathbf{2}(4.10 \mathrm{mmol})$ and THF (50 mL). Dimethylamine was introduced by adding 1.41 g of a $40 \mathrm{wt} \%$ aqueous solution (0.564 g dimethylamine, 12.5 mmol) dropwise and the reaction flask was stoppered. The solution was stirred magnetically for 24 hours, the reaction was quenched by the addition of solid $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. The $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ was removed by vacuum filtration, the filtrate was concentrated under reduced pressure for 24 hours to give product 4 in 86% yield a white crystalline solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 2.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.33$ (s, 6H, CH3), 3.49 (s, 2H, CH2-N) (Figure S3). ${ }^{3}$

Synthesis of trimethyl (2,3,4,5,6-pentamethylbenzyl) ammonium iodide ((R)I, 5): A 100 mL round bottom flask was charged with 1.00 g of $4(4.90 \mathrm{mmol})$ and THF (20 mL). Methyl iodide
$(1.39 \mathrm{~g}, 9.80 \mathrm{mmol})$ were added dropwise to the solution. The flask was stoppered, and the solution was stirred magnetically for 24 hours. Within the first 3 hours most of the product precipitated as a white solid. Solvent and excess methyl iodide were removed under reduced pressure to give product 5 in 98% yield as a white polycrystalline solid; mp $220-223^{\circ} \mathrm{C}$ (lit mp $220-221{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 2.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.34(\mathrm{~s}, 9 \mathrm{H}, \mathrm{N}-$ CH_{3}), $5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right)$ (Figure S4). ${ }^{3}$

Figure S1．NMR spectrum of the 1－（bromomethyl）－2，3，4，5，6－pentamethylbenzene（2）precursor in CDCl_{3} ．

Figure S2. NMR spectrum of the trimethyl (2,3,4,5,6-pentamethylbenzyl) ammonium bromide $((\mathrm{R}) \mathrm{Br}, \mathbf{3})$ precursor in CDCl_{3}.

Figure S3. NMR spectrum of the $\mathrm{N}, \mathrm{N}, 2,3,4,5,6$-heptamethyl-benzylamine (4) in CDCl_{3} produced by the reaction outlined in section 2.4.

Figure S4. NMR spectrum of trimethyl (2,3,4,5,6-pentamethylbenzyl) ammonium iodide ((R)I, 5) precursor in CDCl_{3}.

Figure S5. PXRD patterns of
(a) $(\mathrm{R}) \mathrm{ZnBr}_{3}(\mathrm{DMSO})$,
(b) $(\mathrm{R})_{2} \mathrm{CdBr}_{4} \cdot \mathrm{DMSO}$ and
(c)
(R)CdI3(DMSO) samples left in ambient air for over a period of one month.

Figure S6. IR spectra of (R)ZnBr3(DMSO), (R) $)_{2} \mathrm{CdBr}_{4} \cdot \mathrm{DMSO}_{2}(\mathrm{R}) \mathrm{CdI}_{3}(\mathrm{DMSO})$ and the precursor organic salts (R) $\mathrm{Br}(\mathbf{3})$ and $(\mathrm{R}) \mathrm{I}(5)$.

Table S1. Selected single crystal data collection and refinement parameters for (R) ZnBr 3 (DMSO), $(\mathrm{R})_{2} \mathrm{CdBr}_{4} \cdot \mathrm{DMSO}^{2}$ and $(\mathrm{R}) \mathrm{CdI}_{3}(\mathrm{DMSO})$ at $100(2) \mathrm{K}$.

Formula	(R) $\mathrm{ZnBr}_{3}(\mathrm{DMSO})$	(R)2 ${ }_{2} \mathrm{CdBr}_{4} \cdot \mathrm{DMSO}$	(R)CdI3(DMSO)
Formula weight (g/mol)	603.59	950.90	791.59
Temperature (K)		100 (2)	
Radiation, wavelength (\AA)		Mo K $\alpha, 0.71073$	
Crystal system	Orthorhombic	Triclinic	Orthorhombic
Space group, Z	P2 $12_{212}{ }^{4}$	P-1, 2	P2 212, $^{2} 4$
$a(\AA)$	8.9513(16)	8.829(7)	9.2030(10)
$b(\AA)$	28.500(6)	14.244(10)	29.304(3)
$c(\AA)$	8.8203(16)	15.714(11)	9.3602(11)
$\alpha,{ }^{\circ}$	90	72.734(10)	90
β, ${ }^{\circ}$	90	89.356(10)	90
$\gamma,{ }^{\circ}$	90	89.710(10)	90
Volume (\AA^{3})	2250.2(7)	1887(2)	2524.3(5)
Density ($\rho_{\text {calc }}$) ($\mathrm{g} / \mathrm{cm}^{3}$)	1.782	1.674	2.083
Absorption coefficient (μ) (mm^{-1})	6.517	4.895	4.622
$\theta_{\text {min }}-\theta_{\text {max }}\left({ }^{\circ}\right)$	$2.31-26.34$	1.36-29.23	$1.39-31.46$
Reflections collected	34552	32253	66066
Independent reflections	4193	10050	8052
R^{a} indices ($I>2 \sigma(I)$)	$R_{1}=0.0286$	$R_{1}=0.0598$	$R_{1}=0.0419$
	$w R_{2}=0.0561$	$w R_{2}=0.1622$	$w R_{2}=0.0915$
Goodness-of-fit on F^{2}	1.007	1.031	1.007
Largest diff. peak and hole (e $\mathrm{e}^{-} \AA^{3}$)	0.344 and -0.335	1.351 and -3.429	1.320 and -0.926
$\begin{aligned} & { }^{\mathrm{a}} R_{1}=\sum\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| / \sum\left\|F_{o}\right\| ; w R_{2}=\left\|\sum\right\| w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\left\|/ \sum\right\| w\left(F_{o}^{2}\right)^{2}\| \|^{1 / 2}, \text { where } w=1 / \mid \sigma^{2} F_{o}^{2}+ \\ & (A P)^{2}+B P \mid \text {, with } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \text { and weight coefficients } A \text { and } B . \end{aligned}$			

Table S2. Selected interatomic distances and angles in (R)ZnBr3(DMSO), (R)2CdBr4•DMSO and $(\mathrm{R}) \mathrm{CdI}_{3}(\mathrm{DMSO})$ at $298(2) \mathrm{K}$.

Label		Distance (\AA)	Label (${ }^{\circ}$)	Angle
(R)ZnBr $\left.{ }^{(1)} \mathbf{D M S O}\right)$				
Zn-	O1	2.024(5)	O1-Zn-Br1	104.61(17)
	Br1	2.3796(13)	O1-Zn-Br2	100.90(14)
	Br2	2.3820(12)	O1-Zn1-Br3	104.39(17)
	Br3	2.3951(13)	Br1-Zn1-Br3	116.19(5)
			Br2-Zn-Br3	114.07(5)
			Br1-Zn-Br2	114.30(5)
(R) $2_{2} \mathrm{CdBr}_{4} \cdot \mathrm{DMSO}^{\text {dre }}$				
Cd-	Br1	2.6065(5)	Br1-Cd-Br4	105.105(16)
	Br2	2.6035(5)	Br1-Cd-Br3	110.057(17)
	Br3	2.5770(5)	Br4-Cd-Br3	113.073(18)
	Br4	2.5959(5)	Br1-Cd-Br2	114.355(17)
			Br4-Cd-Br2	105.954(18)
			Br3-Cd-Br2	108.321(17)
(R)CdI3 ${ }_{3}$ (DMSO)				
Cd1-	O1	2.247(7)	O1-Cd1-I3	102.5(2)
	I1	2.7283(8)	O1-Cd1-I2	102.3(2)
	I2	2.7201(8)	O1-Cd1-I1	98.97(19)
	I3	2.7305(8)	I3-Cd1-I2	118.37(3)
			I3-Cd1-I1	115.43(3)
			I2-Cd1-I1	114.98(3)

Table S3. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in (R$) \mathrm{ZnBr} 3(\mathrm{DMSO})$, $(\mathrm{R})_{2} \mathrm{CdBr}_{4} \cdot \mathrm{DMSO}^{2}$ and $(\mathrm{R}) \mathrm{CdI}_{3}(\mathrm{DMSO})$ at $100(2) \mathrm{K}$.

Label		Distance	Label	Angle
(R)ZnBr3 $\left.{ }^{(\mathrm{DMSO}}\right)$				
Zn-	O1	2.026(3)	O1-Zn-Br3	104.17(9)
	Br1	2.38898)	O1-Zn-Br1	100.82(9)
	Br2	2.3967(7)	Br3-Zn-Br1	114.20(3)
	Br3	2.3812(7)	O1-Zn1-Br2	103.86(9)
			Br3-Zn-Br2	116.59(3)
			Br1-Zn-Br2	114.54(3)
$\underline{(\mathrm{R})} \mathbf{2}^{\mathrm{CdBr}_{4} \cdot \mathrm{DMSO}}$				
Cd-	Br1	2.571(2)	Br1-Cd-Br4	108.55(4)
	Br2	2.602(2)	Br1-Cd-Br3	112.49(5)
	Br3	2.5954(17)	Br4-Cd-Br3	105.47(5)
	Br4	2.5943(17)	Br1-Cd-Br2	110.80(3)
			Br4-Cd-Br2	114.92(6)
			Br3-Cd-Br2	104.53(4)
(R)CdI3 ${ }_{3}$ (DMSO)				
Cd1-	O1	2.262(6)	O1-Cd1-I3	100.83(16)
	I1	2.7422(8)	O1-Cd1-I2	102.28(17)
	I2	2.7421(8)	O1-Cd1-I1	99.09(15)
	I3	2.7273(8)	I3-Cd1-I2	118.29(3)
			I3-Cd1-I1	115.13(3)
			I2-Cd1-I1	116.37(3)

References

1. Mizoguchi, K.; Higashihara, T.; Ueda, M., Negative-working photosensitive poly (phenylene ether) based on poly (2, 6-dimethyl-1, 4-phenylene ether), a cross-linker, and a photoacid generator. Macromolecules 2010, 43, 2832-2839.
2. Longone, D. T.; Simanyi, L. H., Paracyclophanes. III. Octamethyl [2.2] paracyclophane. A Highly Strained Cyclophane1. J. Org. Chem. 1964, 29, 3245-3249.
3. Kantor, S. W.; Hauser, C. R., Rearrangements of benzyltrimethylammonium ion and related quaternary ammonium ions by sodium amide involving migration into the ring 1 , 2, 3. J. Am. Chem. Soc. 1951, 73, 4122-4131.
