Indoor exposure to ambient particles and its estimation

using fixed site monitors

Wenwei Che,^{1,2,3,*} H. Christopher Frey,^{4,5} Zhiyuan Li,⁴ Xiangqian Lao,⁶ Alexis K.H. Lau^{1,4}

² HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

³ Institute for Environment and Climate Research, Jinan University, Guangzhou, China

⁴ Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

⁵ Department of Civil, Construction and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States

⁶ JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China

Number of pagers: 16

Number of figures: 4

Number of tables: 7

¹ Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

DESCRIPTION OF TABLES AND FIGURES

Description of selected schools and FSMs is listed in Table S1. A summary for measurement at selected schools are given in Table S2. Hourly average PM_{2.5}concentrations at schools and fixed site monitors (FSMs) are listed in Table S3. Spearman Correlation Coefficients (SCC) between indoor and outdoor PM_{2.5} concentrations and between school outdoor measurements and FSMs are listed in Table S4 and S5, respectively. Infiltration factors estimated with and without autocorrelation are listed in Table S6. Proximity factors estimated between selected schools and FSMs are listed in Table S7. The instrument package and results of instrument calibration are shown in Figure S1 and S2, respectively. Examples of time series of measured PM_{2.5} concentrations at selected schools during winter and summer are shown in Figure S3. Wind rose maps from a background meteorological station in Hong Kong during winter and summer sampling periods are shown in Figure S4.

SCHOOL MEASUREMENT

For each school, indoor $PM_{2.5}$ concentrations were measured in classrooms and non-classrooms. The classrooms selected for both schools were on the 1st, 3rd, and 6th floors, each with class size of around 30 students. Blackboards and chalk were used in the classrooms at both schools. The non-classrooms include a ground floor conference room and a 7th floor mentor room at School A, and a ground floor meeting room and 7th floor multimedia room at school B. Each room was sampled for two days in each school and season. Simultaneous outdoor $PM_{2.5}$ concentrations were measured on pedestrians with horizontal distance of less than 0.5 km from the school.

AUTOCORRELATION

Continuous measurements have been reported to be autocorrelated, indicating serial dependence with previous observations.¹ The impact of autocorrelation on the estimation of IF is examined by adding a lag1 auto-aggressive correction on the error term of the linear regression model:²

$$C_{idr,s,p,t} = IF_{s,p}C_{odr,s,p\,t} + C_{NA,s,p,t} + \varepsilon_t \qquad (S-1)$$

$$\varepsilon_{s,p,t} = \rho_{s,p}\varepsilon_{s,p,t-1} + \omega_t \quad (S-2)$$

Where,

 $C_{idr,s,p,t} =$ Indoor PM_{2.5} concentrations at school *s* in season *p* at time *t* (µg/m³); $C_{odr,s,p,t} =$ Outdoor PM_{2.5} concentrations at school *s* in season *p* at time *t* (µg/m³); $C_{NA,s,p,t} =$ Non-ambient component of indoor concentration at school *s* in season *p* at time *t* (µg/m³); $IF_{s,p} =$ Infiltration factor derived for school *s* in season *p*, unitless; $\varepsilon_t =$ random error (µg/m³);

- *idr* = Indoor location (e.g. classroom);
- s = School index (e.g. School A, School B);
- p = Season (e.g. winter, summer);
- t = Time step (hour);

odr = Outdoor location in close proximity to the school, which is the nearest transect in this study;

NA = Non-ambient sources.

 $\varepsilon_{s,p,t}$ = auto-correlated error term at school *s* in season *p* at time step *t*;

 $\rho_{s,p}$ = autocorrelation parameter at school *s* in season *p*, unitless;

 $\varepsilon_{s,p,t-1}$ = error term in the time serial with lag time of 1 hour;

 ω_t = independent error term.

The IF values were calculated for each school and season with and without autocorrelation correction, as listed in Table S6. For 1-hour time interval, there is no significant difference in IF estimates between with and without autocorrelation correction. The autocorrelation parameter was positive for both schools in winter and summer, indicating positive autocorrelations in the time series, which was consistent with the positive correlations found in continuous PM_{2.5} observations in previous studies.^{3,4} In winter, the outdoor variations in PM_{2.5} concentration explained 98% to 99% of the variations observed in the indoor PM_{2.5} concentrations at both schools. The autocorrelation did not add additional

explanation power. In summer, the outdoor variations in $PM_{2.5}$ concentration explained 7% and 13% of the variations observed in the indoor $PM_{2.5}$ concentrations at school A and B, respectively. The autocorrelation explained another 58% and 36% of the indoor variations in summer. Low air exchange rates due to closed doors and windows in summer increased the autocorrelation in the indoor PM concentrations. However, the indoor concentrations in summer were much lower than those in winter; therefore, the added explanation power by accounting for autocorrelation in summer did not add much in terms of explaining long term exposure concentrations over both seasons.

							Indoor Lo	ocation	Ventilati	on type and	practice		
School	Location	Built Year	Elev. ^a (m)	Season I		riod	Class- room ^b	Non- class- room ^b	<i>A/C</i> ^{<i>c</i>}	Ceiling fan	Inlet/ Exhaus t fan	Window	Door
А	Hill	2002	82	Winter	5/1/2015-	16/1/2015	\checkmark		Off	Off	Off	Open	Open
				Summer	1/6/2015-	12/6/2015	\checkmark	\checkmark	On	On	On	Closed	Closed
В	Valley	1990	6	Winter	19/1/2015	-30/1/2015		\checkmark	Off	Off	Off	Slightly Open	Open
				Summer	15/6/2015	-26/6/2015	\checkmark	\checkmark	On	On	On	Open	Closed
				School	outdoor m	easuremen	t and fixed s	site monitor	s				
					F 1 8	e II d	Distan	ce (km)	Relative	e position	Area	characteri	stics ^e
Site	Site Nan	ie	Site type	Land use	Elev. ^a	S.H. ^d	to	to	to	to	Resi-	Com-	Indus-
					(m)	(m)	school A	school B	school A	school B	dential	mercial	trial
Transect_A	A School A	transect	Roadside	Urban	82	1.5	< 0.5	-	Ν	-			
Transect_H	B School B	transect	Roadside	Urban	6	1.5	-	< 0.5	-	SE			\checkmark
R1	Causewa	y Bay	Roadside	Urban	5	3	12.2	12.5	SE	S			
R2	Central		Roadside	Urban	5	4.5	10.2	13.1	SE	SW			
R3	Mong Ke	ok	Roadside	Urban	7	3	8.1	8.6	SE	SW			
G1	Central/V	Vestern	General	Urban	67	16	9.1	13.4	SE	SW			
G2	Eastern		General	Urban	14	15	14.8	12	SE	S			
G3	Kwai Ch	ung	General	Urban	7	13	3.2	8.9	E	SW			\checkmark
G4	Kwun To	ong	General	Urban	10	25	13.9	8.8	SE	S			\checkmark
G5	Sha Tin		General	Urban	7	25	9.2	2.9	NE	SW			
G6	Sham Sh	ui Po	General	Urban	5	17	6.9	8.4	SE	SW			
G7	Tai Po		General	Urban	7	25	12.7	8.1	NE	NW			
G8	Tsuen W	an	General	Urban	5	17	2.5	9.8	NE	SW			\checkmark
G9	Tung Ch	ung	General	Urban	8	27. 5	17.5	29.5	SW	SW	\checkmark		
G10	Yuen Lo	ng	General	Urban	7	25	12.7	20	NW	NW			
BG	Tap Mur	0	Backgroun	d Rural	16	11	29.9	18.1	NE	NE			

	Table S1.	Description	of selected	schools and	fixed site monitors
--	-----------	-------------	-------------	-------------	---------------------

Note: ^a The elevation (Elev.) refers to the height above mean sea level. ^b The selected classrooms were located on the 1st, 3rd, and 6th floors; the selected non-classrooms were located on the ground floor and the 7th floor.

^c The air conditioner type at school A and school B are both standalone A/C unit.

^d The sampling height (S.H.) refers to the height above ground.

^e The area characteristics describe the land use property of site surroundings .

School	Season ^a	Location	PM _{2.5} (µg/m ³)		CO ₂ ((ppm)	Tempe (°	erature C)	Rela humidi		Hum (g/n	idity n ³) ^b
School	Season	Location	Mean	std	Mean	std	Mean	std	Mean	std	Mean	std
Winter		Indoor	42	19	430	80	19.3	1.6	57	11	9.5	2.5
A	Outdoor	43	20	380	30	19.9	3.6	61	15	10.4	2.8	
	Cummon	Indoor	6	2	920	500	27.7	2.9	61	9	16.9	5.2
	Summer	Outdoor	7	2	400	20	32.8	2.0	70	9	24.3	1.2
	Winter	Indoor	60	38	400	50	20.5	1.3	51	12	9.1	2.5
	w inter	Outdoor	63	38	410	50	21.6	2.7	49	14	9.3	2.6
D	Winter *	Indoor	49	15	390	50	20.5	1.3	51	13	9.1	2.6
В	w miler ·	Outdoor	52	15	410	50	21.6	2.6	50	15	9.3	2.8
	Commence	Indoor	5	2	720	380	29.6	3.5	56	9	17.1	4.4
	Summer	Outdoor	7	2	490	140	31.8	4.2	66	15	21.9	3.4

Table S2. Mean and standard deviation (std) of 1-hour average indoor and outdoor (transect) $PM_{2.5}$ concentrations, CO_2 concentration, temperature and humidity by school and season.

Note:

^a Values in "Winter*" exclude data on Jan 21th 2015, on which an episode of unusually high PM_{2.5} concentrations was observed.

^b Humidity is not directly measured but is calculated from temperature (T) and relative humidity (RH) which were measured using Q-Trak.

				Indoor									Outdoo	r ^b						
Season	School	Stats ^a	Class- room	non- class- room	All	Tran sect	R1	R2	R3	Gl	G2	G3	<i>G4</i>	G5	G6	<i>G</i> 7	<i>G</i> 8	G9	G10	BG
		N ^c	32	28	60	63	64	62	60	29	70	65	68	67	66	70	69	68	67	69
	Winter	Mean (µg/m ³)	40	45	42	43	45	35	40	25	30	33	34	30	28	29	29	36	47	42
A		Std (µg/m ³)	22	14	19	20	14	14	13	13	15	12	16	14	11	13	13	19	17	17
	Summer	N ^c	40	23	63	69	66	68	54	66	68	70	68	41	59	66	70	66	68	65
		Mean (µg/m ³)	6	4	6	7	22	11	15	11	7	15	14	9	12	9	8	7	12	8
		Std (µg/m ³)	1	2	2	2	5	4	5	3	3	4	5	4	3	3	5	2	4	3
		N ^c	37	28	65	65	64	70	64	70	66	67	70	63	61	65	67	70	70	67
В	Winter	Mean (µg/m ³)	63	56	60	63	67	51	53	56	45	48	55	48	39	47	43	45	60	59
		Std (µg/m ³)	48	13	38	37	33	32	14	30	20	25	26	34	12	33	21	32	31	34
		N ^c	38	28	66	63	70	58	58	65	67	67	68	67	53	68	66	70	60	66
	Summer	Mean (µg/m ³)	5	4	5	7	20	13	16	10	7	14	11	9	12	8	9	6	11	7
		Std (µg/m ³)	2	1	2	2	7	5	5	3	4	4	5	5	3	3	5	3	4	4

Table S3. Average of hourly $PM_{2.5}$ concentration measured at indoor classroom and non-classroom, and selected outdoor locations by school and season

Note:

^a N = number of valid observations; Mean = hourly mean PM_{2.5} concentrations ($\mu g/m^3$); std = standard deviation in hourly PM_{2.5} concentration ($\mu g/m^3$).

^b The full name and detail information for outdoor sites are given in Table S1.

^c Some of the hourly PM_{2.5} observations were missing due to the maintenance or malfunction of equipment.

	Season	~							(Dutdoor	. b						
School	Season	eason Statistic ^a	Tran- sect	R1	R2	R3	Gl	G2	G3	<i>G</i> 4	G5	<i>G6</i>	<i>G</i> 7	<i>G</i> 8	<i>G</i> 9	G10	BG
	Dista	nce (km)	< 0.5	12.2	10.2	8.1	9.1	14.8	3.2	13.9	9.2	6.9	12.7	2.5	17.5	12.7	29.9
A		r	0.98	0.73	0.75	0.84	0.82	0.78	0.84	0.83	0.83	0.87	0.84	0.85	0.76	0.76	0.86
	Winter	p-value	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
		Ν	60	54	52	50	19	60	55	58	57	58	60	59	58	58	60
	Summer	r	0.27	-0.16	-0.12	0.16	-0.12	0.09	0.15	-0.15	-0.18	-0.23	-0.05	0.17	-0.20	0.27	0.25
		p-value	0.0344	0.2291	0.3532	0.2855	0.3589	0.4666	0.2258	0.2437	0.2545	0.1009	0.7183	0.1945	0.1348	0.0354	0.0570
		Ν	62	59	61	47	62	61	63	63	41	53	59	63	59	61	59
	Distance (km)		< 0.5	12.5	13.1	8.6	13.4	12	8.9	8.8	2.9	8.4	8.1	9.8	29.5	20	18.1
		r	0.99	0.80	0.81	0.78	0.80	0.87	0.90	0.87	0.89	0.71	0.90	0.75	0.70	0.67	0.83
	Winter	p-value	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
В		Ν	60	60	65	60	65	61	62	65	58	57	61	62	65	65	62
		r	0.35	-0.14	0.23	-0.17	0.25	0.26	0.49	0.41	0.55	0.02	0.53	0.45	0.45	0.31	0.38
	Summer	p-value	0.0058	0.2596	0.1012	0.2078	0.0458	0.0380	<.0001	0.0008	<.0001	0.8811	<.0001	0.0002	0.0001	0.0186	0.0019
		Ν	59	66	54	56	62	64	63	64	63	49	64	62	66	56	63

Table S4. Spearman Correlation Coefficients for 1-hour average PM_{2.5} concentrations between school indoor and selected outdoor locations

Note: **Bold** figures are correlation coefficients with *p*-value < 0.05.

^a r = Spearman Correlation Coefficients; p-value = Probability > |r| under H0: Rho=0; N = Number of Observations.

^b The full name and detail information for outdoor sites are given in Table S1.

Season	Location					Outd	oor fix	ed site	monito	r (FSM	[) ^a				
Scason	Location	<i>R1</i>	R2	R3	Gl	G2	G3	<i>G4</i>	G5	<i>G6</i>	<i>G</i> 7	<i>G</i> 8	<i>G</i> 9	G10	BG
Winter	Transect_A	0.72	0.75	0.84	0.78	0.79	0.82	0.80	0.82	0.87	0.83	0.80	0.73	0.69	0.85
	Transect_B	0.77	0.75	0.73	0.74	0.84	0.89	0.83	0.87	0.67	0.89	0.69	0.64	0.66	0.83
	<i>R1</i>	1.00	0.93	0.89	0.94	0.87	0.87	0.91	0.86	0.77	0.82	0.73	0.61	0.57	0.70
	R2		1.00	0.89	0.95	0.87	0.87	0.89	0.87	0.79	0.85	0.74	0.71	0.68	0.78
	R3			1.00	0.93	0.88	0.85	0.93	0.85	0.89	0.85	0.81	0.64	0.62	0.77
	Gl				1.00	0.91	0.91	0.95	0.95	0.91	0.92	0.88	0.71	0.71	0.84
	G2					1.00	0.88	0.93	0.88	0.78	0.89	0.69	0.64	0.65	0.81
	G3						1.00	0.89	0.85	0.77	0.87	0.75	0.71	0.68	0.81
	<i>G4</i>							1.00	0.91	0.84	0.89	0.78	0.66	0.68	0.81
	G5								1.00	0.86	0.94	0.80	0.70	0.74	0.85
	<i>G</i> 6									1.00	0.83	0.86	0.60	0.62	0.75
	<i>G</i> 7										1.00	0.77	0.74	0.79	0.90
	<i>G8</i>											1.00	0.75	0.71	0.78
	<i>G</i> 9												1.00	0.84	0.85
	G10													1.00	0.88
	BG														1.00
Summer	Transect_A	1.00		0.35	0.20	0.29	0.21	0.33	0.51	0.18	0.43	0.05	0.43	0.11	0.26
	Transect_B		1.00	0.06	0.38	0.02	0.35	0.21	0.18	0.04	0.30	0.22	0.28	-0.01	0.11
	R1			1.00	0.27	0.22	0.30	0.32	-0.01	0.11	0.09	0.07	0.20	0.01	0.14
	R2				1.00	0.00	0.46	0.24	0.03	0.19	0.25	0.10	0.28	0.13	0.17
	<i>R3</i>					1.00	0.22	-0.07	0.06	-0.08	0.07	-0.13	-0.05	-0.07	-0.17
	Gl						1.00	0.17	0.23	0.32	0.35	0.03	0.36	0.02	0.17
	G2							1.00	0.06	0.19	0.11	0.04	0.35	0.09	0.17
	G3								1.00	0.13	0.25	0.10	0.33	0.14	0.15
	G4									1.00	0.18	-0.15	0.38	0.12	0.25
	G5										1.00	0.12	0.26	0.26	0.17
	G6											1.00	0.11	0.14	0.16
	<i>G7</i>												1.00	0.22	0.26
	G8													1.00	0.07
	<i>G</i> 9														1.00
	G10														ļ
	BG														

Table S5. Spearman Correlation Coefficients for 1-hour average PM_{2.5} concentrations among outdoor locations by season.

Note: **Bold** figures are correlation coefficients with *p*-value < 0.05.

^a The full name and detail information for outdoor sites are given in Table S1.

		N	Without au	tocorrelation cor	rection		With autocorrelation correction						
Season	School		IF ^a	$C_{NA}{}^{b}$	R ^{2 d}	IF ^a	$C_{NA}{}^{b}$	ρ°	R ^{2 d}				
			(Mean±SE ^e)	(Mean±SE)	K	(Mean±SE)	(Mean±SE)	(Mean±SE)	K				
	А	60	0.91±0.02	2.5±0.9	0.98	0.88±0.03	3.4±1.4	0.7±0.1	0.98				
Winter	В	60	1.00±0.02	-2.7±1.2	0.99	1.00±0.02	-2.8±1.4	0.2±0.1	0.99				
	\mathbf{B}^{f}	60	0.97±0.02	0	0.99								
Summon	А	62	0.27±0.13	3.7±0.9	0.07	0.35±0.09	3.3±0.8	0.8±0.1	0.65				
Summer	В	59	0.25±0.09	2.9±0.7	0.13	0.22±0.06	2.9±0.6	0.6±0.2	0.49				

Table S6 Infiltration factors estimated from LRMs with and without autocorrelation correction

Notes:

^a IF is infiltration factor of PM_{2.5} concentrations from outdoor transect to school indoor, derived based on Eq. (1).

 ${}^{b}C_{NA}$ is non-ambient PM_{2.5} concentrations at school indoor, derived from Eq. (1), the negative values for school B in winter are not statistically significant than zero after autocorrelation correction.

 c ρ is autocorrelation parameter derived based on Eq. (2).

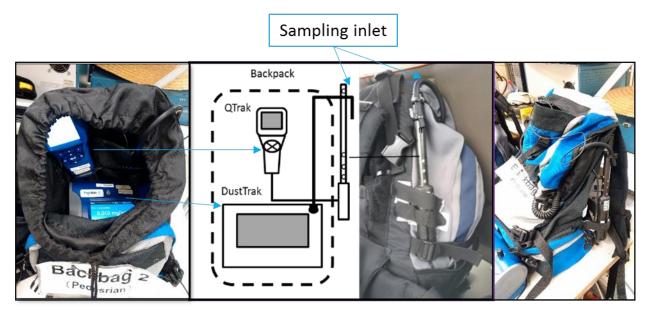
 ${}^{d}R^{2}$ is coefficient of determination of linear regression models (LRMs) with and without autocorrelation.

^eSE refers to standard error.

^fThis serves as a sensitivity case for school B in winter by setting C_{NA} to be zero, which was originally estimated to be negative. The IF was recalibrated based on zero intercept ($C_{NA} = 0$).

			W	inter			Sumr	ner	
School	FSM	N	PF ^a	$C_{UE}{}^{b}$	R ² c	Ν	PF ^a	$C_{UE}{}^{b}$	R ^{2 c}
		IN	(Mean±SE ^d)	(Mean±SE)	ĸ	11	(Mean±SE)	(Mean±SE)	ĸ
	R1	54	0.89±0.17	1.6±8.3	0.32	59	0.07±0.04	5.3±0.8	0.05
	R2	52	0.94±0.17	8.0±6.6	0.36	61	0.09±0.05	5.7±0.5	0.05
	R3	51	1.11±0.15	-1.8±6.8	0.50	47	0.10±0.05	5.4±0.8	0.08
	G1	18	1.31±0.14	-8.0±4.0	0.83	63	$0.10{\pm}0.08$	5.5±0.9	0.02
	G2	58	0.86±0.15	15.3±5.2	0.36	61	0.22±0.08	5.1±0.6	0.11
	G3	56	1.03±0.15	8.5±5.6	0.45	63	0.13±0.06	4.8±0.9	0.07
A	G4	59	0.84±0.13	10.7±5.2	0.42	63	0.11±0.04	5.3±0.6	0.10
	G5	57	1.15±0.12	3.8±4.4	0.60	42	0.17±0.06	5.4±0.6	0.18
	G6	59	1.65±0.13	-6.3±4.2	0.72	53	0.01 ± 0.07	6.8 ± 0.8	0.00
	G7	60	1.18 ± 0.13	4.6±4.5	0.57	60	0.21±0.08	4.8±0.7	0.11
	G8	59	1.36±0.09	-0.2±3.1	0.79	63	0.02 ± 0.04	6.9±0.4	0.00
	G9	58	0.94 ± 0.09	7.1±3.6	0.66	59	0.16 ± 0.08	5.8±0.6	0.05
	G10	58	0.83±0.13	0.5±6.7	0.42	61	0.21±0.06	4.3±0.7	0.18
	BG	60	0.97±0.09	-2.6±4.2	0.68	59	0.26±0.07	4.6±0.6	0.20
	R1	60	1.20±0.07	-15.9±5.3	0.83	66	0.03 ± 0.04	6.7±0.8	0.01
	R2	65	1.19±0.06	1.1±3.4	0.87	54	0.21±0.05	4.5±0.8	0.24
	R3	60	0.94 ± 0.10	1.8±5.6	0.61	59	0.01 ± 0.06	7.4±1.0	0.00
	G1	65	1.27±0.06	-9.2±3.9	0.87	62	0.14±0.09	5.9±1.0	0.04
	G2	61	1.86 ± 0.12	-23.0±6.2	0.79	64	0.12±0.07	6.5±0.6	0.04
	G3	62	1.48 ± 0.07	-8.0 ± 3.7	0.89	64	0.06 ± 0.06	6.7±0.9	0.01
В	G4	65	1.47±0.07	-19.7±4.0	0.89	63	0.05 ± 0.06	7.0±0.6	0.01
D	G5	58	1.20±0.05	1.8±2.9	0.91	63	0.17±0.06	6.0±0.6	0.13
	G6	57	1.22 ± 0.11	3.7±4.6	0.69	51	0.06±0.09	6.5±1.1	0.01
	G7	61	1.17±0.04	5.1±2.4	0.93	64	0.29±0.08	5.2±0.7	0.18
	G8	62	1.57±0.08	-7.5±3.9	0.85	62	0.09±0.06	6.6±0.6	0.04
	G9	65	1.08±0.10	15.4±5.4	0.63	66	0.06±0.10	7.0±0.7	0.01
	G10	65	1.10±0.08	-4.0±5.7	0.73	56	0.19±0.06	5.2±0.8	0.15
	BG	62	1.21±0.08	-8.2±4.9	0.81	63	$0.24{\pm}0.07$	5.8±0.5	0.15

 Table S7
 Proximity factors estimated from LRM between selected schools and FSMs by season


Note:

^a PF refers to proximity factor derived based on linear regression of PM_{2.5} concentrations between transects in close proximity to the selected school and the FSMs.

^b C_{UE} refers to unexplained concentrations at a school that is not explained by the variability in the concentration at the selected FSM; negative values suggest that a portion of the concentration measured at FSM is not useful in interpreting the variations in school concentrations.

^c R² is coefficient of determination of linear regression models (LRMs).

^d SE refers to standard error.

(a) Design of sampling backpack

(b) Cross-calibration

(d) Indoor sampling

(e) Outdoor sampling

Figure S1. The (a) design of sampling backpack, (b) cross-calibration during trip to school, (c) sampling set up at school indoor and (d) outdoor transect

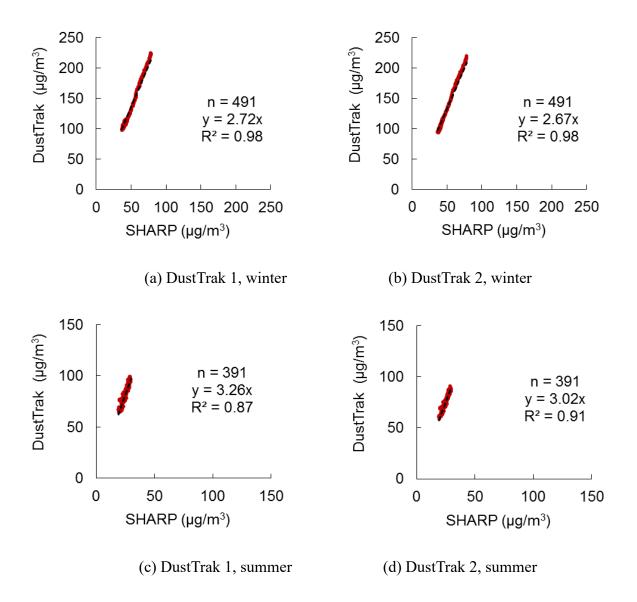
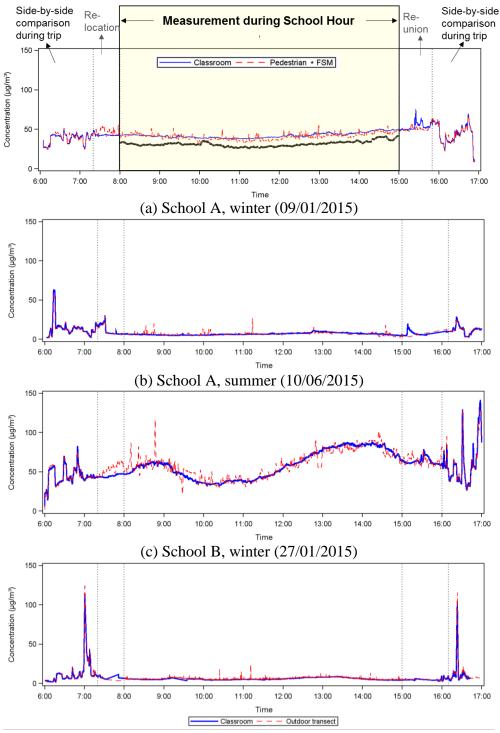
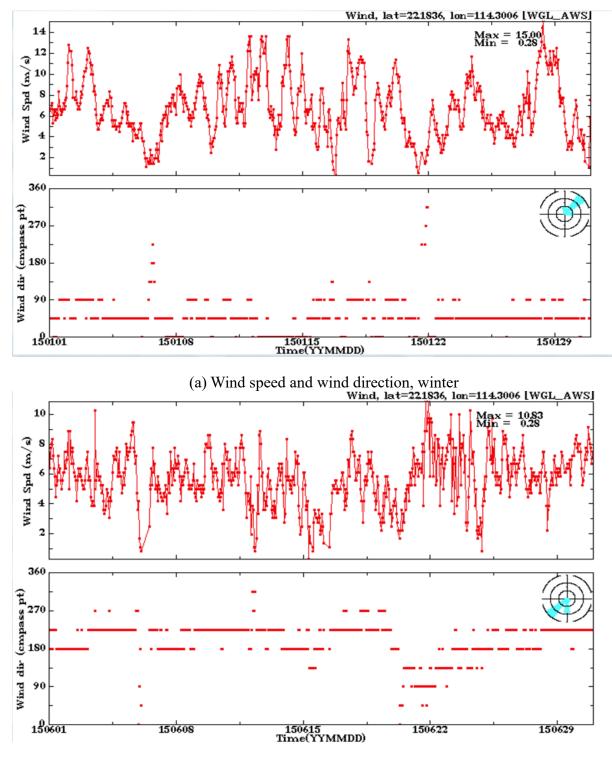



Figure S2. Calibration of 1-minute average DustTrak 1 (used for indoor) and DustTrak 2 (used for outdoor transect) against SHARP at HKUST Supersite for winter and summer season



(d) School B, summer (16/06/2015)

Note: ^a the DustTraks were calibrated against the reference method (SHARP) before the whole measurement. Their performance was cross-checked twice every day during the trips between lab and measured schools. ^b Re-location: the two sampling backpacks diverged to different sampling locations.

^c Re-union: the two sampling backpacks met together after sampling.

Figure S3. Examples of time plots of PM_{2.5} concentration measured in classroom and outdoor transect at two schools during winter and summer.

(b) Wind speed and wind direction, summer

Figure S4. Wind rose maps from a background meteorological station (Waglan island) in Hong Kong during measurement at schools for (a) winter and (b) summer in 2015

References

- Levy, J. I.; Dumyahn, T.; Spengler, J. D., Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. *Journal Of Exposure Analysis And Environmental Epidemiology* 2002, *12*, (2), 104-114.
- 2. Houseman, E. A.; Ryan, L.; Levy, J. I.; Spengler, J. D., Autocorrelation in real-time continuous monitoring of microenvironments. *J Appl Stat* **2002**, *29*, (6), 855-872.
- 3. Perez, P.; Trier, A.; Reyes, J., Prediction of PM_{2.5} concentrations several hours in advance using neural networks in Santiago, Chile. *Atmos Environ* **2000**, *34*, (8), 1189-1196.
- 4. DeGaetano, A. T.; Doherty, O. M., Temporal, spatial and meteorological variations in hourly PM_{2.5} concentration extremes in New York City. *Atmos Environ* **2004**, *38*, (11), 1547-1558.