Supporting Information:

PdSe₂: Flexible Two-dimensional Transition Metal Dichalcogenides Monolayer for Water Splitting Photocatalyst with Extremely Low Recombination Rate

Chen Long[†], Yan Liang[†], Hao Jin^{*,‡}, Baibiao Huang[†], and Ying Dai^{*,†}

[†]School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100 Jinan, P. R. China.

[‡]Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, 518060 Shenzhen, P. R. China.

^{*}E-mail: jh@szu.edu.cn (H. J); daiy60@sdu.edu.cn (Y. D)

1. Calculation method of HER and OER activity

Table S1. Zero-point energy correction (E_{ZPE}), entropy contribution (TS, T=298.15K), total energy (E), and the Gibbs free energy (G) of molecules and adsorbates.

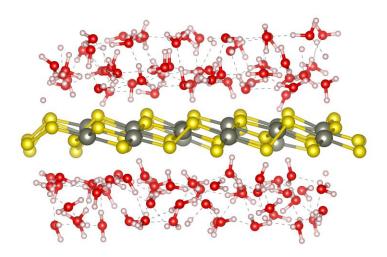
Species	E _{ZPE} (eV)	-TS	E (eV)	G (eV)
H_2	0.27	-0.41	-6.77	-6.91
H_2O	0.56	-0.67	-14.22	-14.33
OH*	0.29	-0.21	-116.53	-116.45
O*	0.03	-0.12	-110.75	-110.84
OOH*	0.35	-0.25	-121.31	-121.21
Н*	0.19	-0.02	-110.12	-109.9

In the aqueous solution, the hydrogen evolution reaction can be written as:

$$H^* + e^- + ^* \rightleftharpoons H^*$$
 (Eq. S1)

in which the * represents the adsorption site. Meanwhile, the oxygen evolution reaction processes a four-electron oxidation steps, which can be written as:

$$\begin{split} &H_{2}O + * \to OH^{*} + H^{+} + e^{-} \\ &OH^{*} \to O^{*} + H^{+} + e^{-} \\ &O^{*} + H_{2}O \to OOH^{*} + H^{+} + e^{-} \\ &OOH^{*} \to * + O_{2} + e^{-} \end{split} \tag{Eq. S2}$$


where OH^* , O^* and OOH^* denote the adsorbed intermediates. Then, the free energy change (ΔG) can be express as:

$$\begin{split} \Delta G_1 &= G_{H^*} - 1/2G_{H_2} + G^* \\ \Delta G_2 &= G_{OH^*} + 1/2G_{H_2} - G_{H_2O} \\ \Delta G_3 &= G_{O^*} + 1/2G_{H_2} - G_{OH} \\ \Delta G_4 &= G_{OOH^*} + 1/2G_{H_2} - G_{H_2O} - G_{O^*} \\ \Delta G_5 &= G^* + 1/2G_{H_2} - G_{O_2} - G_{OOH^*} \end{split}$$
 (Eq. S3)

Table S2. The calculated ΔG of water oxidation and hydrogen reduction reactions for different sites of PdSe₂ monolayer. The most active sites for two reactions are highlight in red.

	Pd (eV)	Se _I (eV)	Se _{II} (eV)
Water Oxidation	2.155	2.75	2.685
Hydrogen Reduction	1.505	1.195	1.175

2. AIMD simulation in liquid water

Figure S1. The structure evolution of the PdSe₂ monolayer in liquid water at 300 K for 10 ps. The yellow, grey, pink and red balls represent the Se, Pd, H and O atoms, respectively.