Supplementary Materials for

Concise Total Synthesis of Herqulines B and C

Chi He, ${ }^{\S}$ Thomas P. Stratton, ${ }^{\S}$ and Phil S. Baran*
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
Correspondence to: pbaran@scripps.edu

I) Experimental Section S 2
II) ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR Spectra S 21
III) X-Ray Crystallography Data (compound 11) S 45
IV) References S 48

I) Experimental Section

All reactions were carried out under an inert argon atmosphere with dry solvents under anhydrous conditions unless otherwise stated. Dry acetonitrile (MeCN), dichloromethane (DCM), diethyl ether (Et2O), tetrahydrofuran (THF), toluene (PhMe), dimethylformamide (DMF), benzene, and triethylamine (TEA) were obtained by passing the previously degassed solvents through activated alumina columns. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous material, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica plates (60F-254), using UV light as the visualizing agent and/or phosphomolybdic acid and heat as a developing agent. Flash silica gel chromatography was performed using E. Merck silica gel (60, particle size 0.043 -0.063 mm). NMR spectra were recorded on Bruker DRX-600 and AMX-400 instruments and were calibrated using residual undeuterated solvent as an internal reference (chloroform- d : ${ }^{1} \mathrm{H}$ NMR $\delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $\delta=77.16 \mathrm{ppm}$). The following abbreviations were used to explain NMR peak multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $q=$ quartet, $m=$ multiplet, $b r=$ broad. High-resolution mass spectra (HRMS) were recorded on an Agilent LC/MSD TOF mass spectrometer by electrospray ionization time-of-flight (ESI-TOF) reflectron experiments.

Experimental Procedures and Characterization Data for

Synthesis of Herqulines B and C

Scheme S1. Synthesis of 4 and 5

Compound S1

Procedure: To a solution of 3-iodo-L-tyrosine ($30.7 \mathrm{~g}, 100 \mathrm{mmol}$, 1 equiv) in MeOH (100 mL) was added acyl chloride ($14.2 \mathrm{~mL}, 200 \mathrm{mmol}, 2$ equiv) dropwise at $0^{\circ} \mathrm{C}$. The mixture was then heated to reflux for 2 h before all solvent was removed in vacuo. The resulting hydrochloride salt was used in the next step directly without further purification.

The salt was re-dissolved in dioxane $/ \mathrm{H}_{2} \mathrm{O}(4: 1)(100 \mathrm{~mL}, 1 \mathrm{M})$. Triethylamine (TEA, 41.5 $\mathrm{mL}, 300 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Boc}_{2} \mathrm{O}(24 \mathrm{~mL}, 105 \mathrm{mmol}, 1.05$ equiv) were added at room temperature and the mixture was stirred for 4 h . The reaction mixture was concentrated to remove dioxane and transferred to a separatory funnel containing water and 50 mL 1 N HCl . The mixture was extracted with EtOAc $(100 \mathrm{~mL} \times 3)$ and combined organic layers
were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give the Boc-protected amine which was directly used in the next step.

The Boc-protected amine was dissolved in acetone ($200 \mathrm{~mL}, 0.5 \mathrm{M}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{~g}$, $200 \mathrm{mmol}, 2$ equiv) was added in one portion. The mixture was stirred at room temperature for 15 min before adding iodomethane ($12.5 \mathrm{~mL}, 200 \mathrm{mmol}, 2$ equiv). The reaction was kept at room temperature for 7 h . The mixture was filtered and washed with acetone to remove the salts. The resulting solution was concentrated in vacuo and the residue was re-dissolved in EtOAc (200 mL) and washed with brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give the crude product which was purified by flash chromatography (EtOAc/Hexanes $=1: 3$) to give product $\mathbf{S 1}$ as white solid ($43.5 \mathrm{~g}, 100$ mmol) in quantitative yield over 3 steps. Spectroscopic data matched reported literature data. ${ }^{[1]}$

Compound 5

Procedure: To a solution of S1 ($28.8 \mathrm{~g}, 66 \mathrm{mmol}, 1$ equiv) and iodomethane ($6.2 \mathrm{~mL}, 99$ mmol, 1.5 equiv) in DMF ($130 \mathrm{~mL}, 0.5 \mathrm{M}$) was added NaH (60% in mineral oil, 2.7 g , 68 $\mathrm{mmol}, 1.03$ equiv) at $0^{\circ} \mathrm{C}$ portionwise. After 2 h , the reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and extracted with EtOAc ($300 \mathrm{~mL} \times 4$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the methylation product which was directly used in the next step.

The methylation product was dissolved in a mixture of TFA/DCM ($1: 5,120 \mathrm{~mL}$) and stirred at room temperature overnight. The reaction was quenched by adding KOH (1 N aq.) and NaHCO_{3} (sat. aq.) at $0^{\circ} \mathrm{C}$ until $\mathrm{pH}=8$. The mixture was extracted with $\mathrm{DCM}(150 \mathrm{~mL} \times 3)$ and combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a yellow oil. The crude product was purified by flash chromatography (EtOAc/Hexanes = 1:3) to give product $5(20.0 \mathrm{~g}, 57.4 \mathrm{mmol})$ as pale yellow oil in 87% yield over 2 steps.

Physical State: pale yellow oil;

TLC: $\mathrm{R}_{\mathrm{f}}=0.6(\mathrm{MeOH} / \mathrm{EtOAc}=1: 20)$;
$[\alpha]_{D}^{20.0}=+16.7\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.57(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.72$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=6.7,3.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.35$ (s, 3H);
${ }^{13}{ }^{2} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 174.7,157.1,140.0,131.4,130.3,110.8,86.0,64.7$, 56.4, 51.8, 38.1, 34.8;

HRMS (m/z): calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 350.0248$, found 350.0253 .

Compound 4

Procedure: To a solution of $\mathbf{S 1}\left(26.8 \mathrm{~g}, 61.6 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1:1, $120 \mathrm{~mL}, 0.5 \mathrm{M})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.18 \mathrm{~g}, 123 \mathrm{mmol}, 2$ equiv) at room temperature. After 2 h , the reaction mixture was concentrated to remove MeOH and THF and the crude product was diluted with $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic layer was discarded, and the aqueous layer was acidified to pH 2 with 1 N HCl . The precipitated white solid was redissolved in EtOAc (200 mL), washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give the product $4(25.9 \mathrm{~g}, 61.6 \mathrm{mmol}$, quantitative yield) as a mixture of rotamers. Spectroscopic data matched reported literature data. ${ }^{[2]}$ The material was used directly for the next step without further purification.

Compound 6

Procedure: To a solution of acid $4(25.9 \mathrm{~g}, 61.6 \mathrm{mmol}, 1$ equiv) in DMF (80 mL) was added DIPEA ($16.1 \mathrm{~mL}, 93 \mathrm{mmol}, 1.5$ equiv) and HATU ($28.1 \mathrm{~g}, 73.9 \mathrm{mmol}, 1.2$ equiv) at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 15 min before adding a solution of amine $5(23 \mathrm{~g}, 66 \mathrm{mmol}, 1.07$ equiv) in DMF (50 mL). The reaction was stirred at room temperature overnight. DMF was removed under reduced pressure and the residue was dissolved in EtOAc and brine. The mixture was extracted with EtOAc (100 $\mathrm{mL} \times 3$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give a pale yellow foam. The crude product was purified by flash chromatography (EtOAc/Hexanes $=1: 2$) to give product 6 $(37.5 \mathrm{~g}, 49.7 \mathrm{mmol})$ as white foam in 81% yield.

Physical State: white foam;
TLC: $\mathrm{R}_{\mathrm{f}}=0.25$ (Hexanes/EtOAc $=2: 1$);
$[\alpha]_{D}^{20.0}=-26.9\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$
${ }^{1}{ }^{1} \mathrm{NMRR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major rotomer) $\delta(\mathrm{ppm}) 7.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.79-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.94$ (dd, $J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.85(\mathrm{dd}, J=14.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=13.7$, 6.0 Hz, 1H), 1.39 (s, 9H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) (major rotomer) $\delta(\mathrm{ppm})$ 171.8, 170.6, 157.1 (2 C), 155.0, $140.4,139.8,131.0,130.8,130.5,130.0,110.8$ (2 C), 85.9, 85.8, 79.9 (2 C), 59.1, 56.4, 52.6, 51.6, 37.5, 33.3, 33.2, 28.4 (3 C);

HRMS (m/z): calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]+753.0528$, found 753.0538 .

Compound 7

Procedure: Dipeptide 6 ($30.2 \mathrm{~g}, 40.1 \mathrm{mmol}, 1$ equiv) was dissolved in formic acid (150 mL) and stirred at room temperature overnight. The solvent was removed in vacuo. The residual formic acid was removed by azeotropic distillation with toluene ($50 \mathrm{~mL} \times 2$). The obtained yellow solid was suspended in sec-butanol/toluene ($4: 1,200 \mathrm{~mL}, 0.2 \mathrm{M}$). The suspension was heated to $105^{\circ} \mathrm{C}$ to give a pale yellow clear solution. After 5 h , the solvent was removed and the resulting solid was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{EtOAc}$ $=1: 30)$ to give product $7(21.4 \mathrm{~g}, 34.5 \mathrm{mmol})$ as white solid in 86% yield.

Physical State: white solid;

TLC: $\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{MeOH} / \mathrm{EtOAc}=1: 20)$;
$[\alpha]_{D}^{20.0}=-128.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, $J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H})$, 3.83 (s, 3H), 3.83 (s, 3H), 3.14 (dd, $J=14.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (s, 3H), 3.03 (dd, $J=14.3$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{dd}, J=13.7,11.2 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 165.6,165.2,158.0,157.5,141.0,139.9,131.5,130.8$, 130.1, 129.2, 111.3, 111.2, 86.7 (2 C), 63.1, 56.8, 56.7, 56.6, 39.8, 35.4, 33.3;

HRMS (m/z): calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$620.9742, found 620.9747.

Compound 8

Procedure: To a solution of compound $7\left(4.6 \mathrm{~g}, 7.4 \mathrm{mmol}, 1\right.$ equiv) in DMSO/ $\mathrm{H}_{2} \mathrm{O}(100: 1$, $372 \mathrm{~mL}, 0.02 \mathrm{M}$) was added $\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.20 \mathrm{~g}, 1.5 \mathrm{mmol}, 0.2\right.$ equiv), $\mathrm{B}_{2} \mathrm{Pin}_{2}$ (7.55 g , $29.7 \mathrm{mmol}, 4$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.16 \mathrm{~g}, 44.6 \mathrm{mmol}, 6$ equiv). The solution was degassed through an argon balloon for 10 min , then moved to a $90^{\circ} \mathrm{C}$ oil bath. After stirring for $60 \mathrm{~min}, 60 \mathrm{~mL}$ of air was added to the mixture via syringe and stirred at same temperature overnight. After cooling to room temperature, the reaction was poured into an ice bath and $1 \mathrm{~N} \mathrm{HCl}($ aq., 500 mL) was added. The mixture was extracted with EtOAc ($300 \mathrm{~mL} \times 4$ 4). The combined organic layers were washed with brine ($500 \mathrm{~mL} \times 3$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give a yellow foam. The crude product was purified by flash chromatography (EtOAc to $\mathrm{EtOAc} / \mathrm{MeOH}=30: 1$) to give product $8(1.63 \mathrm{~g}, 4.4 \mathrm{mmol})$ as white foam in 60% yield. ${ }^{[2]}$

Physical State: white foam;
TLC: $\mathrm{R}_{\mathrm{f}}=0.3(\mathrm{MeOH} / \mathrm{EtOAc}=1: 20)$;
$[\alpha]_{D}^{20.0}=+32.8\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.03(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H})$, 6.76 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.49 (dd, $J=2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-$ $6.41(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.96$ (m, 2H), 3.91 (s, 3H), 3.86 (s, 3H), 2.94 (dd, J = 15.9, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (s, 3H), 2.63 (dd, $J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 167.9,166.9,155.8,155.6,142.0,141.7,130.0,129.8$, 129.6, 129.2, 125.5, 125.3, 112.3, 111.9, 62.3, 56.4, 56.2 (2 C), 34.9, 34.2, 31.8;

HRMS (m/z): calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 367.1652$, found 367.1662.

Compound 9

Procedure: To a flame dried 100 mL round bottom flask was condensed liquid NH_{3} (20 mL) at $-78^{\circ} \mathrm{C}$ under Ar atmosphere, after which lithium metal ($172 \mathrm{mg}, 24.6 \mathrm{mmol}, 15$ equiv) was added. The solution turned to dark blue and kept stirring for 10 min before adding a solution of 8 ($600 \mathrm{mg}, 1.64 \mathrm{mmol}, 1$ equiv) and trifluoroethanol ($0.96 \mathrm{ml}, 13.1$ mmol, 8 equiv) in THF (15 mL). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 60 min and quenched by adding excess trifluoroethanol (1.5 mL) and the blue color disappeared immediately. Following evaporation of all NH_{3}, the residue was dissolved in EtOAc and brine. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a pale yellow foam. The crude product was purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}=50: 1$) to give product $9(464 \mathrm{mg}, 1.26 \mathrm{mmol})$ as white foam in 77% yield.

Physical State: white foam;
TLC: $\mathrm{R}_{\mathrm{f}}=0.6(\mathrm{MeOH} / \mathrm{EtOAc}=1: 20)$;
$[\alpha]_{D}^{20.0}=+35.5\left(c=0.6, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.88(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (dd, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.36$ (m, 1H), 4.68 (dd, $J=4.3$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dt}, J=5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71-$ 3.63 (m, 1H), 3.48 (s, 3H), 3.43 (d, J = $16.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.37-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.14$ (m, $1 \mathrm{H}), 2.87(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (s, 3H);
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 168.8,161.1,155.9,155.4,133.0,132.1,131.1,130.2$, $128.6,126.4,110.8,91.0,84.8,62.8,56.2,54.5,41.5,37.3,36.7,32.6,26.2$;

HRMS (m/z): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+369.1809$, found 369.1815.

Compound 10

Procedure: To a solution of 9 ($320 \mathrm{mg}, 0.87 \mathrm{mmol}, 1$ equiv) in toluene $(15 \mathrm{~mL})$ was added $\left[\operatorname{lr}(\mathrm{COE})_{2} \mathrm{Cl}\right]_{2}\left(156 \mathrm{mg}, 0.17 \mathrm{mmol}, 0.2\right.$ equiv) and $\mathrm{Et}_{2} \mathrm{SiH}_{2}(0.71 \mathrm{~mL}, 8.7 \mathrm{mmol}, 10$ equiv). The mixture was sealed under argon and heated at $120^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the solvent was removed in vacuo. The residue was directly purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}=40: 1$) to give product $10(254 \mathrm{mg}, 0.75 \mathrm{mmol})$ as white foam in 86\% yield. ${ }^{[3]}$

Physical State: white foam;

TLC: $\mathrm{R}_{\mathrm{f}}=0.25\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}=1: 10\right)$;
$[\alpha]_{D}^{20.0}=+56.2\left(c=0.29, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.59(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=3.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (s, 3H), 3.55 (s, 3H), $3.37-3.25$ (m, 3H), $3.24-3.18$ (m, 2H), 3.14 $3.06(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.24$ (dd, $J=$ $14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{br}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) δ (ppm) 155.2, 154.3, 138.9, 132.4, 129.6 (2 C), 129.5, 109.6, $90.5,55.7,55.1,54.3,53.9,52.9,50.1,41.1,38.4,37.4,37.2,34.0$;

Note: One aromatic carbon was missing in ${ }^{13} \mathrm{C}$ NMR. A similar result was observed for compound 11, whose structure was unambiguously assigned using X-ray crystallography.

HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+341.2224$, found 341.2231.

Compound 11

Procedure: To a solution of $10\left(35 \mathrm{mg}, 0.10 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added oxalic acid ($18 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The mixture was stirred at room temperature for 2 h and the solvent was removed in vacuo. The residue was dissolved in EtOAc and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$. The mixture was extracted with EtOAc (5 $\mathrm{mL} \times 3$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give a pale yellow foam. The crude product was purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}=40: 1$) to give product 11 ($31 \mathrm{mg}, 0.095 \mathrm{mmol}$) as white solid in 95% yield.

Physical State: white solid;

TLC: $\mathrm{R}_{\mathrm{f}}=0.25\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}=1: 10\right)$;
$[\alpha]_{D}^{20.0}=+71.7\left(c=0.53, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.70(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.38-$ $3.31(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=11.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.03$ (d, J = 15.7 Hz, 1H), 2.93 (t, J=11.3 Hz, 1H), 2.72-2.64 (m, 2H), 2.48 (m, 1H), 2.35 (s, $3 \mathrm{H}), 2.33(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 212.0,155.7,138.9,135.5,131.2,130.2,128.8,110.5$, 56.1, 55.6, 54.4, 52.9, 50.9, 47.7, 41.7, 40.0, 39.4, 38.9, 33.3;

Note: One aromatic carbon was missing in ${ }^{13} \mathrm{C}$ NMR. X-ray crystallography assigned the structure.

HRMS (m / z): calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+327.2067$, found 327.2070.

Compound 12

Procedure: To a solution of $10(20 \mathrm{mg}, 0.054 \mathrm{mmol}$, 1 equiv) in benzene (6 mL) was added ethylene glycol ($45 \mu \mathrm{~L}, 0.81 \mathrm{mmol}, 15$ equiv) and p-toluenesulfonic acid (5 mg , $0.027 \mathrm{mmol}, 0.5$ equiv) was added. The resulting suspension was placed in an $110^{\circ} \mathrm{C}$ oil bath and water was removed by Dean Stark Trap. The solution was stirred for 0.5 h at which time LC/MS analysis indicated complete conversion to desired mass ($\mathrm{M}+/ \mathrm{Z}=371$). After cooling to room temperature, suspension was dilutied with EtOAc and saturated aqueous NaHCO_{3} was added and the layers that formed were separated. The aqueous phase was then extracted with EtOAc ($15 \mathrm{~mL} \times 3$) and the pooled organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give a pale yellow oil that was used without further purification in the next step.

Compound 13

Procedure: To a flame dried 100 mL round bottom flask was condensed liquid NH_{3} (10 mL) at $-78^{\circ} \mathrm{C}$ under Ar atmosphere, after which lithium metal ($12 \mathrm{mg}, 1.62 \mathrm{mmol}, 30$ equiv) and tert-butanol (0.5 mL) were added. The solution turned to dark blue and kept stirring for 10 min before adding a solution of crude 12 from the previous step in THF (5 mL). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and quenched by adding excess solid $\mathrm{NH}_{4} \mathrm{Cl}$ and the blue color disappeared immediately. Following evaporation of all NH_{3}, the residue was dissolved in EtOAc and brine. The mixture was extracted with EtOAc (15 mL $x 3$) dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a pale yellow foam 13 which was used in the next step without further purification.

Procedure: To a solution of 13 in $1: 1 \mathrm{THF} / \mathrm{MeOH}(1.5 \mathrm{~mL})$ was added $1 \mathrm{~N} \mathrm{HCl}(0.5 \mathrm{~mL})$. The pale yellow cloudy solution stirred at $65^{\circ} \mathrm{C}$ under argon for 30 min at which time the solution had become clear and homogeneous. Solvents were then removed under reduced pressure and the residue was redissolved in MeOH . The resulting solution was passed through a plug of basic alumina and concentrated. Purification using preparative TLC ($10 \% \mathrm{MeOH}$ in $\mathrm{CHCl}_{3}, 1 \% \mathrm{PrNH}_{2}$) afforded a $1: 5$ mixture of herqulines $\mathrm{B}(\mathbf{3})$ and C (14) as a white solid ($5.0 \mathrm{mg}, 0.016 \mathrm{mmol}, 28 \%$ over 3 steps).

Physical State: white solid;

TLC: $\mathrm{R}_{\mathrm{f}}=0.25\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}, 1 \% \mathrm{PrNH}_{2}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H})$, 3.18 (dd, J = 13.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.16-3.12$ (m, 1H), $2.87-2.75$ (m, 3H), 2.72-2.55 (m, $4 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 5 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{dd}$, $J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 212.2, 211.0, 139.7, 138.6, 125.7, 125.4, 58.6, 58.2, $50.8,50.5,49.0,46.7,44.6,40.6,40.2,39.4,39.0,34.2,33.3 ;$

HRMS (m/z): calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+315.2067$, found 315.2071.

Herquline C (14)
(Reported by Tang)

Tabulated data for Natural (Tang ${ }^{[4]}$) and Synthetic Herquline C ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	Natural Herquline C	Synthetic Herquline C	Delta ppm
H2'	5.26, m	5.25, m	0.01
H2	5.14, m	5.14, m	-
H3	3.99 , br, s	3.98 , br, s	0.01
H3'	3.83 br, s	3.83 br, s	-
H9'	$\begin{gathered} 3.17, \text { dd } \\ 2.65, \text { overlaps } \end{gathered}$	$\begin{gathered} 3.18, \text { dd } \\ 2.65, \text { overlaps } \end{gathered}$	$\begin{gathered} 0.01 \\ - \end{gathered}$
H8	3.13, m	3.14, m	0.01
H6'	$\begin{aligned} & \hline 2.83, \mathrm{~m} \\ & 2.40, \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 2.83, m } \\ & 2.40, \mathrm{~m} \end{aligned}$	
H9	$\begin{aligned} & \text { 2.81, m } \\ & 2.15, \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 2.81, m } \\ & 2.14, \mathrm{~m} \end{aligned}$	0.01
H6	$\begin{aligned} & \text { 2.76, m } \\ & 2.46, \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 2.76, m } \\ & \text { 2.46, } \mathrm{m} \end{aligned}$	-
H5	$2.68, \mathrm{~m}$ 2.48, overlaps	$\begin{gathered} \hline 2.68, \mathrm{~m} \\ 2.48, \text { overlaps } \\ \hline \end{gathered}$	
H5'	$\begin{aligned} & \hline 2.62, \mathrm{~m} \\ & 2.51, \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 2.62, m } \\ & 2.51, \mathrm{~m} \end{aligned}$	-
H7'	2.48, overlaps 2.11, m br, d	2.48, overlaps 2.10, m br, d	$\begin{gathered} - \\ 0.01 \end{gathered}$
H7	$\begin{gathered} \text { 2.38, m overlaps } \\ 2.22, \mathrm{~m} \text { br, d } \end{gathered}$	2.38, m overlaps $2.22, \mathrm{~m} \mathrm{br}, \mathrm{d}$	-
$11-\mathrm{Me}$	2.35, s	2.34, s	0.01
H8'	2.32, m	2.32, m	-

Herquline C (14)
(Reported by Tang)

Tabulated data for Natural (Tang ${ }^{[4]}$) and Synthetic Herquine C ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	Natural Herquline C	Synthetic Herquline C	Delta ppm
C4'	212.2	212.2	-
C4	211.0	211.0	-
C1'	139.8	139.7	0.1
C1	138.7	138.6	0.1
C2	125.5	125.7	0.2
C2'	125.4	125.4	-
C8'	58.6	58.6	-
C9	58.1	58.2	0.1
C3	50.8	50.8	-
C8	50.5	50.5	-
C3'	49.0	49.0	-
C9'	46.9	46.7	0.2
11-Me	44.6	44.6	-
C7	40.6	40.6	-
C5'	40.2	40.2	-
C5	39.4	39.4	-
C7'	39.1	39.0	0.1
C6	34.2	34.2	-
C6'	33.3	33.3	-

Herquline B (3)

Procedure: The mixture of herqulines B \& C obtained from the previous step was taken up in toluene (2.0 mL) and sealed under argon atmosphere. DBU ($5.0 \mathrm{uL}, 0.032 \mathrm{mmol}$, 2 equiv) was added and the mixture stirred at room temperature for 0.5 h . Solvent was then removed under reduced pressure and the crude residue was directly subjected to preparative $\mathrm{TLC}\left(10 \% \mathrm{MeOH}^{2} \mathrm{CHCl}_{3}, 1 \% \mathrm{PrNH}_{2}\right)$ to give the title compound $\mathbf{3}$ as a white solid (5.0 mg , quantitative yield).

Physical State: white solid;

TLC: $\mathrm{R}_{\mathrm{f}}=0.25\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}, 1 \% \mathrm{PrNH}_{2}\right)$;
$[\alpha]_{D}^{20.0}=-98\left(c=0.05, \mathrm{CHCl}_{3}\right) ;-82(c=0.05, \mathrm{MeOH}) ;$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 5.30(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J$ $=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 5 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, \mathrm{J}=14.3,4.5 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13}{ }^{1}$ CNR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 212.0,209.9,138.3,136.2,126.7,124.0,59.4,53.2$, 52.0, 50.8, 48.8, 45.7, 42.9, 42.2, 39.6, 39.3, 37.3, 32.9, 30.7;

HRMS $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+315.2067$, found 315.2081.

Herquline B (3)
(Reported by Ōmura)

Tabulated data for Natural (Ōmura ${ }^{[5]}$) and Synthetic Herquline B ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	Natural Herquline B	Synthetic Herquline B	Delta ppm
H2	5.31, m	5.30, m	0.01
H2'	5.25, m	5.26, m	0.01
H3'	3.95 , br, s	3.95, br, s	-
H3	3.80 br, s	3.83 br, s	0.03
H8	3.25, m	3.14, m	0.11
H9'	$\begin{aligned} & 3.01, \mathrm{dd} \\ & \text { 2.92, dd } \end{aligned}$	$\begin{aligned} & 3.01, \mathrm{dd} \\ & \text { 2.89, dd } \end{aligned}$	0.03
H7'	$\begin{aligned} & 2.73, \mathrm{dd} \\ & 1.78, \mathrm{dd} \end{aligned}$	$\begin{aligned} & 2.73, \mathrm{dd} \\ & 1.78, \mathrm{dd} \end{aligned}$	-
H5'	$\begin{aligned} & 2.68, \mathrm{~m} \\ & 2.48, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2.68, \mathrm{~m} \\ & 2.48, \mathrm{~m} \end{aligned}$	-
H5	$\begin{aligned} & \hline 2.68, \mathrm{~m} \\ & 2.48, \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 2.68, \mathrm{~m} \\ & 2.48, \mathrm{~m} \end{aligned}$	-
H6'	$\begin{aligned} & 2.67, \mathrm{~m} \\ & 2.48, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2.67, \mathrm{~m} \\ & 2.48, \mathrm{~m} \end{aligned}$	-
H6	$\begin{aligned} & \hline 2.61, \mathrm{~m} \\ & 2.32, \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 2.61, m } \\ & \text { 2.33, } \mathrm{m} \end{aligned}$	0.01
H9	2.58, m	2.58, m	-
H7	$\begin{aligned} & \hline 2.56, \mathrm{~m} \\ & 2.28, \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 2.56, m } \\ & 2.23, m \end{aligned}$	$\begin{gathered} - \\ 0.05 \end{gathered}$
H8'	2.41, m	2.40, m	0.01
11-Me	2.26, s	2.26, s	-

Herquline B (3)
(Reported by Ōmura)

Tabulated data for Natural (Ōmura ${ }^{[5]}$) and Synthetic Herquline B ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	Natural Herquline B	Synthetic Herquline B	Delta ppm
C4	211.9	212.0	0.1
C4'	209.8	209.9	0.1
C1	138.4	138.3	0.1
C1 $^{\prime}$	135.7	136.2	0.5
C2'	127.2	126.7	0.5
C2	124.8	124.0	0.8
C8'	59.1	59.4	0.3
C9	53.2	53.2	-
C8	51.6	52.0	0.4
C3'	50.9	50.8	0.1
C3	48.9	48.8	0.1
C9'	44.8	45.7	0.9
11-Me	42.9	42.9	-
C7	41.7	42.2	0.5
C5	39.7	39.6	0.1
C5'	39.4	39.3	0.1
C7'	37.0	37.3	0.3
C6'	33.2	32.9	0.3
C6	30.8	30.7	0.1

II) $\quad{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra

${ }^{13} \mathrm{C}$ NMR of 5

${ }^{13} \mathrm{C}$ NMR of 6

```
レージ \(0 て ゙ \varepsilon \varepsilon\)
\(\downarrow \varepsilon \varepsilon \varepsilon\)
しガレと
\(8 G^{\circ} L G\)
\(9 G^{\circ} 7 G^{\prime}\)
\(1 t^{\circ} 9 G^{\prime}\)
\(80^{\circ} 6 G^{\prime}\)
```

98.62
$\mathrm{GB} \cdot \mathrm{G8}$
$68 \cdot \mathrm{G8}$
92.01 L

ع0＇ss
$\left.\begin{array}{l}\angle 0 \cdot \angle G L \\ \text { Zレ＇} \angle G \downarrow\end{array}\right\}$

S90ㄴレ
を8・レレーフ

${ }^{1} \mathrm{H}$ NMR of 7

${ }^{13} \mathrm{C}$ NMR of 9

```
¿て・9Z-
\[
79^{\circ} \mathrm{z}
\]
\[
\begin{aligned}
& 7 L^{\circ} 9 \varepsilon \\
& 9 Z^{\prime} \angle \varepsilon
\end{aligned}
\]
09レー
\[
\begin{aligned}
& 67.7 G- \\
& \angle L \cdot 99 \\
& \angle L \cdot Z 9
\end{aligned}
\]
```

$$
\begin{array}{ll|}
\hline \hline \text { Z8. } 8 \text { - } \\
\text { 00.レ6- }
\end{array}
$$

${ }^{1} \mathrm{H}$ NMR of 11

${ }^{13} \mathrm{C}$ NMR of 11

Comparing Herqulin B (3) and Crude Herquline C (14) from reaction mixture (before purification)

${ }^{1} \mathrm{H}$ NMR of herqulines $\mathrm{B}(3)$ and C (14) (1:5 mixture)

${ }^{13} \mathrm{C}$ NMR of herqulines $B(3)$ and $C(14)$ (5:1 mixture)

Comparing Synthetic Herquline C (14) (Wood ${ }^{[6]}$ and Baran) (${ }^{1} \mathrm{H} \mathrm{NMR}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of herquine $\mathrm{B}(3)$

${ }^{13} \mathrm{C}$ NMR of herquine $B(3)$

HSQC of herquline B (3)
(mdd) H

Comparing Synthetic Herquline $\mathrm{B}(3)$ (Wood ${ }^{[6]}$ and Baran) (${ }^{13} \mathrm{C} \mathrm{NMR}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

III) X-Ray Crystallography Data (compound 11)

The single crystal X-ray diffraction studies were carried out on a Bruker SMART APEX II CCD diffractometer equipped with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation ($\lambda=1.54178 \AA$).

Crystals of the subject compound were used as received (grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes).
A $0.240 \times 0.040 \times 0.040 \mathrm{~mm}$ piece of a colorless crystal was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ш scans. Crystal-to-detector distance was 40 mm and exposure time was 2, 4 and 8 s seconds (depending on the 2θ range) per frame using a scan width of 1.25°. Data collection was 100.0% complete to 67.679° in θ. A total of 29527 reflections were collected covering the indices, $-22<=h<=23,-23<=k<=23,-10<=1<=10$. 3598 reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0326 . Indexing and unit cell refinement indicated a Primitive, Hexagonal lattice. The space group was found to be P65. The data were integrated using the Bruker SAINT Software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Crystallographic data are summarized in Table 1.

Notes: Excellent data and refinement
Absolute structure parameter 0.04(6) conclusive

Figure S1. X-ray structure of 11

Table S1. Crystal data and structure refinement for 11.

Report date	2018-11-29
Identification code	baran708_sq
Empirical formula	C20 H26 N2 O2
Molecular formula	C20 H26 N2 O2
Formula weight	326.43
Temperature	100.0 K
Wavelength	1.54178 A
Crystal system	Hexagonal
Space group	P65
Unit cell dimensions	$\mathrm{a}=19.5192(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=19.5192(4) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=8.5136(2) \AA \quad \gamma=120^{\circ}$.
Volume	2809.10(13) \AA^{3}
Z	6
Density (calculated)	$1.158 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.591 \mathrm{~mm}^{-1}$
F(000)	1056
Crystal size	$0.24 \times 0.04 \times 0.04 \mathrm{~mm}^{3}$
Crystal color, habit	colorless plank
Theta range for data collection	2.614 to 71.208°.
Index ranges	$-22<=\mathrm{h}<=23,-23<=\mathrm{k}<=23,-10<=1<=10$
Reflections collected	29527
Independent reflections	$3598[\mathrm{R}(\mathrm{int})=0.0326]$
Completeness to theta $=67.679^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7534 and 0.6607
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3598 / 1 / 222
Goodness-of-fit on F^{2}	1.036
Final R indices [I >2 sigma(I)]	$\mathrm{R} 1=0.0272, \mathrm{wR} 2=0.0716$
R indices (all data)	$\mathrm{R} 1=0.0283, \mathrm{wR} 2=0.0726$
Absolute structure parameter	0.04(6)
Largest diff. peak and hole	0.259 and -0.112 e. \AA^{-3}

IV) References:

[1] Dufour, J.; Neuville, L.; Zhu, J. Chem. Eur. J. 2010, 16, 10523.
[2] Zhu, X.; McAtee, C. C.; Schindler, S. Org. Lett., 2018, 20, 2862.
[3] Cheng, C.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11304.
[4] Yu, X.; Liu, F.; Zou, Y.; Tang, M.-C.; Hang, L.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2016, 138, 13529.
[5] Enomoto, Y.; Shiomi, K.; Hayashi, M.; Masuma, R.; Kawakubo, T.; Tomosawa, K.; Iwai, Y.; Omura, S. J. Antibiot. 1996, 49, 50.
[6] Cox, J. B.; Kimishima, A.; Wood, J. L. J. Am. Chem. Soc. [Online early access]. DOI: 10.1021/jacs.8b10212. Published Online Dec 18, 2018. http://pubs.acs.org/doi/10.1021/jacs.8b10212 (accessed Dec 18, 2018).

