Supporting information

Roles of structural promoters for direct CO₂ hydrogenation to dimethyl ether over ordered mesoporous bifunctional Cu/M-Al₂O₃ (M = Ga or Zn)

Hyungwon Ham^a, Sung Woo Baek^b, Chae-Ho Shin^{*,b}, Jong Wook Bae^{**,a}

 ^aSchool of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
 ^bDepartment of Chemical Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, Chungbuk, 28644, Republic of Korea

*Corresponding author (C.H. Shin): Tel: +82-43-261-2376; Fax: +82-43-269-2370; E-mail: chshin@chungbuk.ac.kr

**Corresponding author (J.W. Bae): Tel.: +82-31-290-7347; Fax: +82-31-290-7272; E-mail address: finejw@skku.edu

Table S1. Catalytic activity for the direct CO_2 hydrogenation to DME on the bifunctional Cu/m-MAl catalysts at a maximum and steady-state

Table S2. Catalytic activity for the direct conversion of syngas containing CO_2 to DME on the bifunctional Cu/m-MAl at the temperature ranges of 220 - 300 °C

Table S3. Summarized results of XANES fitting through Linear combination fitting (LCF, %) for the fresh, reduced, hydrated and reacted bifunctional Cu/m-GaAl and Cu/m-ZnAl

Figure S1. TEM images of the (1) reduced and (2) used Cu/m-MAl catalysts; (A) Cu/m-GaAl and (B) Cu/m-ZnAl with a bright and dark field images (high angular annular dark field (HAADF)) and inset images for the elemental mapping images of copper and gallium (A) measured by TEM-EDS analysis

Figure S2. NH₃-TPD patterns of the fresh bifunctional Cu/m-MAl catalysts

Figure S3. TPR patterns of the fresh bifunctional Cu/m-Al and Cu/m-GaAl up to the temperature of 600 °C (Supporting TPR patterns of Figure 1(D))

Figure S4. Conversion and produut distribution of CO₂ hydrogenation to DME with time on stream (h) for 40 h on the (A) Cu/Al, (B) Cu/m-Al, (C) Cu/m-GaAl, and (D) Cu/m-ZnAl, which was tested at the reaction conditions of P = 5.0 MPa, T = 250 °C, H₂/CO₂ molar ratio = 3/1, and space velocity (SV) = 2000 L/(kg_{cat}·h) with 0.4 g catalyst

Figure S5. Product formation rate $(mol/(g_{cat} \cdot h))$ such as (a) DME and (b) CO with time on stream (h) on the bifunctional Cu/m-MAl catalysts

Figure S6. Original and deconvoluted spectra of the Ga K-edge (red) of the reduced Cu/m-GaAl with the main phases of the Ga-O(tetrahedral) with green color, Ga-O(octahedral) with purple color and Ga-OH(octahedral) with pink color

Figure S7. Ex-situ XPS spectra of (A) Cu $2p_{3/2}$ and (B) Ga 2p of the fresh, reduced, hydrated and reacted Cu/m-GaAl catalyst obtained at different reaction times from 1 to 40 h

Figure S8. Ex-situ XPS spectra of (A) Cu $2p_{3/2}$ and (B) Zn $2p_{3/2}$ of the fresh, reduced and reacted Cu/m-ZnAl catalyst obtained at different reaction times from 1 to 40 h

	••••				<u> </u>			
NI-4-4	CO ₂ .	Product distribution (mol %) ^a				h	h	h
Notation	(mol%) ^a	СО	methanol	DME	BP	г _{M+D} b 2.97 2.56 2.70 3.10 2.88 3.32	r _D o	r _{CO} o
$C_{\rm W}/\Lambda 1$	23.0 (max)	48.5	28.8	22.5	0.2	2.97	1.81	1.95
Cu/AI	21.7 (ss)	53.4	27.1	19.3	0.2	$\begin{array}{c cccc} r_{M+D}^{b} & r_{I} \\ \hline 2.97 & 1. \\ \hline 2.56 & 1. \\ \hline 2.70 & 1. \\ \hline 3.10 & 1. \\ \hline 2.88 & 1. \\ \hline 3.32 & 1. \\ \end{array}$	1.51	2.08
Cu/m-Al	22.0 (ss)	48.0	38.9	12.6	0.5	2.70	1.06	2.02
	24.3 (max)	46.0	35.1	18.5	0.4	3.10	1.59	1.98
Cu/m-GaAi	23.4 (ss)	46.7	41.2	11.9	0.2	$\begin{array}{c cccc} - & r_{M+D}^{-} & r_{D} \\ \hline 2.97 & 1.8 \\ \hline 2.56 & 1.5 \\ \hline 2.70 & 1.0 \\ \hline 3.10 & 1.5 \\ \hline 2.88 & 1.0 \\ \hline 3.32 & 1.2 \\ \hline \end{array}$	1.06	2.07
Cu/m-ZnAl	24.5 (ss)	40.8	45.2	13.2	0.8	3.32	1.21	1.89

 Table S1. Catalytic activity for the direct CO₂ hydrogenation to DME on the bifunctional Cu/m-MAl catalysts at a maximum and steady-state

^aThe direct CO₂ hydrogenation to DME with product distributions was obtained at the reaction conditions of P = 5.0 MPa, T = 250 °C, and space velocity (SV) = 2000 L/(kg_{cat}·h) with H₂/CO₂ molar ratio = 3/1 with 0.4 g catalyst, and BP stands for the byproducts with the main C₁-C₂ paraffinic hydrocarbons. CO₂ conversion on the Cu/m-MAl was represented with the values of maximum (max) and steady-state (ss), respectively.

^bThe individual formation rates of products such as methanol (M), DME (D) and CO with the unit of $mmol/(g_{cat} \cdot h)$ was calculated by using the averaged values for 3 h reaction at a maximum and steady state.

the offunctional Cu/m What at the temperature ranges of 220 500 C							
Notation	Temp	CO	CO_2	CO	Product distribution		on
		conversion	conversion conversion t		(mol %)		
	(\mathbf{C})	(mol%)	(mol%)	$CO_2 (mol\%)$	Methanol DME 89.5 10.1 56.8 42.4 25.7 72.9 18.5 79.8 88.5 11.3 55.5 43.9 25.7 73.2 17.6 80.9 74.2 23.9 38.4 60.4 17.3 81.2 12.0 85.8	DME	BP
	220	2.7	3.4	0.0	89.5	10.1	0.4
Cu/m-Al	250	14.1	1.8	0.0	56.8	42.4	0.8
	280	39.3	-5.6	2.4	25.7	72.9	1.4
	300	51.8	-10.9	4.7	18.5	79.8	1.7
Cu/m-GaAl	220	2.9	4.2	0.0	88.5	11.3	0.2
	250	14.2	2.8	0.0	55.5	43.9	0.6
	280	40.4	-5.0	2.1	25.7	73.2	1.1
	300	52.8	-10.1	4.3	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1.5	
	220	4.5	0.7	0.0	74.2	23.9	1.9
Cu/m-Al Cu/m-GaAl Cu/m-ZnAl	250	18.2	-1.1	0.5	38.4	60.4	1.2
	280	42.2	-8.9	3.8	17.3	81.2	1.5
	300	54.2	-13.4	5.7	12.0	85.8	2.2

Table S2. Catalytic activity for the direct conversion of syngas containing CO₂ to DME on the bifunctional Cu/m-MA1 at the temperature ranges of 220 - 300 °C^a

^aThe direct hydrogenation of syngas containing CO₂ to DME with product distributions was obtained at the reaction conditions of P = 5.0 MPa, T = 220 - 300 °C, and space velocity (SV) = $2000 \text{ L/(kg_{cat} \cdot h)}$ with H₂/CO/CO₂/N₂ molar ratio = 66/21/9/4 (CO/CO₂/H₂ = 1/0.429/3.14) with 0.4 g catalyst, and BP stands for the byproducts with main C₁-C₂ paraffinic hydrocarbons.

Notation	traatmant	Linear combination fitting (LCF, %)					
Notation	treatment	Cu	Cu ₂ O	CuO	CuAl ₂ O ₄		
	fresh	-	-	12.9	87.1		
	reduced	13.1	-	32.6	54.3		
	reaction (1 h)	-	14.6	28.5	56.9		
	reaction (3 h)	24.3	25.3	-	50.4		
Cu/m-GaAl	reaction (5 h)	12.5	6.5	22.0	59.0		
	reaction (10 h)	5.4	13.4	24.1	57.1		
	reaction (20 h)	-	31.9	25.8	42.3		
	reaction (40 h)	-	42.2	25.7	32.1		
	hydration	0.6	11.7	31.8	55.9		
	fresh	-	-	21.9	78.1		
	reduced	15.6	-	29.5	54.9		
	reaction (1 h)	5.8	19.7	56.3	18.2		
$C_{\rm W}/m$ $Z_{\rm m}$ A1	reaction (3 h)	3.6	52.6	28.0	15.8		
Cu/III-ZIIAI	reaction (5 h)	12.1	-	18.7	69.2		
	reaction (10 h)	-	34.4	42.2	23.4		
	reaction (20 h)	-	33.0	30.3	36.7		
	reaction (40 h)	-	26.3	22.4	51.3		

Figure S1. TEM images of the (1) reduced and (2) used Cu/m-MAl catalysts; (A) Cu/m-GaAl and (B) Cu/m-ZnAl with a bright and dark field images (high angular annular dark field (HAADF)) and inset images for the elemental mapping images of copper and gallium (A) measured by TEM-EDS analysis

Figure S2. NH₃-TPD patterns of the fresh bifunctional Cu/m-MAl catalysts

Figure S3. TPR patterns of the fresh bifunctional Cu/m-Al and Cu/m-GaAl up to the temperature of 600 °C (Supporting TPR patterns of **Figure 1(D)**)

Figure S4. Conversion and product distribution of CO₂ hydrogenation to DME with time on stream (h) for 40 h on the (A) Cu/Al, (B) Cu/m-Al, (C) Cu/m-GaAl, and (D) Cu/m-ZnAl, which was tested at the reaction conditions of P = 5.0 MPa, T = 250 °C, H₂/CO₂ molar ratio = 3/1, and space velocity (SV) = 2000 L/(kg_{cat}·h) with 0.4 g catalyst

Figure S5. Product formation rate $(mol/(g_{cat} \cdot h))$ such as (a) DME and (b) CO with time on stream (h) on the bifunctional Cu/m-MAl catalysts

Figure S6. Original and deconvoluted spectra of the Ga K-edge (red) of the reduced Cu/m-GaAl with the main phases of the Ga-O(tetrahedral) with green color, Ga-O(octahedral) with purple color and Ga-OH(octahedral) with pink color

Figure S7. Ex-situ XPS spectra of (A) Cu 2p_{3/2} and (B) Ga 2p of the fresh, reduced, hydrated and reacted Cu/m-GaAl catalyst obtained at different reaction times from 1 to 40 h

Figure S8. Ex-situ XPS spectra of (A) Cu $2p_{3/2}$ and (B) Zn $2p_{3/2}$ of the fresh, reduced and reacted Cu/m-ZnAl catalyst obtained at different reaction times from 1 to 40 h