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1 Cavitation threshold derivations

1.1 2D Blake threshold

Before considering the surface nanobubble case, it is important to show how the 2D Blake

threshold is derived, as the surface nanobubble cavitation threshold follows a similar ap-

proach (see Figure S1 (a)). The 2D Blake threshold equation for a free bubble can be
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Figure S1: (a) Schematic of spherical bubble, and (b) a surface nanobubble.

obtained by considering the limit in which the pressures acting on a cylindrical bubble can-

not be in mechanical equilibrium. There is an expanding pressure, PE, which acts to grow

the bubble;

PE = Pg + Pv, (1)

where Pg is the gas pressure, and Pv is the vapour pressure, inside the bubble. Assuming

that the internal gas phase expansion can be expressed as a polytropic process,

Pg,0V
k
0 = Pg,1V

k
1 , (2)
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where subscripts 0 and 1 here represent the initial and final states of the polytropic process,

respectively. If the initial gas pressure Pg,0 and volume V0 are known, then the gas pressure

can be calculated for any new bubble volume V1 using Equation (2). The exponent k is a

constant that depends on the thermodynamic process that occurs when the gas expands. For

a 2D cylindrical bubble, the bubble size can be better expressed in terms of its cross-sectional

area A, since A ∝ V ; A is a monotonic function of the bubble’s radius of curvature R i.e.

A = πR2, so Equation (2) can be rewritten:

Pg = Pg,0

(
R0

R

)2k

. (3)

An expanding pressure is opposed by a compressing pressure PC , which tends to shrink

the bubble1:

PC = P∞ +
γ

R
, (4)

where P∞ is the far-field liquid pressure, and γ is the liquid-gas surface tension. In me-

chanical equilibrium, these two pressures balance such that PE = PC , which is essentially a

restatement of the Young-Laplace equation:

Pg + Pv = P∞ +
γ

R
, (5)

or by substituting in Equation (3):

P∞ = Pg,0

(
R0

R

)2k

+ Pv −
γ

R
. (6)

If P∞ reduces, Equation (6) indicates this typically causes the bubble to expand (an increase

in R) for it to remain mechanically stable. The growth path of a 2D cylindrical bubble

is illustrated in Figure S2, where Pg and γ/R of Equation (6) are plotted against R. The
1For spherical bubbles and droplets, the Laplace pressure component is 2γ/R; however for 2D cases, the

Laplace pressure component becomes γ/R as given in Equation (4).
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Figure S2: Threshold pressure of a simple 2D cylindrical bubble.

critical or threshold liquid pressure, P∞,c, is defined at the point when PE > PC for all

bubble volumes, i.e. there is no stable equilibrium size for the bubble at liquid pressure P∞,c

and below. The threshold pressure can be obtained by determining from Equation (6) the

critical bubble size, R = Rc, where P∞ is at a minimum, as can be seen in Figure S2.

Differentiating Equation (6) with respect to R yields:

dP∞
dR

= −2kPg,0
R2k

0

R2k+1
+

γ

R2
, (7)

which can be solved at the minimum to yield the critical radius:

Rc =

(
2kPg,0R

2k
0

γ

) 1
2k−1

. (8)
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Substituting the critical radius, Rc, into Equation (6) for R will give the minimum possible

value of P∞ that can sustain a bubble in mechanical equilibrium:

P∞,c = Pv − γ
(
1− 1

2k

)[
γ

2kR2k
0 Pg,0

] 1
2k−1

. (9)

1.2 2D Surface Nanobubble threshold

The 2D surface nanobubble cavitation threshold can be obtained by considering the limit

in which the pressures acting on the cylindrical capped bubble cannot be in mechanical

equilibrium, in a similar way to the 2D Blake threshold derived above. The internal gas

and vapour pressure can be described by Equations (1) and (2) again. For a 2D bubble, the

bubble size can be better expressed in terms of its cross-sectional area, A (since A ∝ V ), i.e.

A =
1

2
R2 [2θ − sin 2θ] , (10)

where θ is the contact angle, in radians, taken from the gas side. In the 2D Blake threshold

case, A is a monotonic function of the bubble’s radius of curvature, R, since A = πR2.

However surface nanobubbles present a non-trivial case because for contact angles θ < 90◦,

and pinned lateral diameter φL, the radius of curvature R will decrease to a minimum at

θ = 90◦, and then increase again for θ > 90◦: for a given R, there are two possible values of

A.

Instead, A can be expressed solely as a function of θ if R is related to the pinned (constant)

contact diameter for Constant Contact Radius (CCR) growth, i.e.

R =
φL

2 sin θ
. (11)
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Using Equation (11) in Equation (10) gives:

A =
1

4
φ2
L

[
θ

sin2 θ
− 1

tan θ

]
. (12)

Equation (2) can then be expressed in terms of θ:

Pg = Pg,0A
k
0

[
1

4
φ2
L

(
θ

sin2 θ
− 1

tan θ

)]−k
, (13)

where A0 is the original 2D bubble area, which is obtained from Equation (12) with the

initial bubble contact angle θ0.

The compressing pressures PC are the same as in the 2D cylindrical case in Equation (4),

and the equilibrium bubble shape follows the 2D Young-Laplace equation as in Equation

(5). By substituting Equations (11) and (13) into Equation (5), we obtain the expression

for pressure balances in a stable surface nanobubble in terms of θ:

P∞ = Pv + Pg,0A
k
0

[
1

4
φ2
L

(
θ

sin2 θ
− 1

tan θ

)]−k
− 2γ sin θ

φL

. (14)

Interestingly, there is no effect of the surface-gas or surface-liquid interactions on the bubble

pressure balance,S1 although the substrate does play a role in keeping the contact line pinned

and forcing the bubble to grow with CCR. The critical or threshold liquid pressure P∞,c is

defined when PE > PC for all bubble volumes, i.e. there is no stable equilibrium size for the

bubble at liquid pressure P∞,c and below. The threshold pressure can be typically obtained

by determining the critical bubble size where P∞ is at a minimum from Equation (14).

Differentiating Equation (14) with respect to θ yields:

dP∞
dθ

= −kPg,0

(
4A0

φ2
L

)k (
2

sin2 θ
− θ sin 2θ

sin4 θ

)(
θ

sin2 θ
− 1

tan θ

)−k−1
− 2γ cos θ

φL

, (15)
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which can be solved to find the critical contact angle θc when dP∞/dθ = 0, i.e.

−

[
sin2 θc cos θc

(
θc

sin2 θc
− 1

tan θc

)k+1
]−1(

1− θc
tan θc

)
=

(
φ2
L

4A0

)k
γ

kφLPg,0

. (16)

There is no analytical solution for θc, and so Equation (16) needs to be solved numerically.

The threshold pressure can then be determined by substituting θc into Equation (14), i.e.

P∞ = Pv + Pg,0A
k
0

[
1

4
φ2
L

(
θc

sin2 θc
− 1

tan θc

)]−k
− 2γ sin θc

φL

. (17)

1.3 3D Blake threshold

The 3D Blake threshold can be derived in a similar manner to the 2D case above. The

bubble volume V is simply the volume of a sphere, V = 4/3πR3, so Equation (2) can be

rewritten in terms of R:

Pg = Pg,0

(
R0

R

)3k

. (18)

For the 3D case, the equation for the compressing pressures PC differs slightly from the 2D

case in Equation (4), namely, the surface tension contribution is now 2γ/R so,

PC = P∞ +
2γ

R
. (19)

By balancing PE = PC ,

P∞ = Pg + Pv −
2γ

R
, (20)

and then substituting in Equation (18) yields:

P∞ = Pg,0

(
R0

R

)3k

+ Pv −
2γ

R
. (21)
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Differentiating Equation (21) with respect to R gives:

dP∞
dR

= −3kPg,0
R3k

0

R3k+1
+

2γ

R2
. (22)

Solving Equation (22) for R at the minimum yields the critical radius,

Rc =

(
3kPg,0R

3k
0

2γ

) 1
3k−1

. (23)

Using this critical radius, Rc, in Equation (21) for R gives the minimum possible value of

P∞ that can sustain a bubble in mechanical equilibrium,

P∞,c = Pv − 2γ

(
1− 1

3k

)[
γ

3kR3k
0 Pg,0

] 1
3k−1

. (24)

The difference between the 3D Blake threshold in Equation (24) and the 2D equivalent in

Equation (9) arises because of the change of the exponent from 2k to 3k in Equations (3)

and (18), respectively, and the change of the surface tension pressure contribution from γ/R

to 2γ/R.

1.4 3D Surface Nanobubble threshold

The 3D surface nanobubble cavitation threshold can be obtained by considering the limit

in which the pressures acting on a spherical cap-shaped bubble are no longer in mechanical

equilibrium, in a similar way to the 2D surface nanobubble threshold derived above. The

internal gas and vapour pressure can be described by Equations (1) and (2) again. The

volume of a 3D spherical cap is given by:

V =
1

3
πR3

[
2− 3 cos θ + cos3 θ

]
. (25)
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As for the 2D threshold, for gas-side contact angles θ < 90◦, and pinned lateral diameter φL,

the radius of curvature R will decrease to a minimum at θ = 90◦, and then increase again

for θ > 90◦, i.e. for a given R, there are two possible values for V . As in the 2D case, V

can be expressed solely as a function of θ if R is related to the pinned (constant) contact

diameter for CCR growth from Equation (11). Using Equation (11) in Equation (25) gives

the bubble volume as a function of θ,

V =
πφ3

L

24 sin3 θ

[
2− 3 cos θ + cos3 θ

]
. (26)

So Equation (2) can be expressed in terms of θ by substituting in Equation (26) to give:

Pg = Pg,0V
k
0

[
πφ3

L

24 sin3 θ

(
2− 3 cos θ + cos3 θ

)]−k
, (27)

where V0 is the original 3D bubble volume, which is obtained from Equation (26) with the

initial bubble contact angle θ0.

Substituting Equations (27) and (11) into Equation (20) gives:

P∞ = Pv + Pg,0V
k
0

[
πφ3

L

24 sin3 θ

(
2− 3 cos θ + cos3 θ

)]−k
− 4γ sin θ

φL

. (28)

The critical or threshold liquid pressure P∞,c is defined when PE > PC for all bubble volumes,

i.e. there is no stable equilibrium size for the bubble at liquid pressure P∞,c and below. This

threshold pressure can be obtained by determining from Equation (28) the critical bubble

size, V = Vc, where P∞ is at a minimum.

Differentiating Equation (28) with respect to θ yields:

dP∞
dθ

= −3kPg,0

(
24V0
πφ3

L

)k

(1 + cos θc)
3k−1

2 (1− cos θc)
−k−1

2 (2 + cos θc)
−k−1 − 4γ cos θ

φL

, (29)
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which can be solved to find the critical contact angle θc when dP∞/dθ = 0:

− (1 + cos θc)
3k−1

2 sec θc (1− cos θc)
−k−1

2 (2 + cos θc)
−k−1 =

4γ

3φLkPg,0

(
πφ3

L

24V0

)k

. (30)

As before, there is no analytical solution for θc, and so Equation (30) needs to be solved

numerically. Once found, the threshold pressure can then be determined by substituting θc

into Equation (28) to obtain:

P∞,c = Pv + Pg,0V
k
0

[
πφ3

L

24 sin3 θc

(
2− 3 cos θc + cos3 θc

)]−k
− 4γ sin θc

φL

. (31)
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2 Variations in nanobubble temperatures
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Figure S3: Typical evolution of nanobubble temperatures in 2D bubble expansion simulations
of (a) stable, P∞ = −2.75MPa, (b) stable, P∞ = −3.75MPa, and (c) unstable, P∞ =
−4MPa growth cases corresponding to those in Figure 2 in the main paper.
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Figure S4: Variation of 2D steady-state nanobubble temperature with applied pressure.
The time-averaged unstable case temperatures are also shown, although they did not reach
a steady-state. The dashed line indicates the straight line of best fit through the stable,
steady-state nanobubble temperatures.
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