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S1 WFT results for [Ce(COT),]~

Table S1: Energies (cm™!) of the excited states calculated without (SF) and with SOC (SO) and
g factors of the ground state for [Ce(COT)y]  for the structures given in Table 1.

structure CASPT2 B3LYP X-rays cryst sym ¢ +2 THF °
CAS ¢ CAS CAS CAS CAS CAS CAS RAS? RAS CAS
SCF PT2 SCF PT2 SCF SCF PT2 SCF PT2 SCF

SF Er 491 520 527 272 494-509 501 417 446 444 487-499

Ey 760 1079 630 1028 734 729 945 549 555 716

Es 2347 2751 1962 2302 2188-2238 2213 2489 1951 2353 2170-2229
SO Es)o 646 957 488 1003 610 610. 872. 472 496 597
B3/ 1186 1308 1059 1136 1146 1146. 1229. 1080 1237 1140
Ey o 2315 2317 2334 2328 2322 2322. 2317 2683 2683 2321
E7 /90 2839 3145 2712 3233 2815 2816 3071 3014 3015 2802
g1 1.06 1.07 1.08 0.97 1.06 1.06 1.03 1.02 1.02 1.06
gL -2.35 -2.34 -2.35  -2.46 -2.33 -2.35  -2.39 -2.44  -2.42 -2.34

a: symmetrized crystallographic structure according to Dgy. b: crystallographic structure including the two closest
THF molecules. ¢: CAS=CAS(1,7). d: RAS=RAS(9/7/4)

S2 DFT results for [Cey(COT);]

Table S2: <S’2> for triplet and BS states calculated with SR DFT for [Cey(COT)3] for the

structures given in Table 1.

B3LYP PBEO PBE
~Z ~2 ~2 ~2Z ~2 ~2
o (8, (5)pe &)y ) 8), 8
DFT 2.00488  1.00473 2.00395  1.00385 2.01156  1.00369
PT2 2.00377  1.00254 2.00317  1.00226 2.00842  0.98175
EXAFS 2.00412  1.00114 2.00343  1.00099 2.00966  0.94978

Triplet Broken-symmetry

Figure S1: Isosurfaces (+ 0.0005 au.) of SR DFT spin densities calculated for the spin triplet
and BS states with the DFT structure.

S3  WFT results for [Ce,(COT);]
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Figure S2: Susceptibility (left) and x7T" (right) vs T for [Ce2(COT)s], experimental from [1] and
calculated with CI methods, for EXAFS (full line) and CASPT?2 (dashed line) structures. DDCI2
curves are omitted since they superpose with CAS+S ones.

S4 Modelization of [Ce(COT).] and [Cez(COT)j;]

S4.1 Model Hamiltonian for the monomer

In the pseudo-axial symmetry Dgy,, the ligand field splits the ground term ° Fy /2 of the free Ce(III)
ion according to the value of [M;|.2 In the present case, the ground doublet is |[M;| = 1/2. The
modelization is similar to [U(n’-C7Hy)s]  as developed by Gourier et al.®> and using the lines of
the octahedral 5f' AcXg series.* As in these two former examples, the g factors are determined
by the ’competition’ between CF and SO coupling. In the free ion, the spinors of the |[M;| =1/2
KD are (using a |J; M; > notation)

|§,} > = —jfo+if1
2’2 VTUVT

§be - e e .
|g,% > = %f0+%fl

|g;—% > = \%ﬂwﬁf—l

where f,,, and f,,, are the spin-orbitals Ry (r)Y3,,(0, #)a and Rys(1)Yam (0, ¢)3 respectively, with
spherical harmonics Y;,,(0, ¢). z is the Cs axis. These functions only imply ¢ and 7 orbitals with
|My| = 0 and 1 respectively. We may restrict the model orbitals to those spin-orbitals and we
introduce the notations

o2 = fo=fo

O-1/2 = fo = fa (82)
T2 = fl :ﬁr+

T—1/2 = fo1=fro

The CF Hamiltonian Hcp splits those orbitals by A and the SO Hamiltonian takes the simple
form ﬁso =( L.S where L and S are the total electronic angular and spin momenta operators
respectively and ( is the SOC constant and is positive. We have recently shown that the ordering
of the 4f orbitals in lanthanocenes is 4f, < 4fr < 4f, < 4fs5 (6 and ¢ for |[My| = 2 and 3
respectively) due to an interplay of electrostatic and covalent effects. This ordering is the same as
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in [U(n"-C7Hy)a] . A is positive for electrostatic reasons, because the two COT rings create an
oblate environment.

The representation of the model Hamiltonian h = iLC F+ ESO in the set of CF functions of Egs.
S2 is

he | ows)  miys)
(o] | =38 V3 (S3)
<771/2 \/EC %A —%
and in the set of free ion functions S1
h | 13.%) 13.3)
B[ Ha-2 A 81
(Tal | 2828 —Ha+i

The ground doublet composition is obtained by diagonalizing these equivalent matrices; within a
CF perspective, it is written as

|¥) = aloie) —blmie) =afs —bfrs
’\T/> = IC|\IJ> :a|a_1/2>—b|7r_1/2> (85)
= a.fa 7bf7r—

where K is the time reversal operator and in a free ion perspective,

) = A‘5 1>B‘7 1> (36)

22 2'2
) = a2 I\ gt 1
- 27 2 27 2

where a, b, A and B are positive real numbers with a® + % = A2 + B2 = 1.

The orbital and spin contributions to the g factors are given by®

g = 2<\11’£Z xp>: 2?2

g = 4<x1/ S, x11> = 2(a® - %) (S7)
b = 2Re<\IJ Lo \If>:—4\/§ab

$ = 4Re<\II 3, \I/>=2a2

These expressions were already given by Abragam and Bleaney® and Gourier.? The contributions
to g are represented in Figure S3 as a function of 2 = (/A, as well as a and b. In this first
approach, the SOC couples the CF states. At the limit of vanishing SOC, ( = = b = 0, the
ground state is the pure spin doublet ?A,, with a = 1. g factors are isotropic and equal to 2.
SOC couples f, with fr,; it decreases the spin contribution, introduces orbital magnetization by

first order contribution <f,r+ ‘ZAH

f7r+> in g and coupling contribution <f0 ‘ZJ_‘ f,r+> in g,. Eq.
S4 describes the coupling within another perspective, as the coupling of the free ion states |g, %)
and |%, %> by CF operator. In the limit of no CF,  — 0, one obtains the g factors of the free
ion, g = 6/7 and g, = —18/7. According to CASSCF calculations on the monomer with PT2
geometry, ¢ = 667 cm™!, A = 491 cm~! which gives © = 0.736, a = 0.731, b = 0.683, A = 0.994
and B = 0.105. These parameters are given in Table 2 for other geometries. It shows that the
ground state of the monomer is close to the |2,+1) spinors of the free ion and that the effect of
the ligands can be modeled as a coupling with the excited |%, i%> spinors. It should be noted

that z is also close to 1 in [U(5"-C7Hz)s]~, while in this actinide complex, both ¢ and A are much

S5



-4

x=C/A

Figure S3: gj(blue), g1 (red) with respect to z = (/A. g" and ¢g° contributions are given in
dotted and dashed lines respectively (see Egs. S7). Insert: Composition of the ground state with
respect to = (see Eqgs. S5 and S6).

larger, the former due to larger relativistic effects, the latter due to larger covalent interaction
between 5 f orbitals with those of the ligands. The results are close to the free ion limit, as it was
the case for [U(n"-C7Hy)s]  and in the AcXg series.

While only the product of the three g factors is defined and is positive, it leads to an undefined sign
for g, . One may assign a sign to g, by constraining the two spinors of the KD to behave under
the rotations of the molecule as a real spin doublet, to within a scalar function.” % 8 2 The sign of
the g factors may be determined by constraining the set of wave functions of the model space to
behave under the rotations of the molecular systems as the corresponding real spin.” 8 In the case
of doublets, in octahedral 5!, the sign of g was unequivocally assigned* but for a yle complex,
the sign of the perpendicular g factor was undefined;'? in the case of an octahedral quartet, two
sets of g factors were compatible with rotation symmetries.!! In the present case, the ground KD
spans Fj /9, symmetry while a spin doublet spans the E/, irrep. Since Ey o, = A1y @ Ei /a4
and E}/5, = Ay ® Ey/94, the scalar function may be either Ay, or As,. With Ay, the two
components of the KD are |D,+) = i|¥) and |D,—) = —i|¥) where |¥) and |¥) are given in
Eqgs. S5 which leads to g, = 2 Re <D, + ‘[A@ + 25, D, —> = —2a? + 4y/3ab. With Ay, the two

components of the KD are |D,+) = |¥) and |D,—) = ’\Il> which leads to the opposite value of
g1 = 2a® —4+/3ab. Tt means that this is not sufficient to determine the sign of g, . If one adds the
condition that the CF limit with = 0 is a 24y, term, it is in favor of the second solution which
leads for b = 0 to three identical g factors g = 2, to the contrary of the first solution which leads
to two negative factors. Choosing the As, scalar function, one gets g, as represented in Figure
S3 and for z = 1, g, is negative.

S4.2 Spin Hamiltonian for the dimer

The ground state of each monomer, denoted A and B, is a KD of symmetry M; = :t% well
separated in energy from the first excited KD; the model space for each monomer is the ground
KD and the local pseudo-spins are S, = 1/2 and Sp = 1/2 with the corresponding states |D, +)*
and |D7i)B. The model space of the dimer is of dimension four and is generated by the set

|D, i}A ® |D,+)”. The derivation of the spin Hamiltonian for the dimer follows the traditional
one, replacing spin operators by pseudo-spin operators.'? The local spin Hamiltonians are, with
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an external magnetic field B
’Ft§ = upB.g. ¥
= UB (BngSf + Byngff + Bzgngf)
= ’Mgf + ’ugf + 'yHSf (S8)

with X = A, B, B,, the component of the field in direction u and 7, = g, By. The Hamiltonian
describing the interaction between the two magnetic sites may be written using tensor DAB

Ase — §".par.g°

— 81874 D852 - 18087
+E [$282 - §787 (S9)
where the isotropic interaction is characterized by J (Heisenberg Hamiltonian) and the anisotropic
coupling by the two parameters D and E. The total Hamiltonian
Hs = HE+HE +HED (S10)
written in the basis set of the local spin functions

++) = [D,+)*®|D,+)"
+F) = D, eD,F)" (S11)

gives rise to the following representation matrix

Hs ++) +-) |—+) =)
(++H | —f+2+7, Ly E

17T7% 2 2 2 2.

ot 2
{(+—| - 21,% % a % _% - % - 21,%! (512)
(—+| LZ’W _% _D %72 22—t
E ’YI+i’7y6 'Yz+igy J D

(=l 2 2 2 —1T%

The eigenstates of the total pseudo-spin operator S =S4 +Sp form either a pseudo-singlet

1

5,0) = ﬁ(l+—>—|—+>) (513)
or a -triplet,
T = )
1
T, 0) 7% (I+=) +1=+) (514)
A R

The matrix of Eq. S12 becomes in this new basis

Hs |[8,0)  |T.1) |70 |7, -1)
(s,0 | % 0 0 0
(T | 0 —f+ 5+ g 5 (S15)
+i J D z—1
(T.0] | © ngy i %
(T,-1]| 0 7 Lo g+ 8+
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This matrix is the representation of the Spin Hamiltonian expressed with the total -spin S

- 1 &2 3 1 14 142
= —= = ZDI|S? - =
s SIS + 20+ {Sz 38}
1 A A A A A
+5B [82 - 82| + %8s + 7,8y + .8, (S16)

which can be rewritten using new ZFS and g tensors D and G
Hs = S.D.S+upB.G.S (S17)

All parameters of Eq. S16 can be deduced from first principle calculation on the dimer: SO-
RASSI calculation provides wave functions which diagonalize the Zero-Field Hamiltonian and the
four low lying wave functions {|U1),|¥2),|P3),|P4)} have energies E;. The three 4*4 matrices of
the total angular moment m = —up L+ geg are calculated in this basis set and denoted M,,
M, and M., . In order to deduce tspin Hamiltonian parameters from first principle calculations, the
correspondence between these four wave functions to the four spin states needs to be determined.'
In the model space, the matrices for m,, 1, and . are

(S8,0] 0 0 0 0
(T, 1 0 1 0 Gl 1 0 (S18)
(T, 0 0 ﬁGl ) 0 ﬁGJ_
(T,-1] 0 0 EGL 0
(§,0| 0 0 0 0
(T, 1 0 . 0 —ﬁGL _0 (S19)
(T, 0 0 ﬁGL . 0 —ﬁGL
(T, -1 0 0 ﬁGL 0
(§,0| 0 0 0 0
(T, 1 0 G| 0 0 (S20)
(T, 0| 0 0 0 0
(T.-1] © 0 0 =G

The -singlet |S, 0) is non magnetic and is easily assigned to the non-magnetic state |¥;) with energy
E;. The diagonalization of m. in {|Wy),[¥3),[¥4)} space gives eigenvalues 0 and £G). |T,0)
is assigned to |Wy) the state with A, = 0, while the two states [¥3) and [V4) with M, = £G|
correspond to |T,£1) (G} > 0) or |[T,¥1) (G| < 0) towards a phase factor. Following the
procedure of reference'' where M, is first diagonalized and either M, or M, is made real, one
finds that both G| and G may be either positive or negative; this procedure does not permit to
assign a sign to these parameters. But they can be determined using the rotations as in Section
S4.1. In symmetry Dgp, a spin S = 1 spans the irreps Ay, @ Eq, while the ground triplet of
the dimer spans A;, @ Ey,. The multiplying scalar function must span the one-fold irrep Ag,
since Ay, @ By, = Aoy ® (A2g ® E1y). Considering the two rotations C5 and C§ of angle m about
axes z and x respectively, one finds C3 (|7,0)) = |7,0) and C§ (|7,0)) = |T,0) leading to the
representation matrices in basis {|7,1),|7,—1)}

ren-| 5y O wen-0 ] (s21)
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Since x4,, (C3) =1; x4,, (C¥) = —1, one concludes that |7,0) and | T, +1) as defined in Egs. S14
behave as a real spin S = 1 multiplied by a scalar function of symmetry As, under the rotations
of the molecules. It follows that

GH [z + 235,

<T,1 ‘L 428,

T,1>:2<D,+
7.1) =2(D,~

D.+) =g

G, I + 25,| D, +> = g0 (S22)

\@<T,O‘ﬁz+25;

and G| and G equal g| and g, within the limit of vanishing interaction between the two magnetic
centers, and consequently have the same sign.

Values of G| and G| deduced from RASSI calculations are summarized in Table S4. As for
the monomer (see Table S1), the values show almost no dependency on both structure and cor-
relation, and the values for the dimer the same as for the monomer. This confirms the local

nature of the g values. Orbital and spin contributions are evaluated as Gﬁ = <'T, 1 ‘ﬁz T, 1>,
s = <T,1 ‘2Sz T,1>, Gl — \/§<T,0 Ln T,1> and G5 = \/§<T,O’2Sw T,1>. The parallel

contributions are both positive while spin and orbit perpendicular ones are opposite in signs, the
orbit one being the largest. This matches with Eqs. S7. G¥ arises only from the o state while
Gﬁ is reduced due to the 7 contribution. Gﬁ arises only from the 7 state while Gf_ is due to the
coupling between ¢ and 7 states.

Table S4: g factors for the ground pseudo-triplet of [Ce(COT)s] as defined in Section S4.2
calculated with CI methods for the three structures of Table 1. S and L denote spin and orbital
contributions.

struct meth G| G. G G G Gt
EXAFS CASCI 1.079 -2.344 0.164 1.082 0.914 -3.429
CAS+S  1.100 -2.319 0.206  1.102 0.893 -3.421
DDCI2  1.103 -2.308 0.212  1.112 0.891  -3.420
DDCI3  1.100 -2.309 0.206 1.112 0.893 -3.421
PT2 CASCI  1.061 -2.370 0.064 1.064 0.932 -3.434
CAS+S  1.077 -2.349 0.160 1.080 0.916  -3.429
DDCI2  1.079 -2.346 0.164 1.082 0.914 -3.428
DDCI3  1.078 -2.349 0.162  1.080 0.915 -3.429
DFT  CASCI  1.052 -2.389 0.108 1.054 0.943  -3.443
CAS+S  1.065 -2.374 0.114 1.066 0.930 -3.440
DDCI2  1.067 -2.370 0.138  1.070 0.928 -3.440
DDCI3  1.066 -2.370 0.138  1.070 0.928  -3.440

S4.3 Model Hamiltonian for the dimer

In the dimer, the model Hamiltonian which describes the two magnetic electrons may be written
as

N ~ ~ ~ 1 ~ ~
7—[:hA+hB+hAB+T—+§lA.§A+ClB..§B (S23)
12

where h 4 /B is the one-center one-electron Hamiltonian, hagp is the one-electron coupling term,
% is the electron-electron repulsion and (iA/B . §4/B is the local SOC operator. Following the

approach of reference 13, we introduce the bonding and antibonding combinations of ¢ and w
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spin-orbitals

A 18) o= (FA-P)

\7 5
0" = %(f“ﬂ“B) = (A7)
n,lz%(ﬂjﬁi) — = (m—im)
1 _ _ 1
7 :ﬁ< A+ fE) = —2(—ﬁm—iﬁy)
1 I
Ty = ﬁ( - f) = 7 (3 —im;)
1 1
wi=s U —IR) = 5 (m—im) (s24)

where unbarred and barred orbitals denote o and 8 spin contributions respectively, fné/ 5 denote
the 4f orbital localized on A/B with angular part being the spherical harmonics Y3,,. The

B = = (fle - fZB) and fAB — v (f“‘/B n fAZB) Two-
electron wave functions are built with those spin-orbitals. Without SOC, states are denoted
according to spin multiplicity (S and T for singlet and triplet respectively, and spin projection
M), to spatial inversion and to the configuration of the two electrons in o and 7 orbitals. States are
either neutral with one electron on each site or ionic with the two electrons on one site; the latter
are denoted with superscript ion. For example, |T7™, 1) is a ungerade spin triplet with Mg = 1,
with determinants of type {2 fZ} (the {} denotes the A <» B symmetrization) and |TJ™",0)
a ungerade spin triplet state with Mg = 0 built with determinants of type { fA f;r“}

real orbitals are defined as f3

The oo configuration leads to the well-known neutral spin singlet and triplet states and to the
ionic singlet.

oo _ i o7l — 0*6_* - A B A B
1
T77,0) = \/i(lw | +lo0™]) = \7 \fAfB}+|fAfB|)
7771 = loo*| = /717
777, -1) = |ao"| =|f;f7]
i 1 = * =k 1 7 —
|Sgoen,0) = 7 (lo| +lo*67|) = 7 (12PN + P2 12)) (S25)

|Sg “, O> is the zeroth order ab initio counterpart of the pseudo-singlet |S,0). It couples to different
excited states as given in the following matrix

H |So’0 0> ’T;Tl" :|:1> |S7r7r 0> |S¢;o’,wn’ 0> |ngﬂ-7wn, :|:1> |S;rTr,wn’ 0>

(S27,0 V6( 0 2537 0 0
(Tg™, 1] f( A+ kST -3¢ VB¢ 0 B+ 8" 0

(S57,0] 0 V6( 2A — ¢ 0 0 287
<S"" fon 0] 237 0 0 U 0 0
<T” sion ﬂy 0 B° + 8™ 0 0 U—-KY 0
<S” N 0 0 287" 0 0 U

(S26)

A is an effective CF parameter taking into account the difference between two-electron interactions

A:Eﬂ_€O'+JO'7T_JUO':€7T_€U+J‘IT7T_JU7T (827)
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z/y ];‘A/B
[f;“fﬂffff] and J°" = [fc‘,“fﬂfﬁ f,ﬁ] Coulomb integrals defined with Mulliken notations,
67 = (S |has| f2) and 7% = (f|hap| f2 ) = (2 |has
between sites A and B, U is the one-site Coulomb repulsion energy and is considered to be
independent of the occupied orbitals and K is the one-site exchange energy, again considered to
be independent of the orbitals. k§j is the two-electron contribution specific to state ’T; ., :|:1>
which is a combination of |Tg‘”, 1> and |Tg‘”, —1>.
Similarly, |T.77, Mg) are the ab initio zeroth order counterparts of the three components of the
pseudo-triplet |7, M). The coupling matrices for these states are

where £7 = <f<;4/B ‘BA/B' f;‘/B> and €™ = <ffr4/B

A/B . .
fnl,//y > are the one-site energies, J77 =

f;:ty> the hopping integrals

H | |T97,0)  |Tg™,£1)  |TF7,0) |Tg™iom £1)
(T2, 0| —K°° V6¢ 0 0
(g™, +1] V6C A+ ETT -3¢ VEC p7 — 8" (S28)
(7™, 0 0 V6¢ 2A —¢ 0
<Tvlcl77r,ion7 :|:1| 0 ﬂo’ _ 571' 0 U — KU
A ||Tg°, 1) |STg™,0)  |Tr7,£1) [STI™",0)
(T, 1] -Ko° V6¢ 0 0
(ST™, 0] V6 A+ KT -3¢ V6¢ pB7 — 8" (529)
(Ty™, +1] 0 V6¢ 2A - ¢ 0
(STg™om, 0| 0 B —B" 0 U—3KY

|T9™ +1) is a combination of |T¢7,1) and |T7™,—1), |T7™,£1) of |T7™,1) and |T7™,—1) and
|STS™,0) of |S5™,0) and |T2™,0). K°° = [f2fB|fEf2] is the exchange integral between the
local o orbitals. Since ( & A, it is not possible to make any pertubative development of the SOC
but the effect of the ionic states may be taken into account using pertubative theory. The effective
perturbation of the ionic states into the model space of the neutral states, Eqs. S26, S28 and S29
becom

Ry |IS7.0)  |rgnan) 577.0)
SN B v ; (530)
o T\2
(Tgm+1] | VB¢ A+ kgr — S - 4¢ V¢
(ST, 0| 0 V6¢ 2A — 28— —¢
Hepy | 1T27,0) [T, £1) 75", 0)
o0 | —K°° Vi 0 san
(Tgm, 1) | V60 A+kiT - Y- -3¢ VK
(T, 0 0 Vi6¢ 2A —¢
Hepr | IT57,1) |ST3™,0) T7™, £1)
(77,1 | —K°° V6¢ 0
om \f A o (B”*Bﬂ-)2 1 \[ (832)
(ST™, 0 6¢ TR — e 26 6¢
(T 1l | o N 20— ¢
These three matrices have the common form
0+ koo V6¢ 0
\/6C A — %C + k(ﬂr \/6C (833)
0 \/6< 2A — C + k7r7r

where the k; are small compared to ¢ and A. The eigenvalues for matrix of Eq. S33 with k; =
0(i = oo,0m, ) are known : 264, A — %C with corresponding eigenvectors X = {az, —v/2ab, b2}
{b2, V2ab, a2} {ﬁab, a? — b, fﬁab} where €1 are the two eigenvalues of the matrix

v 2t .
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Figure S4: Dependence of the w; with = (/A as defined in Eq. S35.

with corresponding eigenvectors {a, —b} et {b,a}. The ground energy of matrix S33 may be written
as
E_=2_+ Wcrakcnj + wcrﬂ'kcrﬂ' + wﬂ'ﬂ‘kﬂ"ﬂ' (835)

Within a first order Taylor expansion within the k;, one finds wye = a*, wer = 2a2b? and Wy, = b*

as represented as a function of z = (/A on Figure S4.

As expected, for x = 0 with no SOC, w,, = 1 and E_ = k,,. Around x =~ 1, w,, is the largest, wy,
is important and w,, non negligible. The magnetic coupling is described using spin Hamiltonian
of Eq. S9 with £ =0

N D A«B A«B AaB
A B —
HAB = —JSA.SP+ 3 [2 SIS, =SSy = 8§, ] (836)

Spin Hamiltonian parameters are deduced from the three lowest eigenenergies Fgg, F1p and E1;
of matrices 526, S28 and S29 respectively according to

1
J = FEgp — 3 (Evo +2E11)
2
D = (By-Fo) (S37)

Combining all the preceding results, one finds

oo 4/802 o 1 g 2 gT
J = Woo |:K - U:l + Wom |:l€00 - g 10 — g 11
450577 KU (ﬁ02+10/80/87r+5ﬂ’2) 4571’2
U 302 W (S38)
and
2 {oaviy o g ™ KU
D = wor [3 (k7T — k{5 ) + (87 = B7) 9U2] (S39)

J and D may be further decomposed in exchange (K) or kinetic (7') contributions for the different
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configurations

J o= JR IR I A JET A IR+ IR
JET = wee K77
J7 = fwmﬂng
I = e [R5 - T~ AT (510

o ap7pm | KU (872 4108787 + 572)
JIT = —Wor U + 302 ]
Ji& = 0
JrT o= 7Wﬂﬂ$

and
D = Dy + Dy
DY = S KT K3 (s41)
) KU

DT = wor (87 = 57)

It should be outlined that JE™ is negligible because the present model neglects the difference of
energy between Sg™ and T;;" states arising from two-electron contributions.

For z = 0 (no SOC), J = —% + K97 and D = 0 ; this is the usual coupling scheme between
two local spins.'® 12 The effect of SOC is the coupling with the excited 7 states. The matrices
of Eqs S26, S28 and S29 are easily calculated from CASCI calculations where all the roots and
consequently all the matrix elements may be determined. We can check at this stage that the
one site repulsion energy U is almost independent on the orbital ¢ or 7, but depends on the spin
multiplicity such we may use the same U for 577", S7™%" and S7™"" and U — KUY for o
. For higher levels of correlation, it is not possible to obtain the ionic states, because they are
higher in energy than LMCT states and only matrices of Eqs S30, S31 and S32 in the space of the
neutral configurations are known. These matrices are calculated using the effective Hamiltonian
technique '® 16 as a simple multiplication of matrices'” which is valuable in the present case since
the projection onto the model space of the neutral form is large and this does not lead to any
noticeable non hermiticity of the effective Hamiltonian matrix. But the knowledge of matrices
S30, S31 and S32 are not sufficient to determine all model parameters. The components of the
states on the ionic determinants (of the form /U where § and U are the coupling parameter and
the one-site repulsion respectively) brings further information; it is available for Sg7 (237/U),
TS™ (87 +B7) /(U — KY)), ST (28™/U) and TZ™ (87 — )/ (U — KV)). But one equation
is still missing and one unknown needs to be fixed. Following the work of Calzado et al.,'® 3% may
be supposed to be not affected by correlation and taken to its CASCI value. We chose to keep 5™
constant as well. Other parameters can be deduced and are summarized in Table S5. The SOC

parameter ¢ is taken from the monomer as 668 cm™'.

B is of some hundreds of cm~! which is rather large for a 4f dimer; its decrease with metal-
metal is very rapid, which explains the fall of the J value between the three structures. 57 is by
far not negligible, and is about a quarter of the 87 value. K?? becomes negative which has been
already noted by Calzado et al. and was interpreted as a polarization effect. A, the o — 7 splitting,
decreases slightly with the metal-metal distance as expected. It decreases at CAS+S/DDCI2 levels
and increases with DDCI3 and it is larger than the corresponding parameter in the monomer (see
Table 2) As shown in Eq. S27, A comprises a two-electron part which depends on correlation. The
one-site repulsion energy decreases strongly with correlation, as expected. U is almost independent
on the metal-metal distance, as expected for a one center parameter while KV slightly decreases.
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The exchange and kinetic contributions have been deduced from the model parameters according
to Egs. S40 and S41 and are given in Table S6.

Table S5: Model parameters for [Cea(COT)3] deduced from CI calculations. All energies in
—1
cm ™t

geom/CI pT BT K" A U K” kG 10 i1 Woo Wom Wrn

DFT/CAS 236 50 0.7 608 179005 7019 046 0.49 -0.10 0.31 0.49 0.19
DFT/CAS+S 236 50 -0.5 558 129187 10860 -0.13 0.12 -0.20 0.30 0.49 0.20
DFT/DDCI2 236 50 -0.5 558 127558 10862 -0.22 -0.42 -0.19 0.30 0.49 0.20
DFT/DDCI3 236 50 -1.65 691 65135 3752 039 -0.15 0.16 0.33 0.48 0.18

PT2/CAS 447 130 2.0 564 176703 5524 -0.32 -1.12 -0.22 0.31 0.49 0.18
PT2/CAS+S 447 130 0.0 564 126431. 9077 0.02 0.74 0.04 030 0.49 0.20
PT2/DDCI2 447 130 0.0 566 123035 8992 -0.11 0.10 -0.22 0.30 0.49 0.20
PT2/DDCI3 447 130 -2.7 727 65274 3677 2.61 -2.46 -1.76 0.34 0.48 0.17

EXAFS/CAS 644 180 4 668 175432 4731 1.27  -163 -0.36 0.32 0.48 0.18
EXAFS/CAS+S 644 180 1.1 606 123008 8461 0.77 026 -0.24 031 049 0.19
EXAFS/DDCI2 644 180 1.1 606 121434 8494 -0.03 0.13 -0.23 0.33 0.49 0.19
EXAFS/DDCI3 644 180 -3.1 800 63883 4417  0.79 -098 0.83 0.36 048 0.16

Table S6: Exchange and kinetic contributions to J and D from Eqgs. S40 and S41 for [Cez(COT)3)
deduced from CI calculations and corresponding ab initio (ai) values from Table 4.

geom/CI JIO'(CF J%U J}O’(ﬂ' J%ﬂ' J%‘ir D}({ﬂ' D%‘/r J’mod Dmod Ja,i Dai
DFT/CAS 0.22 -0.38 0.03 -0.13 -0.01 0.14 0.0003 -0.27 0.14 0.18 0.05

DFT/CAS+S -0.14 -0.51 -0.01 -0.19 -0.01 -0.08 0.0009 -0.89 -0.08 0.93  -0.07
DFT/DDCI2 -0.15  -0.52 0.02 -0.20 -0.01 -0.05 0.0009 -0.88 -0.05 -091 -0.05
DFT/DDCI3 -0.55 -1.13 -0.20 -0.37 -0.02 0.06 0.001 -2.29 0.06 -2.52 0.11

PT2/CAS 0.63 -144 009 -066 -0.07r 0.22 0.0007 -1.44 0.22 -1.28 0.06
PT2/CAS+S 0.60 -190 -0.12 -0.98 -0.10 -0.17  0.002 -2.52  -0.17  -3.14 -0.29
PT2/DDCI2 0.60 -191 -0.002 -0.98 -0.10 -0.08 0.002 -2.40  -0.07 -3.14 -0.25
PT2/DDCI3 0.68 -4.17 223 -1.84 -0.17 0.17  0.003 -3.27 0.17 -8.34 0.00

EXAFS/CAS 0.35 -4.40 1.01 -1.92  -0.19 0.31 0.002 -5.15 0.31 -2.83 0.07
EXAFS/CAS+S  0.34 -4.20 0.41 -2.00 -0.20 -0.12  0.005 -5.66 -0.12  -6.38 -0.39
EXAFS/DDCI2  0.33 -4.25 0.03 -2.03 -0.20 -0.08 0.0050 -6.13 -0.08 -6.40 -0.34
EXAFS/DDCI3 -1.11 -9.31 0.27 -3.76 -0.32 043 0.01 -14.24 044 -16.73 0.23
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