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Figure S1. Flow chart for the formulation and characterization of CNC/BT-WDFs.
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Figure S2. Typical conductometric titration curve of cCNCs.

The content of carboxyl group (C,,) was calculated using the following equation:!

(Vz—Vl)XC
CCg:m—36><(V2—V1)><C (1)

where V, and V, are the equivalent volume of NaOH in L shown in Figure S2, c is the
concentration of NaOH in mol/L, and m is the mass of CNCs used for conductometric

titration.



Figure S3. Appearance and static precipitation phenomena of cCNC and caCNC suspensions at

concentrations of 0.1 and 1 wt% for 0, 1, 4 and 7 days.
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Figure S4. Enlarged FTIR spectra of cCNCs and caCNCs in the wavenumber range from 1400
to 1500 cm’!.
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Figure S5. Deconvolution of C4 region from 80 to 93 ppm into two peaks centered at 84.1
and 88.4 ppm for (a) cCNCs and (b) caCNCs.
The crystallinity index (CI) was calculated using the following equation:?
A
Cl=5—77-%x100% (2)

AL+ A

where Ajand A, the area of crystalline and amorphous domains, respectively.
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Figure S6. Deconvolution of the high-resolution C 1s peak for (a) cCNCs and (b) caCNCs.

S-7



Figure S7. TEM micrographs of highly diluted CNC/BT-WDFs: (a) cCNC/BT and (c)
caCNC/BT.
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Figure S8. Shear-state viscosity of BT and CNC/BT-WDFs as a function of temperature
range from 25 to 100 °C. The shear rate was fixed at 10 s°!.
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Figure S9. Influence of aging time on (a) rheological and (b) filtration performance of

cCNC2/BT3-WDFs.
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Table S1. Atomic surface composition from wide scan and quantification of differently bonded

carbon atoms from C 1s high-resolution scan for cCNCs and caCNCs.

Atomic composition (%) Bonded carbon composition (%)
Sample o/C
C N O C-C/H C-O0 O0-C-O 0-C=0
cCNCs  66.81 - 33.19 0.50 30.14 54.54 14.79 0.53
caCNCs 72.12 0.64 27.24 0.39 31.34 58.96 9.48 0.22

The method used to determine the content of EPTMAC in caCNCs (mmol/g) is given as below:

1) The N atomic composition in caCNCs is determined as 0.64 % through XPS analysis
with the SpecLab software.

2) The N atomic composition in caCNCs can be also written in the following form:

Numy

N% =

X 100% = 0.64% 3)

Num¢ + Numg + Numy

where Num¢, Numg, and Numy represent the number of carbon, oxygen and nitrogen in

caCNCs, respectively.

3) If we denote the molarity of EPTMAC substituent on the surface of caCNC as X, and the
molarity of anhydroglucose units (AGU) in caCNC as Y, then the molecular formula of
caCNCs can be written in the form of (C6H1005)Y-(C6H14ONCID)X. Consequently, the

Equation 3 can be written as:

X
N% = (6Y + 6X) + (5Y + 1X) + 1X

X 100% = 0.64% 4)

After reorganization, the X/Y ratio value for caCNCs (i.e., substitution degree in mol/mol)

1s obtained as ~ 0.07 mol/mol.

4) The AGU unit has the molar mass of 162.14 g/mol. Therefore, the content of EPTMAC
in caCNCs (mmol/g of AGU) can be calculated through dividing 0.07 mol/mol by 162.15
g/mol, which gives 0.43 mmol/g.
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Table S2. Comparison on the effectiveness of different nanoparticles at the same concentration

of 0.5 wt% in improving rheological and filtration performance of BT-WDFs under LTLP

conditions.
Nanoparticles Particle size (nm) Cr Cy References
SiO, 5-20 0.24 0.07 3
Clay/SiO2 hybrid 1-5 0.58 0.46
Fe 05 3 1.34  -0.11
Fe,03 30 0.95 -0.02 4
Fe,03/Clay hybrid N/A 8.47 0.36
Al,05/S10,/Clay hybrid N/A -0.76  0.19
ZnO <50 0.30 N/A 5
CuO <50 0.72 N/A
Colloidal SiO, 9.5 0.5 0.95 6
Powder SiO, N/A 0.13 0.47
SiO, N/A 2.32 N/A
Carbon nanotube N/A 1.41 N/A 7
ZnO <20 0.82 N/A
Carbon nanotube/Si0, N/A 1.55 N/A
SiO, 5 2.94 N/A
SiO; 10 1.11 N/A
SiO, 50 0.02 N/A 8
TiO, 47 1.85 N/A
Al,O5 43 1.32 N/A
Starch 920-7000 1.33 0.63 9
width 6.1 + 3.5
Sulfated CNCs length 228.4 + 63.8 91.19 0.31
aspect ratio ~37 10
width 12.5 + 8.4
CNFs length > 1000 3494 -0.05
aspect ratio > 80
width 9-14
Carboxylated CNCs length 100—-150 52.75 0.18 This study

aspect ratio ~10

Two coefficients Crand Cy are adopted to represent the effectiveness of nanoparticles on

the rheological and filtration performance of BT-WDFs, respectively; which are

calculated based on the following two Equations:

YSfilled - YScontrol
r="ve

&)

Ys control
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FLcontrot — FLfilled

Ce= (6)

FL control

where YScontrots YSfitieds FLcontrot @nd FLgjjjeq are yield stress and fluid loss of neat BT-

WDFs (i.e., control sample) and nanoparticles filled BT-WDFs, respectively. The higher
the coefficients are, the more effectiveness the nanoparticles in improving the

performance of BT-WDFs.
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