Supporting Information

Insight into deactivation behavior and determination of generation time over hydroxyapatite catalyst in the dehydration of lactic acid to acrylic acid

Chao Li, Qiangqiang Zhu, Ziheng Cui, Bin Wang*, Tianwei Tan

Beijing Key Laboratory of Bioprocess, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 of North 3rd ring East Road, Chaoyang District, Beijing 100029, P. R. China

*Corresponding author

E-mail: wangbin@mail.buct.edu.cn

Catalyst	Т	TOS	LA conc	. LA Conv.	AA yield (sel.)	Ref.
	(°C)	(h)	(wt%)	(%)	(%)	
Na ₂ HPO ₄ /NaY	340	2	34	93	73 (79)	(Zhang et
NaOH-NaH ₂ PO ₄ -ZSM-5	350	9	30	97	76 (78)	(Zhang et
$Ca_2P_2O_7(Ca/P=0.76)$	400	20	25	100	78 (78)	(C. Ghantani
HAP (Ca/P=1.62)	360	8	36	84	62 (74)	(Yan et al.,
HAP (Ca/P=1.55)	400	6	38	90	78 (87)	(Matsuura et
HAP (Ca/P=1.55)	400	50	38	90	70 (78)	(Matsuura et

 Table S1. Best performances reported in literatures for LA dehydration and corresponding catalysts.

	Ca/P molar ratio		
	Theory ^a	XRF	
HAP-1.45	1.45	1.47	
HAP-1.50	1.50	1.53	
HAP-1.55	1.55	1.57	
HAP-1.60	1.60	1.61	
HAP-1.65	1.65	1.64	

Table S2. Composition (Ca/P molar ratio) of the hydroxyapatite catalysts.

^aThe starting molar $Ca(NO_3)_2/(NH_4)_2HPO_4$ ratio in the preparation solution.

Figure S1. Effect of Ca/P ratio on catalytic performance.

Conditions: calcination temperature 500 °C; reaction temperature 350 °C; reaction time 4 h; catalyst: 1g; particle size: 20–40 meshes; carrier gas N_2 : 24 mL min⁻¹; feed flow rate: 1.2 mL h⁻¹; LA feedstock: 40 wt% in water.

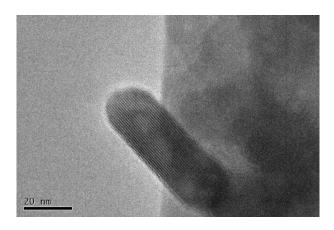


Figure S2. SEM image of the fresh HAP catalyst.

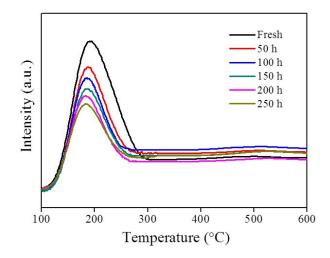


Figure S3. (a) NH_3 -TPD patterns of the HAP catalysts for different TOS values

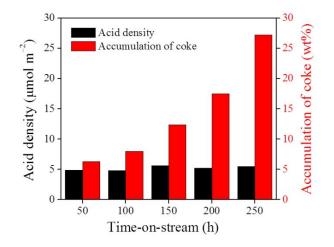


Figure S4. Relationship between acid density and coke accumulation.