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Fitting model implementation

Finding the kinetic parameters that give the best agreement between model curves and 

experimental data is challenging for TADF emission decays. This is due to the large range of 

intensities recorded in the decay curve, often spanning five or more decades on a logarithmic 

intensity axis. In this work the challenge is further heightened as we wish to fit both the prompt 

and delayed intensity simultaneously.

The standard optimization method of minimizing squared residuals was found to immediately 

fail when used for our model parameters. This is because the size of each residual in the fitting is 

roughly proportional to the height of the data, which causes the optimization to prioritize good 

fitting in the larger prompt region and ignore the smaller delayed region. An example of the 

typical output of this kind of “linear fit” (ie: minimizing , where data and model ∑
𝑡(𝐼𝑒𝑥𝑝 ― 𝐼𝑓𝑖𝑡)2

are of the form ) is shown in Figure S1 in orange. While good fits using linear optimization 𝐼(𝑡)

could be found if the parameter starting values were finely tuned, this requirement is 

unsatisfactory for a general fitting procedure. 

Figure S1: Comparison of linear (unrestricted dataset) and log (restricted dataset) fits to decay 

data, using same initial parameter values.
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In contrast to linear fitting, logarithmic fitting (ie, minimizing  ∑
𝑡(log (𝐼𝑒𝑥𝑝) ― log (𝐼𝑓𝑖𝑡))2

optimizes the fit parameters based on the ratio of data to model, rather than their difference. This 

kind of optimization gives roughly equal weight to every datapoint regardless of their actual 

value, which allows the fitting routine to appropriately take the lower intensity delayed emission 

into consideration as well. An example of logarithmic fitting is shown in Figure S1 in blue, 

however this optimization method is not without its own drawbacks. Indeed, precisely because 

logarithmic fitting gives all datapoints equal weight, it was also routinely found to fail when 

applied to TADF decay data. This is because the long tail of the decay is considered just as 

important as the prompt and delayed regions. Examples of typical poor logarithmic fits to decay 

data are shown in Figure S2. 

Figure S2: Examples of poor fitting using logarithmic fits on unrestricted datasets.

Ultimately a suitable compromise was found. In datasets where the tail is excluded (ie restricted 

datasets) the logarithmic fitting routine was found to reproducibly generate good fits that were 

insensitive to parameter initial values (which were set at [S1](t=0) = 0.8, kF = 106, kISC = 106, 

krISC = 104). For each decay a maximum dataset size could be found, above which the 

logarithmic fitting procedure began to fail. This maximal restricted dataset was used with 
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logarithmic optimization to generate the fits presented in the main text. In the main paper figures 

the restricted datasets are plotted in solid color, while the excluded data points are greyed out.

However, arbitrarily excluding the tail of the decay without sounds justification is undesirable. 

Therefore, to check that use of the restricted dataset (and exclusion of the decay tail) did not 

unduly impact the fitting parameters, we return to the linear optimization method. By using the 

optimized parameter values from the log fitting as initial values for the linear fitting (except for 

[S1](t=0)), good fits could be found for the unrestricted dataset without significant changes to the 

initial values. The parameter values found by both optimization methods are shown in Table S1, 

while an example of the subsequent fits is shown in Figure S3. In contrast to the other fitting 

parameters we found that [S1](t=0) had to be fixed at its initial (log fitted) value, as when it was 

allowed to vary the linear fitting would raise it to once again improve the fitting in the prompt at 

the expense of the delayed region (similar to Figure S1). Nonetheless, the agreement of the other 

fitting parameters in both optimization methods confirmed that the fitted parameter values found 

by the restricted log fitting corresponded to a true minimum of the residual function, even with 

later data points excluded.

We note that while the values of the fit parameters agree well for both log and linear 

optimization methods, the reported errors for the linear fits are much larger. As parameter errors 

from non-linear fitting procedures are usually determined from partial derivatives of the error 

function with respect to that parameter, it makes sense that the errors from the linear fitting 

would be larger than those for the logarithmic fitting. Once again, as the logarithmic fitting only 

considers the relative size of the residuals (ie, deviation of the data/model ratio from 1), the 

parameter errors it reports are not inappropriately magnified by the large absolute values of the 

residuals in the prompt region. 
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Table S1: Fitted rate constants for restricted dataset logarithmic optimisation, and subsequent 

unrestricted linear optimisation with transferred initial values and fixed [S1](t=0).

DPEPO:DDMA-TXO2(13%)

temp. [K] Fit [S1](t=0)[%] kF [106 s-1] kISC [106 s-1] krISC [105 s-1]
Log 78.4 ± 0.1 15.0 ± 0.3 32.4 ± 1.2 9.8 ± 0.3290

Linear - 15.5 ± 10.3 34.2 ± 38.6 1.2 ± 1.4
Log 83.6 ± 5.5 14.4 ± 0.8 31.5 ± 1.2 9.3 ± 0.4230

Linear - 14.0 ± 121.7 33.0 ± 155.9 9.3 ± 3.5
Log 80.6 ± 5.6 18.4 ± 1.0 26.7 ± 1.0 7.1 ± 0.3180

Linear - 18.0 ± 72.5 27.4 ± 41.2 5.8 ± 22.9
Log 78.3 ± 4.6 26.0 ± 1.1 20.6 ± 0.7 4.9 ± 0.2130

Linear - 23.0 ± 154.3 23.6 ± 157.8 2.7 ± 1.7

CBP:DPTZ-DBTO2(10%)

temp. [K] Fit [S1](t=0)[%] kF [106 s-1] kISC [106 s-1] krISC [105 s-1]
Log 43.1 ± 5.1 4.0 ± 0.5 33.4 ± 3.2 19.3 ± 2.0298

Linear - 4.9 ± 19.4 32.4 ± 133.7 28.6 ± 342.6
Log 40.7 ± 4.1 6.1 ± 0.7 34.3 ± 2.4 12.6 ± 1.0220

Linear - 5.9 ± 21.1 42.2 ± 121.0 17.0 ± 57.7
Log 44.1 ± 3.6 8.8 ± 0.9 20.7 ± 1.1 4.1 ± 0.3160

Linear - 10.1 ± 107.8 23.3 ± 132.0 5.2 ± 260.1
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Figure S3: Comparison of log fit (restricted dataset, default starting parameters) and linear fit 

(unrestricted dataset, starting parameters preceding log fit).

Transient absorption measurements

Measurements of transient absorption (TA) of the TADF materials were performed as follows. 

Films of DPEPO:DDMA-TXO2(20%) or CBP:DPTZ-DBTO2(20%) were evaporated onto glass 

or quartz substrates and mounted in an evacuated cryostat with quartz windows. The output of an 

Energetiq laser driven light source (EQ-99X) was focused to a spot of ~4mm diameter on the 

sample as probe, and overlapped quasi-colinearly with the output of an EKSPLA 355nm 

Nd:YAG laser as pump. The laser output was between 60 and 120uJ per pulse, and operated at 

500 Hz repetition rate. The time resolved transmission of the probe light was collected using a 

Bentham TMc300 monochromator, Femto HCA-S-200M-Si photoreceiver, and Agilent 

DSO6052A oscilloscope triggered by the pump laser and averaged over 4096 shots. The 

background emission due to the pump was measured similarly with the probe beam blocked and 

identical oscilloscope settings.
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Transmission data was processed into absorption as follows. The diode offset and pump induced 

emission were simultaneously accounted for by subtracting the pump only measurement from the 

probe transmission measurement. The signal level before the pump was taken to represent the 

CW transmission (T), while changes from this signal level gave ΔT. Changes in absorption could 

then be calculated using , and was measured independently at each 𝛥𝐴(𝑡) =  ― log (∆𝑇(𝑡)
𝑇 + 1)

wavelength. The zero time of each measurement was taken from the maximum of the pump 

induced emission data, and the  data was normalized to its value at this time. 𝛥𝐴(𝑡)


