Supporting Information

Manganese vanadium oxide –N-doped reduced graphene oxide composites as oxygen reduction and oxygen evolution electrocatalysts

Xiaolin Xing,^{a‡} Rongji Liu,^{*a,b‡} Kecheng Cao,^d Ute Kaiser,^{c,d} Guangjin Zhang^b and

Carsten Streb*a,c

^aUlm University, Institute of Inorganic Chemistry I, Albert-Einstein-Allee 11, 89081 Ulm,

Germany

^bKey Laboratory of Green Process and Engineering, Institute of Process Engineering,

Chinese Academy of Sciences, 100190, Beijing, China

^cHelmholtz-Institute Ulm for Electrochemical Energy Conversion, Helmholtzstr. 11,

89081 Ulm, Germany

^dCentral Facility of Electron Microscopy for Materials Science, Ulm University, 89081 Ulm, Germany

[‡] These authors contributed equally to this work

*Emails: <u>carsten.streb@uni-ulm.de</u> (Carsten Streb), <u>rongji.liu@uni-ulm.de</u> (Rongji Liu)

1. Calculations for Electrochemical Studies

In order to further investigate the selectivity of oxygen reduction for a four-electron pathway, Koutecky–Levich plots (\mathcal{J}^{-1} vs. $\omega^{-1/2}$) were analyzed at different potentials. The slopes of their best linear fit lines were used to calculate the number of electrons transferred (*n*) according to the Koutecky–Levich equation ¹

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$

$$B = 0.62 n F C_0 D_0^{2/3} v^{-1/6}$$
; $J_K = n F k C_0$

Where *J* is the measured current density, J_k and J_l are the kinetic and diffusion limiting current densities, ω is the angular velocity, n is transferred electron number, *F* is the

Faraday constant, C_0 is the bulk concentration of O₂, ν is the kinematic viscosity of the electrolyte, and *k* is the electron-transfer rate constant.

The yield of peroxides (HO₂-%) and the electron transfer number (*n*) were calculated by

the followed equation ²

$$HO_2^- = 200 \frac{I_r/N}{I_d + I_r/N}$$
$$n = 4 \frac{I_r/N}{I_d + I_r/N}$$

Where I_d is disk current, I_r is ring current, and N is current collection efficiency of the Pt

ring. N was calibrated as 0.40 on the basis of the ORR measurements of K₃Fe[CN]₆.

2. High-resolution transmission electron microscopy (HRTEM)

Figure S1. TEM images of native $\{Mn_4V_4\}$ (a and b). HRTEM images of (c and d) 1-900

and (e and f) 1-440, showing the lattice fringes of crystalline manganese vanadium

oxide particles deposited on N-rGO.

3. X-ray photoelectron spectroscopy (XPS)

Figure S2. Manganese, nitrogen and carbon XPS spectra for 1-440 (a, b, c) and 1-900

(d, e, f).

4. Linear scan voltammograms (LSV)

Figure S3. Linear sweep voltammograms (LSV) recorded by RDE in O₂ saturated 0.1 M

aqueous KOH solution at different rotation rates for non-modified N-rGO (a); (b) shows the Koutecky–Levich plots of \mathcal{J}^1 versus $\omega^{1/2}$ at different electrode potentials for the corresponding material N-rGO.

Figure S4. Linear sweep voltammograms (LSV) recorded by RDE in O₂ saturated 0.1 M

aqueous KOH solution at different rotation rates for native {Mn₄V₄} (a); (b) shows the

Koutecky–Levich plots of \mathcal{J}^1 versus $\omega^{-1/2}$ at different electrode potentials for the corresponding material {Mn₄V₄}.

Figure S5. (a) Chronoamperometry (CA) tests of **1-900** and commercial Pt/C, demonstrating their stability during ORR. Conditions: E = 0.7 V, 0.1 M aqueous KOH as electrolyte. (b) CVs of **1-900** before and after stability test, scan rate: 10 mV s⁻¹.

Figure S6. Tafel plots (derived from Fig. 5a) of 1-900, 1-440 and commercial Pt/C for ORR

in 0. 1 M aqueous KOH solution.

Figure S7. (a) Linear sweep voltammograms (LSV) of **1-900** before and after different cycles of accelerated stability test in O₂-saturated 0.1 M KOH. (b) CVs before and after stability test. Catalyst loading amount: ~1 mg cm⁻² on carbon fiber paper. Sweep rate: 10 mV s⁻¹.

Figure S8. Linear sweep voltammograms (LSV) of N-rGO and native {Mn₄V₄} in 0.1M

KOH. The LSV was measured in O₂-saturated solution with a scan rate of 10 mV s⁻¹

and catalyst loading of 1 mg cm^{-2} on carbon fiber paper.

Figure S9. Electrochemical impedance spectra (EIS) curves in 0.1 M KOH for 1-440 and

1-900.

	Eonset (ORR)									
Catalyst	(V RHE)	VS.	<i>E</i> _{ORR} RHE)	(V	VS.	E _{OER} (V vs. RHE)	⊿E _{OER-} _{ORR} (V)	Referen ce		
20 wt % Pt /C						2.02	1.16	3		
20 wt % Ir /C						1.61	0.92	3		
20 wt % Ru/C						1.62	1.01	3		
NPMC-1000	0.94	0.94				~1.95	1.1	4		
NGSH	0.88	0.88				~1.64	1.01	5		
CNT@NCNT	0.99	0.99				1.762	1.13	6		
N-graphene- CNT	0.884	0.884				1.65	0.966	7		
PCN-CFP	0.94	0.94				1.63	0.96	8		
Co/N-C	0.834	0.834				-	0.859	9		
CMO-20N-rGO	0.93	0.93		0.77		1.68	0.91	10		
NiCo ₂ O ₄ -G	0.892	0.892				~1.692(CV)	1.080	11		
			-0.	-0.24						
NiCo₂S₄@S- rGO	-0.08		VS	vs.Ag/AgC I		0.7				
	vs.Ag	s.Ag/AgCl				vs.Ag/AgCl	0.94	12		
CoFe ₂ O ₄ @rGO	0.841	0.841		~0.747		~1.707	0.96	13		

Table S1 Electrocatalytic data for related catalytic systems

CoMn ₂ O ₄ @N-										
rGO	0.9	0.8	1.66	0.86	14					
nsLaNiO₃@NC	-	0.64	1.66	1.02	15					

 $E_{\text{onset (ORR)}}$, onset potential for ORR; E_{ORR} , potential for ORR at J = -3 mA cm⁻²; E_{OER} , potential for OER at J = 10 mA cm⁻².

 $E_{\text{RHE}} = E_{\text{Ag/AgCI}} + E_{\text{Ag/AgCI}} + 0.059 \ pH$

 $E_{\text{RHE}} = E_{\text{SCE}} + E_{\text{SCE}} + 0.059 \ \rho H$

where E_{RHE} is the converted potential vs RHE; $E_{Ag/AgCl}$, and E_{SCE} are the experimental potentials measured against Ag/AgCl and SCE reference electrodes, respectively; $E_{Ag/AgCl}^{\circ}$ and E_{SCE}° are the standard potential of Ag/AgCl and SCE at 25 °C, respectively.

References

- Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Oxygen Reduction on a High-Surface Area Pt/Vulcan Carbon Catalyst: A Thin-Film Rotating Ring-Disk Electrode Study. *J. Electroanal. Chem.* 2001, *495*, 134–145.
- (2) Hao, L.; Zhang, S.; Liu, R.; Ning, J.; Zhang, G.; Zhi, L. Bottom-up Construction of Triazine-Based Frameworks as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. *Adv. Mater.* **2015**, *27*, 3190–3195.
- (3) Gorlin, Y.; Lassalle-Kaiser, B.; Benck, J. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F. In Situ X-Ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. *J. Am. Chem. Soc.* **2013**, *135*, 8525–8534.

- (4) Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. *Nat. Nanotechnol.* 2015, *10*, 444–452.
- (5) Tian, G. L.; Zhao, M. Q.; Yu, D.; Kong, X. Y.; Huang, J. Q.; Zhang, Q.; Wei, F. Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction. *Small* **2014**, *10*, 2251–2259.
- (6) Tian, G. L.; Zhang, Q.; Zhang, B.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward Full Exposure of "Active Sites": Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity. *Adv. Funct. Mater.* 2014, *24*, 5956–5961.
- Wen, Z.; Ci, S.; Hou, Y.; Chen, J. Facile One-Pot, One-Step Synthesis of a Carbon Nanoarchitecture for an Advanced Multifunctonal Electrocatalyst. *Angew. Chem. Int. Ed.* 2014, *53*, 6496–6500.
- (8) Ma, T. Y.; Ran, J.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Phosphorus-Doped Graphitic Carbon Nitrides Grown In Situ on Carbon-Fiber Paper: Flexible and Reversible Oxygen Electrodes. *Angew. Chem. Int. Ed.* **2015**, *54*, 4646–4650.
- (9) Su, Y.; Zhu, Y.; Jiang, H.; Shen, J.; Yang, X.; Zou, W.; Chen, J.; Li, C. Cobalt Nanoparticles Embedded in N-Doped Carbon as an Efficient Bifunctional

Electrocatalyst for Oxygen Reduction and Evolution Reactions. *Nanoscale* **2014**, *6*, 15080–15089.

- (10) He, X.; Yin, F.; Yuan, S.; Liu, N.; Huang, X. Hybrid Spinel Oxides/N-Doped Reduced Graphene Oxide as Highly-Active Bifunctional Electrocatalysts for Oxygen Reduction/Evolution Reactions. *ChemElectroChem.* **2016**, *3*, 1107–1115.
- (11) Lee, D. U.; Kim, B. J.; Chen, Z. One-Pot Synthesis of a Mesoporous NiCo₂O₄
 Nanoplatelet and Graphene Hybrid and Its Oxygen Reduction and Evolution
 Activities as an Efficient Bi-Functional Electrocatalyst. *J. Mater. Chem. A* 2013, *1*, 4754.
- (12) Liu, Q.; Jin, J.; Zhang, J. NiCo₂S₄@graphene as a Bifunctional Electrocatalyst for
 Oxygen Reduction and Evolution Reactions. *ACS Appl. Mater. Interfaces* 2013, *5*, 5002–5008.
- Bian, W.; Yang, Z.; Strasser, P.; Yang, R. A CoFe₂O₄/Graphene Nanohybrid as an Efficient Bi-Functional Electrocatalyst for Oxygen Reduction and Oxygen Evolution.
 J. Power Sources 2014, *250*, 196–203.
- (14) Prabu, M.; Ramakrishnan, P.; Shanmugam, S. CoMn₂O₄ Nanoparticles Anchored on Nitrogen-Doped Graphene Nanosheets as Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery. *Electrochem. Commun.* **2014**, *41*, 59–63.
- (15) Hardin, W. G.; Slanac, D. A.; Wang, X.; Dai, S.; Johnston, K. P.; Stevenson, K. J.

Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-

Air Battery Electrodes. J. Phys. Chem. Lett. 2013, 4, 1254–1259.