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1. Calculations for Electrochemical Studies

In order to further investigate the selectivity of oxygen reduction for a four-electron 

pathway, Koutecky−Levich plots (J−1 vs. ω−1/2) were analyzed at different potentials. The 

slopes of their best linear fit lines were used to calculate the number of electrons 

transferred (n) according to the Koutecky−Levich equation 1
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Where J is the measured current density, JK and JL are the kinetic and diffusion limiting 

current densities, ω is the angular velocity, n is transferred electron number, F is the 
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Faraday constant, C0 is the bulk concentration of O2, v is the kinematic viscosity of the 

electrolyte, and k is the electron-transfer rate constant.

The yield of peroxides (HO2-%) and the electron transfer number (n) were calculated by 

the followed equation 2
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Where Id is disk current, Ir is ring current, and N is current collection efficiency of the Pt 

ring. N was calibrated as 0.40 on the basis of the ORR measurements of K3Fe[CN]6.

2. High-resolution transmission electron microscopy (HRTEM) 
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Figure S1. TEM images of native {Mn4V4} (a and b). HRTEM images of (c and d) 1-900 

and (e and f) 1-440, showing the lattice fringes of crystalline manganese vanadium 

oxide particles deposited on N-rGO.
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3. X-ray photoelectron spectroscopy (XPS)

Figure S2. Manganese, nitrogen and carbon XPS spectra for 1-440 (a, b, c) and 1-900 

(d, e, f).
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4. Linear scan voltammograms (LSV)

Figure S3. Linear sweep voltammograms (LSV) recorded by RDE in O2 saturated 0.1 M 

aqueous KOH solution at different rotation rates for non-modified N-rGO (a); (b) shows 

the Koutecky–Levich plots of J-1 versus -1/2 at different electrode potentials for the 

corresponding material N-rGO. 

Figure S4. Linear sweep voltammograms (LSV) recorded by RDE in O2 saturated 0.1 M 

aqueous KOH solution at different rotation rates for native {Mn4V4} (a); (b) shows the 



S-8

Koutecky–Levich plots of J-1 versus -1/2 at different electrode potentials for the 

corresponding material {Mn4V4}. 

Figure S5. (a) Chronoamperometry (CA) tests of 1-900 and commercial Pt/C, 

demonstrating their stability during ORR. Conditions: E = 0.7 V, 0.1 M aqueous KOH as 

electrolyte. (b) CVs of 1-900 before and after stability test, scan rate: 10 mV s−1. 
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Figure S6. Tafel plots (derived from Fig. 5a) of 1-900, 1-440 and commercial Pt/C for ORR 

in 0. 1 M aqueous KOH solution.
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Figure S7. (a)Linear sweep voltammograms (LSV) of 1-900 before and after different 

cycles of accelerated stability test in O2-saturated 0.1 M KOH. (b) CVs before and after 

stability test. Catalyst loading amount: ~1 mg cm-2 on carbon fiber paper. Sweep rate: 10 

mV s-1.

Figure S8. Linear sweep voltammograms (LSV) of N-rGO and native {Mn4V4} in 0.1M 

KOH. The LSV was measured in O2-saturated solution with a scan rate of 10 mV s−1 

and catalyst loading of 1 mg cm−2 on carbon fiber paper.
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Figure S9. Electrochemical impedance spectra (EIS) curves in 0.1 M KOH for 1-440 and 

1-900. 
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Table S1 Electrocatalytic data for related catalytic systems

Catalyst

Eonset (ORR)

(V vs. 
RHE)

EORR (V vs. 
RHE)

EOER (V vs. 
RHE)

 

EOER-

ORR(V)
Referen
ce

20 wt % Pt /C 0.86                        2.02 1.16 3

20 wt % Ir /C 0.69 1.61 0.92 3

20 wt % Ru/C  0.61 1.62 1.01     3

NPMC-1000           0.94 0.85 1.95 1.1 4

NGSH    0.88 0.63 1.64 1.01 5

CNT@NCNT        0.99 0.632 1.762 1.13 6

N-graphene-
CNT           0.884 0.684 1.65 0.966 7

PCN-CFP                 0.94 0.67 1.63 0.96 8

Co/N-C                   0.834 - - 0.859 9

CMO-20N-rGO 0.93 0.77 1.68 0.91 10

NiCo2O4-G 0.892 0.612 1.692(CV) 1.080 11

NiCo2S4@S-
rGO

-0.08

vs.Ag/AgCl

-0.24

vs.Ag/AgC
l

0.7 

vs.Ag/AgCl 0.94 12

CoFe2O4@rGO 0.841 0.747 1.707 0.96 13
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CoMn2O4@N-
rGO 0.9 0.8 1.66 0.86 14

nsLaNiO3@NC - 0.64 1.66 1.02 15

Eonset (ORR), onset potential for ORR; EORR, potential for ORR at J = -3 mA cm-2; EOER, 
potential for OER at J = 10 mA cm-2.

ERHE = EAg/AgCl + EAg/AgCl +0.059 pH
ERHE = ESCE + ESCE +0.059 pH
where ERHE is the converted potential vs RHE; EAg/AgCl, and ESCE are the experimental 

potentials measured against Ag/AgCl and SCE reference electrodes, respectively; 
EAg/AgCl and ESCE  are the standard potential of Ag/AgCl and SCE at 25 °C, respectively.
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