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Figure S1. Supercooling at crystallization (Trus— Teryst), Where Teryst is the crystallization
temperature, as a function of the holding temperature, Thoiq, relative to the melting temperature,
Trs, for tridecanoic and hexadecanoic acids.
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Figure S2. The real portion of the dielectric constant of octanoic acid (Trs = 16 °C) as a function
of frequency on heating, over the isothermal holding period at 132 °C, and on cooling. The fatty
acid was held at 80 °C for 60 min between the heating and cooling cycles. Measurements made
on heating are represented by circles; measurements made on cooling are represented by squares,
with the same colour for a given temperature.
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Figure S3. Master curve for the real part of the dielectric constant of octanoic acid (Trs = 16 °C)
created by shifting the individual &’(w) curves by a factor a(T) to bring them in line with the
reference curve, chosen as the curve from the measurement made at 19 °C.
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Figure S4. Natural logarithm of the values of o(T) used to create the master curve for octanoic
acid (Trs = 16 °C) from the &’(w)/eo curves measured on heating as a function of (1/T — 1/To).
The dashed line is a linear fit to Equation 3.6.
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Figure S5. NMR spectrum of neat octanoic acid at 27 °C and 87 °C. The peaks corresponding to
Cs and Csare unresolved.
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Figure S6. Example of a series of NMR spectra collected in an inversion recovery measurement.
This example shows octanoic acid at 42 °C in the range of 0 to 50 ppm with spectra collected
with 16 values of 7, where 0.001 s <7< 40s.
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Figure S7. Example of data acquired from an inversion recovery experiment and the fitting
procedure used to determine the spin-lattice relaxation time, Ti.
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