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Figure S1.  The room-temperature FTIR spectra recorded in the area from 1800 to 650 

cm-1: compound 1 (A) and compound 1-Py-1.6 (B); compound 1-Py-1-0.6 (C); the bands 

at 1590, 1347 and 1307 cm-1 in compounds 1-Py-1.6 and 1-Py-1-0.6 belong to NC5D5;  

the insert shows the full IR spectrum of 1. 
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The spectra were recorded from 600 to 1800 cm-1 at 40 scans with a FTIR 

Spectrophotometer IRAffinity-1 equipped with a PIKE MIRacle™ ATR sampling 

accessory. Compound 1-Py-1-0.6 was obtained by heating a sample of 1-Py-1.6 at 1200 C 

for 18 hours.   

Assignments. A broad band between 3600 and 3000 cm-1 can be well attributed to O-H 

stretching modes1-3 in hydrogen bonded groups O-H from water molecules, phosphate 

groups and phosphonate groups forming the pores; the symmetric and asymmetric P-O-C 

stretching modes  of the phosphonate groups are seen at 828 and 1005 cm-1, respectively; 

the P−OH stretching mode3 belonging to phosphonate P-OH groups forming the pores is 

seen at 1040 cm−1; the P−C stretching region is located at 1150 cm−1; the band at 1390 

cm−1 can be attributed to C=C-H stretching; and the peak at 1080 cm-1 can be assigned to 

P=O groups of phosphonic acid moieties forming pores;  the large shoulder at  950 cm-1 

in the IR spectra of compound 1 can be attributed to the P-OH stretching of phosphate 

groups because of the absence of this band in the IR spectrum of the Sn(IV) phosphonate 

material; since a wide band at 1636 cm-1 was also observed in the IR spectrum of the 

Sn(IV) phosphonate material, it can be assigned to bending mode associated with water.2 
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Figure S2. The static 1H NMR spectrum of compound 1 where the sharp and broad 

signals belong to water and phenylene protons, respectively. 

Figure S3. PXRD pattern of compound 1-Py-1.6. Numbers listed above the peaks are the 

d-spacing values. 
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Figure S4. The static 13C{1H} NMR spectrum of 1-Py-1.6 obtained with direct 13C 

excitation (top); the 13C{1H} CP MAS NMR spectrum of 1-Py-1.6 (middle) and 13C{1H} 

MAS NMR spectrum of 1-Py-1.6  (bottom) recorded at a spinning rate of 8.2 kHz. 

Due to high mobility of pyridine, its 13C resonances are observed in a static sample at 

147.1, 137.0 and 124 ppm typical of liquid pyridine (top); the resonances of phenylene 

rings are observed in the 13C{1H} CP NMR MAS spectrum (middle); finally, all of these 

signals are detected in 13C{1H} MAS NMR spectrum.  
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Figure S5. Variable-temperature 2H NMR spectra recorded in static compound 1-Py-1.6 
from top to bottom: 283 K, 273 K, 243 K and 175 K; the spectra scaled to have the same 
intensity for the isotropic component. 

Comments on changes in the 2H NMR spectra of compound 1-Py-1.6 detected after its 

holding for 10 days.  

Figure S6 shows the VT 2H NMR spectra of a static sample of 1-Py-1.6 recorded 10 days 

later after preparation. Comparison with Figure 9 in the main text reveals a remarkable 

increase in the relative intensity of the quadrupolar pattern at low temperature 

corresponding immobile pyridine molecules. At the same time, the 31P{1H} and 
119Sn{1H} MAS NMR spectra, the IR spectrum and the PXRD pattern of this sample do 

not change.  We believe that the pyridine causes a slow reorganization of pore surface in 

1. Similarly, as it has recently been reported, the metal-organic frame work MIL-53(Cr) 

undergoes a contraction upon benzene adsorption.1 
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Figure S6. Variable-temperature 2H NMR spectra of a static sample of 1-Py-1.6 recorded 

10 days later after preparation from top to bottom: 273 K, 243 K, 213 K, and 175 K; the 

insert:  the 2H NMR spectrum at 193 K simulated as a combination of four sub-spectra 

corresponding to mobile pyridine (the central component) and the full size anisotropy of 

a quadrupolar tensors with static quadrupolar constants of 170, 175 and 185 kHz ( = 

0.1).  


