Supporting Information for

Effects of *ortho*-Linkages on the Molecular Stability of Organic Light-Emitting Diode Materials

Rui Wang,¹ Yi-Lei Wang,¹ Na Lin,^{1,2} Ruoyun Zhang,¹ Lian Duan,¹ and Juan Qiao*,¹

¹Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China

² Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China E-mail: qjuan@mail.tsinghua.edu.cn.

Figure S1. Chemical structures of the compounds selected for the comparative calculation. BDE_f values of the fragile D- π bonds (those labeled in red) were calculated.

Table S1	l. Experimental	Values and	Calculated	Values at	Different	Levels	of the	Selected	Com-
pounds i	n Figure S1								

\searrow	method	experimental	B3LYP	B3LYP	M06-2X	M06-2X
BDE (e	V)	value ^a	6-31G(d)	6-311+G(d,p)	6-31G(d)	6-311+G(d,p)
	aı	3.53	3.23	3.14	3.63	3.52
;	a ₂	3.79	3.54	3.58	4.05	3.94
P	DO		3.26	3.12	3.80	3.74
P	DH		3.54	3.41	4.15	4.03
P	DN		3.68	3.56	4.29	4.18

^a Ref 1.

Figure S2. The variation tendency of the experimental BDEs and calculated BDEs at different levels.

		$E_{\rm VA}({ m S}_1)^a$ /eV				
compound	OHF /%	$q ext{-OHF}^a$	ωB97XD	LC-@PBE	exptl ^b	ref
9-PhCz	3.9	3.68	4.43	4.62	3.66	2
CBP	28.7	3.84	4.38	4.60	3.80	2
mCP	1.1	3.50	4.45	4.63	3.66	Figure S3
DCzTrz	34.1	3.41	4.04	4.50	3.69	3
Cz2BP	33.4	3.54	3.78	3.86	3.52	4
<i>p</i> -CzTrz	34.1	3.55	4.13	4.48		
DMCzTrz	37.1	3.68	4.37	4.62		
BPCzTrz	36.0	3.50	4.12	4.57		
TCzTrz	34.5	3.31	3.94	4.37	3.42	5
4CzIPN	31.4	2.85	3.39	3.89	2.85	2
5CzBN	30.4	3.07	3.68	4.18	3.11	6
2CzPN	31.8	3.20	3.79	4.23	3.19	2
PDOTrz	35.5	3.24	3.83	4.16		
PDMTrz	34.4	3.45	4.04	4.38	3.29	7
PDFTrz	33.4	3.88	4.38	4.63		
PDNTrz	33.9	3.95	4.36	4.56		

Table S2. Calculated and Experimental Values of Vertical Absorption Energies of S₁ States $[E_{VA}(S_1)]$ of Molecules in Figure 1, Group A, B, and F

^{*a*}The excitation energies were calculated based on B3LYP/6-31G(d) optimized geometries. In the *q*-OHF method developed by Adachi et al., $E_{0-0}(S_1) = E_{VA}(S_1, OHF) - \Delta E_V - \Delta E_{Stokes}$, ΔE_V is vibrational energy loss, 0 for 9-PhCz and 0.15 eV others. ΔE_{Stokes} is the Stokes-shift energy loss, 0.09 eV. ^{*b*}The experimental $E_{VA}(S_1)$ values are determined from the absorption peaks in the toluene solution of the corresponding materials (for 9-PhCz, mCP, CBP, Cz2BP, 2CzPN, 4CzIPN, and PDMTrz) or polystyrene films (for DCzTrz, TCzTrz, and 5CzBN).

Figure S3. The chemical structure (inset), absorption and emission spectra of mCP in toluene solution ($\sim 10^{-5}$ M) under room temperature. The absorption spectra were recorded using an UV-visible spectrophotometer (Agilent 8453). The emission spectra were recorded using a fluorospectrophotometer (JobinYvon, FluoroMax-3).

Figure S4. Chemical structures of the additional Cz-based molecules with non-*ortho*-substituents on the π -side. *BDE*_f values of the fragile D- π bonds (those labeled in red) were calculated.

Table S3. B3LYP/6-31G(d) Absolute (BDE_f) and Relative (ΔBDE_f) Bond Dissociation Energies of
the Fragile D- π Bonds, Dihedral Angles between Carbazoles and the Phenyl Groups ($\angle D-\pi$) of
Molecules in Figure S4

molecule	$BDE_{\rm f}({\rm eV})$	$\Delta BDE_{\rm f}({\rm eV})^a$	$\angle D-\pi$ (deg)
9-PhCz	3.54	0	56
DCN-1	3.50	-0.04	51
DCN-2	3.53	-0.01	53
DCzCN	3.49	-0.05	53
TCTA	3.56	0.02	56
TCz	3.55	0.01	61
DCzF	3.54	0	59
DCzT	3.53	-0.01	57
DCzB	3.52	-0.02	52
CzBO	3.54	0	55
R1	3.52	-0.02	50
R2	3.55	0.01	53
CzSFDMAC ^b	3.53	-0.01	50

^{*a*}For one molecule, $\Delta BDE_f = BDE_f - BDE_f$ (9-PhCz). ^{*b*}For CzSFDMAC, Cz-phenyl bond is not the weakest bond in this molecule, here its BDE is listed only for comparison.

Figure S5. 9,9-dimethyl-9,10-dihydroacridine (DMAC, $X = CMe_2$) and phenoxazine (Px, X = O) based molecules with non-*ortho*-substituents on the π -side. *BDE*_f values of the fragile D- π bonds (those labeled in red) were calculated.

Table S4. B3LYP/6-31G(d) Bond Dissociation Energies of the Fragile $D-\pi$ Bonds (<i>BDE</i> _f), Dihedra
Angles between Donors and the Phenyl Groups $(\angle D - \pi)$ of Molecules in Figure S5

structure	$X = CMe_2$ (DMAC as donor)		X = O (Px as donor)	
	BDE_{f} /eV	$\angle D-\pi$ (deg)	BDE_{f} /eV	$\angle D - \pi (deg)$
1	2.89	90	2.64	90
2	2.88	88	2.63	90
3	2.83	90	2.57	84
4	2.87	90	2.61	90
5	2.89	90	2.64	87
6	2.87	90	2.61	87

Figure S6. Chemical structures of the Cz-based molecules with *ortho*-electron-withdrawing substituents on the π -side. *BDE*_f values of the fragile D- π bonds (those labeled in red) were calculated.

Table S5. B3LYP/6-31G(d) Absolute (BDE_f) and Relative (ΔBDE_f) Bond Dissociation Energies of the Fragile D- π Bonds, Dihedral Angles between Carbazoles and the Phenyl Groups $(\angle D-\pi)$ of 9-PhCz and Molecules in Figure S6

molecule	$BDE_{\rm f}({\rm eV})$	$\Delta BDE_{\rm f}({\rm eV})^a$	$\angle D - \pi$ (deg)
9-PhCz	3.54	0	56
BFCz	3.60	0.06	60
BCNCz	3.45	-0.09	90
BTFCz	3.28	-0.26	90
BTrzCz	3.10	-0.44	70

^{*a*}For one molecule, $\Delta BDE_f = BDE_f - BDE_f$ (9-PhCz).

Discussion of the results in Table S5:

The *BDE*^f values of BFCz, BCNCz, BTFCz, and BTrzCz are 3.60 eV, 3.45 eV, 3.28 eV, and 3.10 eV, respectively. It can be found that the *BDE*^f and the volume of the substituent have a negative correlation. The fluorine atoms have the smallest volume (slightly larger than the hydrogen atom) within these substituents, and the *BDE*^f of BFCz is not even decreased (compared with that of 9-PhCz); the increase of the dihedral angle between Cz and the phenyl group is only 4°. Cyano groups have a small volume, and the effect on the *BDE*^f of BTFCz by over 0.2 eV. Such influence is similar to the situation in ODF [9-phenyl-1,8-bis(trifluoromethyl)-9*H*-carbazole], where two *ortho*-CF₃ on D-side have decreased the *BDE*^f of ODF to 3.35 eV. 4,6-Diphenyl-1,3,5-triazin-2-yl (Trz) groups have the largest volume, and they can conjugate with the phenyl group; thus, they tend to drive away the donor. As a result, the *BDE*^f of BTrZCz is largely decreased by over 0.4 eV. Despite the large volume of Trz, the dihedral angle between Cz and they would arrange in a propeller shape. Of note, the electronic characters of CN and CH₃ groups are quite different. However, their effects on *BDE*^f values are similar due to the similar volumes. Thus, on the π -side, the effect of a substituent on *BDE*^f mainly depends on the steric hindrance that it brings to the D- π bond, rather than its electronic character.

Figure S7. Profiles of lone-pairs of the N atoms in 9-PhCz and its 1,8-substitueted derivatives, obtained by the natural bond orbital (NBO) method.

Table S6. Compositions of Lone-Pairs of the N Atoms in 9-PhCz and Its 1,8-Substitueted Derivatives in Figure S7, Analyzed by NBO Method at B3LYP/6-31G(d) Level

	composition of the lone-pair /%				
molecule	s component of the N atom	p component of the N atom			
ODF	1.8	98.2			
ODN	0	100			
9-PhCz	0	100			
ODM	0	100			
ODO	0	100			

Discussion of the results in Table S6:

The NBO results show that except ODF who has 1.8% s component in the lone-pair of the N atom, those of the other molecules are purely contributed by p component of the N atom (which is a typical sp^2 character). Thus, compared with other molecules, N atom in ODF has some sp^3 character.

Figure S8. Profiles of "lone-pair orbitals" (i.e., orbitals that are mainly contributed by the lone-pairs of the N atoms) of 9-PhCz and its 1,8-substitueted derivatives, obtained by the adaptive natural density partitioning (AdNDP) method.

Table S7. Compositions of Lone-Pair Orbitals of 9-PhCz and Its 1,8-Substitueted Derivatives in Figure S8, Analyzed by AdNDP Method at B3LYP/6-31G(d) Level

	composition of the lone-pair orbital/%							
molecule	total contribution of the N atom	s component of the N atom	<i>p</i> component of the N atom					
ODF	82.0	2.3	79.7					
ODN	81.5	0	82.3					
9-PhCz	82.3	0	82.3					
ODM	85.8	0	85.8					
ODO	84.4	0	84.4					

Details and Discussions of the results in Table S7:

To further confirm the hybridization character of ODF, AdNDP analysis is further performed by Multiwfn^{8,9}. Orbitals that are dominated by the N atoms (called "lone-pair orbitals" for discussion) are picked and their components are analyzed. From Table S7, it can be clearly observed that only the lone-pair orbital of ODF has a fraction of *s* component of the N atom. Thus, it can be concluded that only N atom in ODF has some sp^3 hybridization character.

Figure S9. Derivatives of 9-PhCz investigated in Figure 5. BDE_f values of the fragile D $-\pi$ bonds (those labeled in red) were calculated.

Table S8. B3LYP/6-31G(d) Hirshfeld Charges of the N Atoms (q _N), Bond Dissociation Energies of Fragile
Bonds (BDE _f) of the Derivatives of 9-PhCz and Real OLED Molecules

molecule	substituent ^a	substituted sites ^a	$q_{ m N}$	BDE_{f} /eV
PDO	Methoxyl	3,6	-0.02568	3.26
PDM	Methyl	3,6	-0.02171	3.46
9-PhCz	Н	3,6	-0.02133	3.54
PDF	Trifluoromethyl	3,6	-0.01536	3.65
PDN	Cyano	3,6	-0.01198	3.68
PDBr	Bromine	3,6	-0.01839	3.53
PDP	Phenyl	3,6	-0.01926	3.46
PDBu	tert-Butyl	3,6	-0.02220	3.46
РМО	Methoxyl	3	-0.02358	3.38
PMM	Methyl	3	-0.02148	3.50
PMF	Trifluoromethyl	3	-0.01817	3.60
PMN	Cyano	3	-0.01614	3.61
PMBr	Bromine	3	-0.01987	3.53
PMP	Phenyl	3	-0.02039	3.50
PMBu	tert-Butyl	3	-0.02191	3.50

ODO	Methoxyl	1,8	-0.01998	3.24
ODM	Methyl	1,8	-0.02761	3.15
ODF	Trifluoromethyl	1,8	-0.02332	3.33
ODN	Cyano	1,8	-0.01176	3.56
ODBr	Bromine	1,8	-0.01879	3.31
ODP	Phenyl	1,8	-0.02308	2.98
ОМО	Methoxyl	1	-0.02052	3.38
OMM	Methyl	1	-0.02612	3.35
OMF	Trifluoromethyl	1	-0.02118	3.46
OMN	Cyano	1	-0.01791	3.54
OMBr	Bromine	1	-0.02194	3.43
OMP	Phenyl	1	-0.02408	3.30
MDO	Methoxyl	2,7	-0.02173	3.55
MDM	Methyl	2,7	-0.02123	3.53
MDF	Trifluoromethyl	2,7	-0.01654	3.64
MDN	Cyano	2,7	-0.01516	3.68
MDP	Phenyl	2,7	-0.02092	3.55
MDBr	Bromine	2,7	-0.01742	3.62
MDBu	tert-Butyl	2,7	-0.02321	3.50
ММО	Methoxyl	2	-0.02167	3.53
MMM	Methyl	2	-0.02128	3.53
MMF	Trifluoromethyl	2	-0.01891	3.59
MMN	Cyano	2	-0.01818	3.61
MMBr	Bromine	2	-0.01930	3.57
MMP	Phenyl	2	-0.02116	3.54
MMBu	tert-Butyl	2	-0.02233	3.52
M2MO	Methoxyl	4	-0.02054	3.53
M2MM	Methyl	4	-0.02138	3.52
M2MF	Trifluoromethyl	4	-0.01992	3.56
M2MN	Cyano	4	-0.01908	3.58
M2MBr	Bromine	4	-0.01974	3.53

M2MP	Phenyl	4	-0.02172	3.50
M2MBu	tert-Butyl	4	-0.02229	3.47
PDOTrz	-	-	-0.02239	3.29
PDMTrz	-	-	-0.01905	3.48
<i>p</i> -CzTrz	-	-	-0.01903	3.55
PDFTrz	-	-	-0.01374	3.62
PDNTrz	-	-	-0.01061	3.67
DCzTrz	-	-	-0.02142	3.50
mCP	-	-	-0.02166	3.50
Cz2BP	-	-	-0.01917	3.54
CBP	-	-	-0.02124	3.55

^{*a*}Compounds are mainly derivatives of 9-PhCz; some real OLED materials with complete $D-\pi-A$ structures are also investigated; *substituted sites* refers to introduced positions of the carbazole of 9-PhCz.

Figure S10. Chemical structures of the molecules with carboline subunits. BDE_f values of the fragile $D-\pi$ bonds (those labeled in red) were calculated.

Table S9. B3LYP/6-31G(d) Bond Dissociation Energies of Fragile Bonds (*BDE*_f), Dihedral Angles ($\angle D-\pi$) between Carboline and the Phenyl Group ($\angle D-\pi$) and Hirshfeld Charges (q_N) of Molecules with Carboline Subunits

molecule	$BDE_{\rm f}({\rm eV})$	$\angle D-\pi$ (deg)	$10^2 \times q_{ m N}$
α -carboline	3.78	51	-1.9
β -carboline	3.56	56	-1.9
y-carboline	3.66	57	-1.7
δ -carboline	3.58	55	-2.1

Figure S11. Geometries of ODP before and after the phenyl group on 9-position of Cz is taken off.

Figure S12. The correlation between the B3LYP/6-31G(d) Hirshfeld charge of N atom (q_N) and BDE_f in derivatives of 9,9-dimethyl-10-phenyl-9,10-dihydroacridine (PhDMAC, black dots) and 10-phenyl-10*H*-phenoxazine (PhPx, red dots). Group R is selected from methoxyl group, methyl group, H atom, trifluoromethyl group, or cyano group.

Table S10. B3LYP/6-31G(d) Bond Dissociation Energies of Fragile Bonds (BDE_f) and Hirshfeld Charges of the N Atoms (q_N) of Derivatives of PhDMAC and PhPx

substituents on 3,6-	derivatives of PhDMAC		derivatives of PhPx	
positions	$BDE_{\rm f}({\rm eV})$	$q_{ m N}$	$BDE_{\rm f}({\rm eV})$	$q_{ m N}$
Methoxyl group	2.70	-0.0464	2.51	-0.0519
Methyl group	2.78	-0.0421	2.57	-0.0471
H atom	2.89	-0.0410	2.64	-0.0465
Trifluoromethyl	3.02	-0.0339	2.76	-0.0389
Cyano group	3.03	-0.0294	2.78	-0.0341

Figure S13. Chemical structure of MDNTrz; natural transition orbitals (NTOs) of its S₁ state and the weights; calculated by the *q*-OHF (OHF% = 18.2%) method, ω B97XD and LC- ω PBE functionals.

Reference

1. Internet Bond-energy Databank (pKa and BDE)-*i*BonD Home Page. http://ibond.chem.tsinghua.edu.cn (accessed April 2018).

2. Huang, S.; Zhang, Q.; Shiota, Y.; Nakagawa, T.; Kuwabara, K.; Yoshizawa, K.; Adachi, C. Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds. J. Chem. Theory Comput. **2013**, *9*, 3872–3877.

3. Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, J. Y. Stable Blue Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with Three Times Longer Lifetime than Phosphorescent Organic Light-Emitting. *Adv. Mater.* **2015**, *27*, 2515–2520.

4. Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C. Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full-Color Delayed Fluorescence OLEDs. *Angew. Chem. Int. Ed.* **2014**, *53*, 6402–6406.

Lee, D. R.; Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, C. W.; Lee, J. Y. Design Strategy for 25% External Quantum Efficiency in Green and Blue Thermally Activated Delayed Fluorescent Devices. *Adv. Mater.* 2015, *27*, 5861–5867.
 Cho, Y. J.; Jeon, S. K.; Lee, J. Y. Molecular Engineering of High Efficiency and Long Lifetime Blue Thermally Activated Delayed Fluorescent Emitters for Vacuum and Solution Processed Organic Light-Emitting Diodes. *Adv. Opt. Mater.* 2016, *4*, 688–693.

 Cui, L.-S.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C. Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters. *Angew. Chem. Int. Ed.* 2016, 55, 1–6.
 Zubarev, D. Y.; I. Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. *Phys. Chem. Chem. Phys.*, 2008, *10*, 5207–5217.

9. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.