Supporting Information for

Effects of ortho-Linkages on the Molecular Stability of Organic LightEmitting Diode Materials

Rui Wang, ${ }^{1}$ Yi-Lei Wang, ${ }^{1}$ Na Lin, ${ }^{1,2}$ Ruoyun Zhang, ${ }^{1}$ Lian Duan, ${ }^{1}$ and Juan Qiao*, ${ }^{1}$
${ }^{1}$ Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
${ }^{2}$ Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China E-mail: qjuan@mail.tsinghua.edu.cn.

a_{1}

a_{2}

Figure S1. Chemical structures of the compounds selected for the comparative calculation. $B D E_{\mathrm{f}}$ values of the fragile $\mathrm{D}-\pi$ bonds (those labeled in red) were calculated.

Table S1. Experimental Values and Calculated Values at Different Levels of the Selected Compounds in Figure S1

method	experimental	B3LYP	B3LYP	M06-2X	M06-2X
BDE (eV)	value a	$6-31 \mathrm{G}(\mathrm{d})$	$6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$	$6-31 \mathrm{G}(\mathrm{d})$	$6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$
a_{1}	3.53	3.23	3.14	3.63	3.52
a_{2}	3.79	3.54	3.58	4.05	3.94
PDO		3.26	3.12	3.80	3.74
PDH	3.54	3.41	4.15	4.03	
PDN		3.68	3.56	4.29	4.18

[^0]

Figure S2. The variation tendency of the experimental BDEs and calculated BDEs at different levels

Table S2. Calculated and Experimental Values of Vertical Absorption Energies of S_{1} States $\left[E_{\mathrm{VA}}\left(S_{1}\right)\right]$ of Molecules in Figure 1, Group A, B, and F

compound	OHF /\%	$E \mathrm{VA}\left(\mathrm{S}_{1}\right)^{a} / \mathrm{eV}$				ref
		$q-\mathrm{OHF}^{a}$	ω B97XD	LC- ω PBE	exptl ${ }^{\text {b }}$	
$9-\mathrm{PhCz}$	3.9	3.68	4.43	4.62	3.66	2
CBP	28.7	3.84	4.38	4.60	3.80	2
mCP	1.1	3.50	4.45	4.63	3.66	Figure S3
DCzTrz	34.1	3.41	4.04	4.50	3.69	3
Cz2BP	33.4	3.54	3.78	3.86	3.52	4
$p-\mathrm{CzTrz}$	34.1	3.55	4.13	4.48		
DMCzTrz	37.1	3.68	4.37	4.62		
BPCzTrz	36.0	3.50	4.12	4.57		
TCzTrz	34.5	3.31	3.94	4.37	3.42	5
4CzIPN	31.4	2.85	3.39	3.89	2.85	2
5 CzBN	30.4	3.07	3.68	4.18	3.11	6
2 CzPN	31.8	3.20	3.79	4.23	3.19	2
PDOTrz	35.5	3.24	3.83	4.16		
PDMTrz	34.4	3.45	4.04	4.38	3.29	7
PDFTrz	33.4	3.88	4.38	4.63		
PDNTrz	33.9	3.95	4.36	4.56		

${ }^{a}$ The excitation energies were calculated based on B3LYP/6-31G(d) optimized geometries. In the q-OHF method developed by Adachi et al., $E_{0-0}\left(\mathrm{~S}_{1}\right)=E_{\mathrm{VA}}\left(\mathrm{S}_{1}, \mathrm{OHF}\right)-\Delta E_{\mathrm{V}}-\Delta E_{\text {stokes }}, \Delta E_{\mathrm{V}}$ is vibrational energy loss, 0 for $9-\mathrm{PhCz}$ and 0.15 eV others. ΔE stokes is the Stokes-shift energy loss, $0.09 \mathrm{eV} .{ }^{b}$ The experimental $E_{V A}\left(S_{1}\right)$ values are determined from the absorption peaks in the toluene solution of the corresponding materials (for $9-\mathrm{PhCz}, \mathrm{mCP}, \mathrm{CBP}$, Cz2BP, 2CzPN, 4CzIPN, and PDMTrz) or polystyrene films (for DCzTrz, TCzTrz, and 5CzBN).

Figure S3. The chemical structure (inset), absorption and emission spectra of mCP in toluene solution $\left(\sim 10^{-5} \mathrm{M}\right)$ under room temperature. The absorption spectra were recorded using an UV-visible spectrophotometer (Agilent 8453). The emission spectra were recorded using a fluorospectrophotometer (JobinYvon, FluoroMax-3).

9-PhCz

DCN-1

DCN-2

DCzCN

R2

Figure S4. Chemical structures of the additional Cz-based molecules with non-ortho-substituents on the π-side. $B D E_{\mathrm{f}}$ values of the fragile $\mathrm{D}-\pi$ bonds (those labeled in red) were calculated.

Table S3. B3LYP/6-31G(d) Absolute ($B D E_{f}$) and Relative ($\triangle B D E_{f}$) Bond Dissociation Energies of the Fragile $\mathrm{D}-\pi$ Bonds, Dihedral Angles between Carbazoles and the Phenyl Groups ($\angle \mathrm{D}-\pi$) of Molecules in Figure S4

molecule	$B D E_{\mathrm{f}}(\mathrm{eV})$	$\Delta B D E_{\mathrm{f}}(\mathrm{eV})^{a}$	$\angle \mathrm{D}-\pi(\mathrm{deg})$
$9-\mathrm{PhCz}$	3.54	0	56
DCN-1	3.50	-0.04	51
DCN-2	3.53	-0.01	53
DCzCN	3.49	-0.05	53
TCTA	3.56	0.02	56
TCz	3.55	0.01	61
DCzF	3.54	0	59
DCzT	3.53	-0.01	57
DCzB	3.52	-0.02	52
CzBO	3.54	0	55
R1	3.52	-0.02	50
R2	3.55	0.01	53
CzSFDMAC ${ }^{b}$	3.53	-0.01	50

${ }^{a}$ For one molecule, $\triangle B D E_{\mathrm{f}}=B D E_{\mathrm{f}}-B D E_{\mathrm{f}}(9-\mathrm{PhCz}) .{ }^{b}$ For $\mathrm{CzSFDMAC}, \mathrm{Cz}-$ phenyl bond is not the weakest bond in this molecule, here its BDE is listed only for comparison.

1

4

2

3

6

Figure S5. 9,9-dimethyl-9,10-dihydroacridine ($\mathrm{DMAC}, \mathrm{X}=\mathrm{CMe}_{2}$) and phenoxazine ($\mathrm{Px}, \mathrm{X}=\mathrm{O}$) based molecules with non-ortho-substituents on the π-side. $B D E_{\mathrm{f}}$ values of the fragile $\mathrm{D}-\pi$ bonds (those labeled in red) were calculated.

Table S4. B3LYP/6-31G(d) Bond Dissociation Energies of the Fragile D- $\boldsymbol{\pi}$ Bonds ($\boldsymbol{B D E}_{\mathrm{f}}$), Dihedral Angles between Donors and the Phenyl Groups ($\angle \mathrm{D}-\pi$) of Molecules in Figure $\mathbf{S 5}$

structure	$\mathrm{X}=\mathrm{CMe}_{2}(\mathrm{DMAC}$ as donor)		$\mathrm{X}=\mathrm{O}$ (Px as donor)	
$B D E_{\mathrm{f}} / \mathrm{eV}$	$\angle \mathrm{D}-\pi(\mathrm{deg})$	$B D E_{\mathrm{f}} / \mathrm{eV}$	$\angle \mathrm{D}-\pi(\mathrm{deg})$	
1	2.89	90	2.64	90
2	2.88	88	2.63	90
3	2.83	90	2.57	84
4	2.87	90	2.61	90
5	2.89	90	2.64	87
6	2.87	90	2.61	87

BFCz

$B C N C z$

BTFCz

$B T r z C z$

Figure S6. Chemical structures of the Cz-based molecules with ortho-electron-withdrawing substituents on the π side. $B D E_{\mathrm{f}}$ values of the fragile $\mathrm{D}-\pi$ bonds (those labeled in red) were calculated.

Table S5. B3LYP/6-31G(d) Absolute ($B D E_{f}$) and Relative ($\triangle B D E_{f}$) Bond Dissociation Energies of the Fragile D- $\boldsymbol{\pi}$ Bonds, Dihedral Angles between Carbazoles and the Phenyl Groups ($\angle \mathrm{D}-\boldsymbol{\pi}$) of 9PhCz and Molecules in Figure S6

molecule	$B D E_{\mathrm{f}}(\mathrm{eV})$	$\Delta B D E_{\mathrm{f}}(\mathrm{eV})^{a}$	$\angle \mathrm{D}-\pi(\mathrm{deg})$
$9-\mathrm{PhCz}$	3.54	0	56
BFCz	3.60	0.06	60
BCNCz	3.45	-0.09	90
BTFCz	3.28	-0.26	90
BTrzCz	3.10	-0.44	70

${ }^{a}$ For one molecule, $\triangle B D E_{\mathrm{f}}=B D E_{\mathrm{f}}-B D E f(9-\mathrm{PhCz})$.

Discussion of the results in Table S5:

The $B D E_{\mathrm{f}}$ values of $\mathrm{BFCz}, \mathrm{BCNCz}, \mathrm{BTFCz}$, and BTrzCz are $3.60 \mathrm{eV}, 3.45 \mathrm{eV}, 3.28 \mathrm{eV}$, and 3.10 eV , respectively. It can be found that the $B D E_{\mathrm{f}}$ and the volume of the substituent have a negative correlation. The fluorine atoms have the smallest volume (slightly larger than the hydrogen atom) within these substituents, and the $B D E_{\mathrm{f}}$ of BFCz is not even decreased (compared with that of $9-\mathrm{PhCz}$); the increase of the dihedral angle between Cz and the phenyl group is only 4°. Cyano groups have a small volume, and the effect on the $B D E_{\mathrm{f}}$ is also relatively small $(\sim 0.1 \mathrm{eV})$. Trifluoromethyl groups $\left(\mathrm{CF}_{3}\right)$ have a large volume, and they decrease the $B D E_{\mathrm{f}}$ of BTFCz by over 0.2 eV . Such influence is similar to the situation in ODF [9 -phenyl-1,8-bis(trifluoromethyl)- 9 H -carbazole], where two ortho- CF_{3} on D-side have decreased the $B D E_{\mathrm{f}}$ of ODF to $3.35 \mathrm{eV} .4,6$-Diphenyl-1,3,5-triazin-2-yl (Trz) groups have the largest volume, and they can conjugate with the phenyl group; thus, they tend to drive away the donor. As a result, the $B D E_{\mathrm{f}}$ of BTrzCz is largely decreased by over 0.4 eV . Despite the large volume of Trz , the dihedral angle between Cz and the central Ph does not increase much, because Trz and Cz both tend to conjugative with the central Ph and they would arrange in a propeller shape. Of note, the electronic characters of CN and CH_{3} groups are quite different. However, their effects on $B D E_{\mathrm{f}}$ values are similar due to the similar volumes. Thus, on the π-side, the effect of a substituent on $B D E_{\mathrm{f}}$ mainly depends on the steric hindrance that it brings to the $\mathrm{D}-\pi$ bond, rather than its electronic character.

ODF

ODM

ODO

Figure S7. Profiles of lone-pairs of the N atoms in $9-\mathrm{PhCz}$ and its 1,8 -substitueted derivatives, obtained by the natural bond orbital (NBO) method.

Table S6. Compositions of Lone-Pairs of the N Atoms in $9-\mathrm{PhCz}$ and Its $\mathbf{1 , 8 - S u b s t i t u e t e d ~ D e r i v a - ~}$ tives in Figure S7, Analyzed by NBO Method at B3LYP/6-31G(d) Level

	composition of the lone-pair $/ \%$	
molecule	s component of the N atom	p component of the N atom
ODF	1.8	98.2
ODN	0	100
$9-\mathrm{PhCz}$	0	100
ODM	0	100
ODO	0	100

Discussion of the results in Table S6:

The NBO results show that except ODF who has $1.8 \% s$ component in the lone-pair of the N atom, those of the other molecules are purely contributed by p component of the N atom (which is a typical $s p^{2}$ character). Thus, compared with other molecules, N atom in ODF has some $s p^{3}$ character.

Figure S8. Profiles of "lone-pair orbitals" (i.e., orbitals that are mainly contributed by the lone-pairs of the N atoms) of $9-\mathrm{PhCz}$ and its 1,8 -substitueted derivatives, obtained by the adaptive natural density partitioning (AdNDP) method.

Table S7. Compositions of Lone-Pair Orbitals of $\mathbf{9 - P h C z}$ and Its $\mathbf{1 , 8}$-Substitueted Derivatives in Figure S8, A nalyzed by AdNDP Method at B3LYP/6-31G(d) Level

	composition of the lone-pair orbital/\%		
molecule	total contribution of the N atom	s component of the N atom	p component of the N atom
ODF	82.0	2.3	79.7
ODN	81.5	0	82.3
$9-\mathrm{PhCz}$	82.3	0	82.3
ODM	85.8	0	85.8
ODO	84.4	0	84.4

Details and Discussions of the results in Table S7:

To further confirm the hybridization character of ODF, AdNDP analysis is further performed by Multiwfn ${ }^{8,9}$. Orbitals that are dominated by the N atoms (called "lone-pair orbitals" for discussion) are picked and their components are analyzed. From Table S7, it can be clearly observed that only the lone-pair orbital of ODF has a fraction of s component of the N atom. Thus, it can be concluded that only N atom in ODF has some $s p^{3}$ hybridization character.

Figure S9. Derivatives of $9-\mathrm{PhCz}$ investigated in Figure 5. $B D E_{\mathrm{f}}$ values of the fragile $\mathrm{D}-\pi$ bonds (those labeled in red) were calculated.

Table S8. B3LYP/6-31G(d) Hirshfeld Charges of the N A toms (q_{N}), Bond Dissociation Energies of Fragile Bonds $\left(B D E_{\mathrm{f}}\right)$ of the Derivatives of $9-\mathrm{PhCz}$ and Real OLED Molecules

molecule	substituent ${ }^{a}$	substituted sites ${ }^{a}$	$q_{\text {N }}$	$B D E_{\mathrm{f}} / \mathrm{eV}$
PDO	Methoxyl	3,6	-0.02568	3.26
PDM	Methyl	3,6	-0.02171	3.46
$9-\mathrm{PhCz}$	H	3,6	-0.02133	3.54
PDF	Trifluoromethyl	3,6	-0.01536	3.65
PDN	Cyano	3,6	-0.01198	3.68
PDBr	Bromine	3,6	-0.01839	3.53
PDP	Phenyl	3,6	-0.01926	3.46
PDBu	tert-Butyl	3,6	-0.02220	3.46
PMO	Methoxyl	3	-0.02358	3.38
PMM	Methyl	3	-0.02148	3.50
PMF	Trifluoromethyl	3	-0.01817	3.60
PMN	Cyano	3	-0.01614	3.61
PMBr	Bromine	3	-0.01987	3.53
PMP	Phenyl	3	-0.02039	3.50
PMBu	tert-Butyl	3	-0.02191	3.50

ODO	Methoxyl	1,8	-0.01998	3.24
ODM	Methyl	1,8	-0.02761	3.15
ODF	Trifluoromethyl	1,8	-0.02332	3.33
ODN	Cyano	1,8	-0.01176	3.56
ODBr	Bromine	1,8	-0.01879	3.31
ODP	Phenyl	1,8	-0.02308	2.98
OMO	Methoxyl	1	-0.02052	3.38
OMM	Methyl	1	-0.02612	3.35
OMF	Trifluoromethyl	1	-0.02118	3.46
OMN	Cyano	1	-0.01791	3.54
OMBr	Bromine	1	-0.02194	3.43
OMP	Phenyl	1	-0.02408	3.30
MDO	Methoxyl	2,7	-0.02173	3.55
MDM	Methyl	2,7	-0.02123	3.53
MDF	Trifluoromethyl	2,7	-0.01654	3.64
MDN	Cyano	2,7	-0.01516	3.68
MDP	Phenyl	2,7	-0.02092	3.55
MDBr	Bromine	2,7	-0.01742	3.62
MDBu	tert-Butyl	2,7	-0.02321	3.50
MMO	Methoxyl	2	-0.02167	3.53
MMM	Methyl	2	-0.02128	3.53
MMF	Trifluoromethyl	2	-0.01891	3.59
MMN	Cyano	2	-0.01818	3.61
MMBr	Bromine	2	-0.01930	3.57
MMP	Phenyl	2	-0.02116	3.54
MMBu	tert-Butyl	2	-0.02233	3.52
M2MO	Methoxyl	4	-0.02054	3.53
M2MM	Methyl	4	-0.02138	3.52
M2MF	Trifluoromethyl	4	-0.01992	3.56
M2MN	Cyano	4	-0.01908	3.58
M2MBr	Bromine	4	-0.01974	3.53

M2MP	Phenyl	4	-0.02172	3.50
M2MBu	tert-Butyl	4	-0.02229	3.47
PDOTrz	-	-	-0.02239	3.29
PDMTrz	-	-	-0.01905	3.48
$p-C z T r z$	-	-	-0.01903	3.55
PDFTrz	-	-0.01374	3.62	
PDNTrz	-	-0.01061	3.67	
DCzTrz	-	-0.02142	3.50	
mCP	-	-0.02166	3.50	
Cz2BP	-	-0.01917	3.54	
CBP	-	-0.02124	3.55	

${ }^{a}$ Compounds are mainly derivatives of $9-\mathrm{PhCz}$; some real OLED materials with complete $\mathrm{D}-\pi-\mathrm{A}$ structures are also investigated; substituted sites refers to introduced positions of the carbazole of $9-\mathrm{PhCz}$.

α-carboline

β-carboline

γ-carboline

δ-carboline

Figure S10. Chemical structures of the molecules with carboline subunits. $B D E_{\mathrm{f}}$ values of the fragile $\mathrm{D}-\pi$ bonds (those labeled in red) were calculated.

Table S9. B3LYP/6-31G(d) Bond Dissociation Energies of Fragile Bonds (BDEf), Dihedral Angles ($\angle \mathrm{D}-\pi$) between Carboline and the Phenyl Group ($\angle \mathrm{D}-\pi$) and Hirshfeld Charges (q_{N}) of Molecules with Carboline Subunits

molecule	$B D E_{\mathrm{f}}(\mathrm{eV})$	$\angle \mathrm{D}-\pi(\mathrm{deg})$	$10^{2} \times q_{\mathrm{N}}$
α-carboline	3.78	51	-1.9
β-carboline	3.56	56	-1.9
γ-carboline	3.66	57	-1.7
δ-carboline	3.58	55	-2.1

Figure S11. Geometries of ODP before and after the phenyl group on 9-position of Cz is taken off.

Figure S12. The correlation between the B3LYP/6-31G(d) Hirshfeld charge of N atom $\left(q_{\mathrm{N}}\right)$ and $B D E_{\mathrm{f}}$ in derivatives of 9,9-dimethyl-10-phenyl-9,10-dihydroacridine (PhDMAC, black dots) and 10-phenyl-10 H -phenoxazine (PhPx , red dots). Group R is selected from methoxyl group, methyl group, H atom, trifluoromethyl group, or cyano group.

Table S10. B3LYP/6-31G(d) Bond Dissociation Energies of Fragile Bonds (BDEf) and Hirshfeld Charges of the N Atoms (q_{N}) of Derivatives of PhDMAC and PhPx

substituents on $3,6-$	derivatives of PhDMAC		derivatives of PhPx	
positions	$B D E_{\mathrm{f}}(\mathrm{eV})$	q_{N}	$B D E_{\mathrm{f}}(\mathrm{eV})$	q_{N}
Methoxyl group	2.70	-0.0464	2.51	-0.0519
Methyl group	2.78	-0.0421	2.57	-0.0471
H atom	2.89	-0.0410	2.64	-0.0465
Trifluoromethyl	3.02	-0.0339	2.76	-0.0389
Cyano group	3.03	-0.0294	2.78	-0.0341

96.9\%

$q-\mathrm{OHF}$

91.0\%

ω B97XD

LC-wPBE

Figure S13. Chemical structure of MDNTrz; natural transition orbitals (NTOs) of its S_{1} state and the weights; calculated by the q-OHF $(\mathrm{OHF} \%=18.2 \%)$ method, $\omega \mathrm{B} 97 \mathrm{XD}$ and LC- ω PBE functionals.

Reference

1. Internet Bond-energy Databank ($\mathrm{p} K_{\mathrm{a}}$ and BDE)-iBonD Home Page. http://ibond.chem.tsinghua.edu.cn (accessed April 2018).
2. Huang, S.; Zhang, Q.; Shiota, Y.; Nakagawa, T.; Kuwabara, K.; Yoshizawa, K.; Adachi, C. Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds. J. Chem. Theory Comput. 2013, 9, 3872-3877.
3. Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, J. Y. Stable Blue Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with Three Times Longer Lifetime than Phosphorescent Organic Light-Emitting. Adv. Mater. 2015, 27, 2515-2520.
4. Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C. Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full-Color Delayed Fluorescence OLEDs. Angew. Chem. Int. Ed. 2014, 53, 6402-6406.
5. Lee, D. R.; Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, C. W.; Lee, J. Y. Design Strategy for 25\% External Quantum Efficiency in Green and Blue Thermally Activated Delayed Fluorescent Devices. Adv. Mater. 2015, 27, 5861-5867. 6. Cho, Y. J.; Jeon, S. K.; Lee, J. Y. Molecular Engineering of High Efficiency and Long Lifetime Blue Thermally Activated Delayed Fluorescent Emitters for Vacuum and Solution Processed Organic Light-Emitting Diodes. Adv. Opt. Mater. 2016, 4, 688-693.
6. Cui, L.-S.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C. Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters. Angew. Chem. Int. Ed. 2016, 55, 1-6. 8. Zubarev, D. Y.; I. Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys., 2008, 10, 5207-5217.
7. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.

[^0]: ${ }^{a}$ Ref 1.

