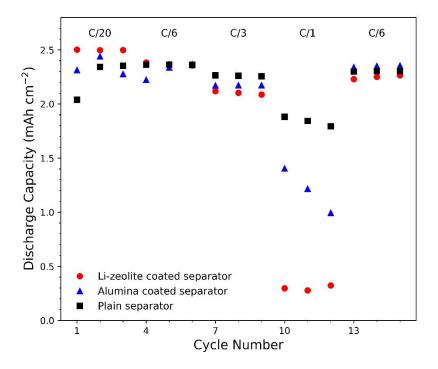

Supporting Information


Multifunctional Lithium-Ion Exchanged Zeolite Coated Separator for Lithium-Ion Batteries

Jiagang Xu,[†] Xingcheng Xiao,^{‡,*} Sherman Zeng[§], Mei Cai,[‡] Mark W. Verbrugge[‡]

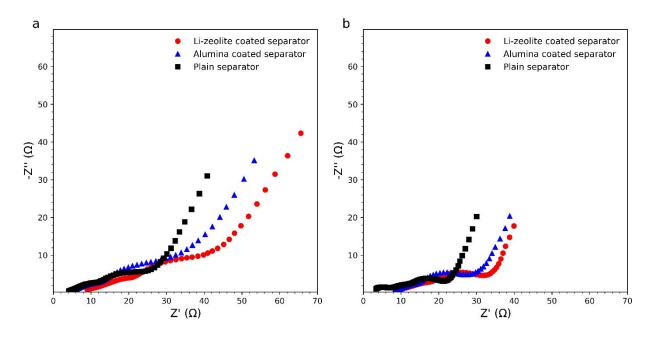

[†]Optimal, Inc., 47802 West Anchor Court, Plymouth, Michigan 48170, United States [‡]Chemical and Materials Systems Lab, General Motors Research and Development, Warren, Michigan 48092, USA ^{*}E-mail: xingcheng.xiao@gm.com [§]Battery Cell Engineering, General Motors Global Propulsion Systems, Warren, Michigan 48092, USA

Figure S1. Comparison of the electrolytes mixed with the typical zeolite without ion exchange and Li-zeolite stored in glass vials after 1 month (left) and 6 months (right).

Figure S2. C-rate performance of graphite-(NMC532+LMO) cells containing different separators at 25 °C.

Figure S3. Room temperature electrochemical impedance spectra of graphite-(NMC532+LMO) cells containing different separators obtained after formation cycling (a) and at the end of the C-rate test (b).