Hypatulone A, a Homoadamantane-type Acylphloroglucinol with Intricately Caged Core from *Hypericum patulum*

Yang-Yang Liu, Zhen Ao, Gui-Min Xue, Xiao-Bing Wang, Jian-Guang Luo,* and Ling-Yi Kong*

Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China

Supporting Information

List of Contents

1. Experimental section

- 1.1 General Experimental Procedures.
- 1.2 Plant Material.
- 1.3 Extraction and Isolation.
- 1.4 NO production bioassay
- 1.5 Physical and chemical data.

2. HRESIMS, UV, IR, CD, and NMR Spectra

- Figure S1. HRESIMS spectrum of 1.
- Figure S2. UV (MeOH) spectrum of 1.
- Figure S3. IR (MeOH) spectrum of 1.
- Figure S4. Experimental ECD (MeOH) spectrum of 1.
- Figure S5. ¹H NMR (600 MHz; CDCl₃) spectrum of 1.
- Figure S6. ¹³C NMR (150 MHz; CDCl₃) spectrum of 1.
- Figure S7. HSQC (CDCl₃) spectrum of 1.
- Figure S8. HMBC (CDCl₃) spectrum of 1.
- Figure S9. NOESY (CDCl₃) spectrum of 1.
- Figure S10. ¹H–¹H COSY (CDCl₃) spectrum of 1.
- Figure S11. HRESIMS spectrum of 2.
- Figure S12. ¹H NMR (600 MHz; CDCl₃) spectrum of 2.
- Figure S13. ¹³C NMR (150 MHz; CDCl₃) spectrum of 2.

1. EXPERIMENTAL SECTION

1.1 General Experimental Procedures. Optical rotations were measured on a JASCOP-1020 polarimeter in MeOH at room temperature. Nuclear magnetic resonance (NMR) spectra were on a Bruker AVIII-600 NMR instrument (¹H: 600 MHz, ¹³C: 150 MHz) equipped with CryoProbe (Bruker, Karlsruhe, Germany), with tetramethylsilane (TMS) as an internal standard. Chemical shift values (δ) are given in parts per million (ppm) and coupling constants in Hertz (Hz). The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. Electrospray ionization (ESI) and high-resolution electrospray ionization (HRESIMS) were carried out an Agilent 1100 series LC/MSD ion trap mass spectrometer and an Agilent 6529B Q-TOF instrument (Agilent Technologies, Santa Clara, CA, USA), respectively. Preparative highperformance liquid chromatography (Pre-HPLC) was performed on a Shimadzu LC-6A system (Shimadzu, Tokyo, Japan) equipped with a Shim-pack RP-C₁₈ column (200 mm \times 20 mm i.d., 10 μ m, Shimadzu, Tokyo, Japan) with flow rate at 10.0 ml/min and column temperature at 25 °C, detected by a binary channel UV detector at 210 and 270 nm. All solvents used were of analytical grade (Jiangsu Hanbang Science and Technology, Co., Ltd.). Silica gel (200-300 mesh, Qingdao Haiyang Chemical Co., Ltd, Qingdao China) and RP-C₁₈ silica (40-63 μ m, FuJi, Japan) were used for column chromatography. Fractions obtained from column chromatography (CC) were monitored by thin-layer chromatography (TLC) with precoated silica gel GF₂₅₄ (Qingdao Haiyang Chemical Co., Ltd, China) plates.

1.2 Plant Material. Air-dried flowers of Hypericum patulum were collected from Yunnan

Province, People's Republic of China, in August 2017, and were authenticated by Professor Mian Zhang of the Research Department of Pharmacognosy, China Pharmaceutical University. A voucher specimen was deposited in the Department of Natural Medicinal Chemistry, China Pharmaceutical University (accession number 2017-HPF).

1.3 Extraction and isolation.

The dried powder of flowers of *H. patulum* (2.0 kg) was extracted three times ($3 \times 5L$) with 95% aqueous EtOH under ultrasonic agitation, and the crude (468 g) was suspended in H₂O and extracted with petroleum ether (PE) ($3 \times 1L$). The petroleum ether extract (90.0 g) was subjected to a silica gel column, eluted with a gradient of PE-EtOAc (1:0, 9:1, 8:2, v/v) to give five fractions (A-E), which were combined based on TLC. Fraction B (13.6 g) was chromatographed over a C₁₈ silica gel column eluted with a gradient system of MeOH-H₂O (7:3, 8:2, 9:1, 1:0, v/v) to give four subfractions (B1-B4). B2 (4.8 g) was sequentially purified by columns of C₁₈ silica gel (MeOH-H₂O, 70% to 85%, v/v) and then further separated over *Pre*-HPLC (MeOH-H₂O, 80:20, v/v) to obtain compound **1** (14.2 mg). B4 (1.8 g) was sequentially purified by columns of C₁₈ silica gel (MeOH-H₂O, 85:15, v/v) to obtain compound **2** (141 mg).

1.4 NO production bioassay

The RAW264.7 cell line was purchased from the Chinese Academic of Sciences. The cells were cultured in DMEM containing 10% FBS with penicillin (100 U/mL) and streptomycin (100 U/mL) at 37 °C in a humidified atmosphere with 5% CO₂. The cells were allowed to grow in 96-well plates with 1×10^5 cells/well to treat test compounds. After

being incubated for 2 h, the cells were treated with 100 ng/mL of LPS for 18 h. Nitrite in culture media was measured to assess NO production using Griess reagent. The absorbance at 540 nm was measured on a microplate reader. *N*-monomethyl-L-arginine was used as the positive control. Cytotoxicity was determined by the MTT method, after 48 h incubation with test compounds. All the experiments were performed in three independent replicates.

1.5 Physical and chemical data

Hypatulone A (1): light yellow oil, $[α]^{25}_{D}$ = +11.2 (*c* 0.10, MeOH); UV (MeOH) $λ_{max}$ (log ε) = 204 (3.96), 247 (3.71); IR (KBr) v_{max} 3461, 2963, 2926, 2852, 1743, 1713, 1684, 1637, 1452, 1384, 1261, 1096, 1024, 803 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 205 (+18.34), 238 (-11.60), 264 (+3.36), 295 (+3.66), 346 (-4.85); ¹H and ¹³C NMR (CDCl₃), see Table 1; positive ESIMS *m*/*z* 533.2 [M + H]⁺; HRESIMS *m*/*z* 531.2755 [M – H]⁻ (calcd for C₃₃H₃₉O₆, 531.2752).

Hyperbeanol B (2): yellow gum. HRESIMS *m/z* 557.2869 [M + Na]⁺ (calcd for C₃₃H₄₂O₆Na, 557.2874). ¹H NMR (CDCl₃) $\delta_{\rm H}$ 7.53 (1H, t, *J*=7.5 Hz, H-31), 7.47 (2H, d, *J*=7.7 Hz, H-29 and H-33), 7.39 (2H, t, *J*=7.7 Hz, H-30 and H-32), 4.98 (1H, t, *J*=7.5 Hz, H-18), 4.73 (1H, t, *J*=7.7 Hz, H-23), 2.90 (1H, dd, *J*=13.5, 9.4 Hz, H-17), 2.73 (1H, m, H-17), 2.71 (1H, m, H-22), 2.59 (1H, dd, *J*=13.4, 7.3 Hz, H-22), 7.39 (2H, t, *J*=7.7 Hz, H-30, 32), 2.16 (1H, m, H-14 β), 2.13 (1H, m, H-7 α), 1.81 (1H, m, H-10 β), 1.75 (1H, m, H-12), 1.73 (1H, m, H-14 β), 1.71 (1H, m, H-10 α), 1.69 (1H, m, H-11 α), 1.66 (3H, s, H₃-26), 1.61 (3H, s, H₃-25), 1.60 (1H, m, H-14 β), 1.55 (3H, s, H₃-21), 1.49 (3H, s, H₃-20), 1.33 (3H, s, H₃-16), 1.20 (3H, s, H₃-15). ¹³C NMR (CDCl₃) $\delta_{\rm C}$ 210.5 (C-5), 199.9 (C-3), 199.1 (C-27), 193.5 (C-1), 138.4 (C-24), 137.7 (C-28), 136.6 (C-19), 132.5 (C-31), 128.3 (C-30 and C-30).

32), 127.8 (C-29 and C-33), 118.8 (C-18), 116.7 (C-23), 113.4 (C-2), 79.7 (C-9), 68.8 (C-13), 64.3 (C-4), 60.8 (C-6), 51.5 (C-12), 44.0 (C-8), 41.0 (C-10), 40.7 (C-14), 40.2 (C-14), 36.0 (C-17), 34.5 (C-7), 29.3 (C-15), 26.4 (C-16), 26.1 (C-21 and C-26), 21.0 (C-11), 18.0 (C-20 and C-25).

2. NMR, HRESIMS, and UV Spectra

Elemental Composition Calculator

Target m/z:	531.2755	Result type:	Negative ions	Species:	[M-H] [.]		
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Cl (0-5)					
Ion Formula		Calcalated m/z		PPM Error			
C33H39O6		531.2752		-0.53			

Figure S1. HRESIMS spectrum of 1.

Figure S2. UV (MeOH) spectrum of 1.

Figure S3. IR (MeOH) spectrum of 1.

Figure S4. Experimental ECD (MeOH) spectrum of 1.

Figure S5. ¹H NMR (600 MHz; CDCl₃) spectrum of 1.

Figure S6. ¹³C NMR (150 MHz; CDCl₃) spectrum of 1.

Figure S7. HSQC (CDCl₃) spectrum of 1.

Figure S9. NOESY (CDCl₃) spectrum of 1.

Elemental Composition Calculator

Target m/z:	557.2869	Result type:	Positive ions	Species:	[M+Na] ⁺		
Elements:		C (0-80); H (0-120); O (0-30); Na (0-5)					
Ion Formula		Calculated m/z		PPM Error			
C33H42NaO6		557.2874		0.82			

Figure S11. HRESIMS spectrum of 2.

Figure S13. ¹³C NMR (150 MHz; CDCl₃) spectrum of 2.