Supporting Information

Carbon's Three-Center-Four-Electron Tetrel Bond, Treated Experimentally

Alavi Karim, Nils Schulz, Hanna Andersson, Bijan Nekoueishahraki, Anna-Carin C. Carlsson, Daniel Sarabi, Arto Valkonen, Kari Rissanen, Jürgen Gräfenstein, Sandro Keller, Máté Erdélyi*

Table of Contents

1. Experimental description. General information S2
2. Compound characterization S4
3. NMR spectra referred to in the main text S10
4. Compound characterization S13
5. NMR spectra of the starting materials and synthesized compounds S14
6. Isotopic perturbation of equilibrium (IPE) NMR S46
7. X-ray crystallography. S49
8. Isothermal titration calorimetry S50
9. Preliminary computations S51
10. References S66

1. Experimental description. General information.

Synthesis. Unless otherwise stated, all reagents and solvents were obtained from commercial suppliers and used without further purification. Pyridine and picoline were dried over molecular sieves ($3 \AA$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was freshly distilled from CaH_{2}. Samples were centrifuged with a Heraeus Christ Labofuge A centrifuge. Both triphenyl carbenium and its substituted analogues and 1,2-bis(pyridin-2ylethynyl)benzene and its substituted analogues were dried for 2-3 h under vacuum prior to use. All glassware used for the preparation of $[\mathrm{N} \cdots \mathrm{C} \cdots \mathrm{N}]^{+}$tetrel bond complexes were dried under vacuum prior to use as well. For the syntheses of $2 \mathrm{a}^{-c}$ previously published routes were followed. ${ }^{1,2}$ Compounds $1 \mathbf{1 a}$ and $\mathbf{1 f}$ were available commercially and were used as received. Compounds $\mathbf{1 d}$ and $\mathbf{1 e}$ were generated according to previously published procedures with slight modifications required for $\mathbf{1 e}$ (Scheme 2) ${ }^{3,4}$ The $[\mathrm{N} \cdots \mathrm{C} \cdots \mathrm{N}]^{+}$complexes $\mathbf{3 a - f}$ were prepared under dry conditions, with dry solvents and under an argon or nitrogen atmosphere. Compound $\mathbf{1}(\sim 10 \mathrm{mg})$, or its analogues, were transferred into an NMR tube and $2(1 \mathrm{eq})$, or its analogues, into a separate 2 ml flat bottom vial. Care must be taken in order to ensure that a 1:1 addition is made; stock solutions may be prepared for reliable additions. After drying, the contents were transferred into a glove box and approximately $300 \mu \mathrm{l}$ dry $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added to both vials to dissolve all solids. Then, the $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2}$ was delivered to the NMR tube containing the solution of 1 and the NMR tube was sealed with a rubber septum and tightened with Teflon tape to ensure a moisture free environment. The samples were prepared 30 min before the NMR measurements and the NMR tube was tilted from side to side to ensure proper mixing. For complexes $\mathbf{5 b}$ and $\mathbf{5 c}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions of dried $\mathbf{4 b}$ and $\mathbf{4 c}(1 \mathrm{eq}$ dissolved in ca $300 \mu \mathrm{~L}$ solution; stock solution prepared as 55 mg in 2 mL) were added into a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 a}(\sim 20 \mathrm{mg}$, $200 \mu \mathrm{~L}$).

NMR spectroscopy. For structural assignments ${ }^{1} \mathrm{H} \mathrm{NMR},{ }^{13} \mathrm{C} \mathrm{NMR},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \mathrm{HMBC},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC, DQF-COSY and ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC NMR spectra were recorded on a Varian VNMR-S 500 spectrometer equipped with an HFX probe or a Varian $400-\mathrm{MR}$ spectrometer equipped with a OneNMRProbe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$. Variable temperature NMR spectra were obtained on a Bruker Avance Neo 500 MHz spectrometer equipped with a TXO cryogenic probe. Chemical shifts are reported on the δ scale in ppm. For the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data the residual solvent signal was used as internal standard ($\delta_{\mathrm{H}} 5.32 \mathrm{ppm}$ and $\delta_{\mathrm{C}} 54.00 \mathrm{ppm}$). The numbering of the structures refers to those used for NMR assignment.

X-ray crystallography. Single crystals of 1-tritylpyridin-1-ium tetrafluoroborate were obtained by drying 20 mg triphenylcarbenium tetrafluoroborate (1c) under vacuum for 30 min , subsequently dissolving it in $500 \mu \mathrm{~L}$ dichloromethane and transferring the solution into a carefully dried NMR tube, in a glove box. Dry pyridine ($2 \mathrm{eq}, 4 \mathbf{c}$) was carefully layered on the top of the solution of $\mathbf{1 c}$, and the NMR tube was sealed with a septum and transferred into a fridge ($5^{\circ} \mathrm{C}$), without shaking. Colorless plates were formed. The X-ray data was collected at $120(2) \mathrm{K}$ on an Agilent SuperNova dual wavelength diffractometer with micro-focus X-ray source and Atlas detector and using multilayer optics monochromatized $\mathrm{Cu}-\mathrm{K} \alpha(\lambda=1.54184 \AA)$ radiation. CrysAlisPro ${ }^{5}$ software was used for data collection, integration and reduction as well as applying the analytical absorption correction. The structures were solved with direct methods $\left(S H E L X T^{6}\right)$ and refined by full-matrix least squares on F^{2} utilizing SHELXL-2016. ${ }^{7}$ The crystal was found to be a non-merohedral 2-component twin and was refined accordingly. The data showed $R_{\text {int }}$ value of 0.0357 before HKLF5 refinement. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were calculated to their optimal positions and treated as riding atoms using isotropic displacement parameters $U_{\text {eq }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The details of the crystals data, data collection, and the refinement results are given in the Supplementary Information.

Isothermal calorimetry. ITC experiments were performed on a MicroCal VP-ITC device. Dichloromethane was purchased dry, stored over molecular sieves, and filtered through a micropore syringe filter prior to use. Synthesized compounds used in the measurements were dried under high
vacuum prior to use. Triphenylcarbenium tetrafluoroborate was used as purchased (Acros Organics) and stored under argon. For each measurement, stock solutions were freshly prepared in oven-dried glassware.

Automated baseline adjustment, peak integration, and normalization of reaction heats with respect to the molar amount of injectant were done with NITPIC. ${ }^{8,9}$ Integrated heats were fitted to a binding model considering 2c/1a stoichiometries of $1: 1$ and 1:2. Data were fitted by nonlinear least-squares regression in SEDPHAT ${ }^{9,10} .68 .3 \%$ confidence intervals were determined by error-surface projection as described in detail elsewhere. ${ }^{11}$ Further details along with the estimated confidence intervals (Table S1) are given in the Supplementary Information.

2. Compound characterization

1,2-Bis(pyridine-2-ylethynyl)benzene (2c). ${ }^{2}$ This molecule was synthesized following a previously published procedure. ${ }^{2}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.63$ (ddd, $J=4.9,1.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$), $7.74-$ $7.66(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4 \& \mathrm{H} 5), 7.66-7.68$ (AA' part of AA'BB', H10), 7.41-7.42 ($2 \mathrm{H}, \mathrm{BB}$ ' part of AA'BB, $\mathrm{H} 11), 7.27$ (ddd, $J=7.1,4.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 150.7$ (C2), 143.8 (C6), 136.6 (C4), 132.7 (C10), 129.4 (C11), 128.2 (C5), 125.8 (C9), 123.5 (C3), 93.6 (C7), 87.7 (C8).

Triphenylcarbeniumtetrafluoroborate (1a). ${ }^{12}$ This molecule is commercially available and was used as received. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.30(\mathrm{dddd}, J=7.6,7.6,1.3,1.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4), 7.92(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{H} 3), 7.71(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 2) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 211.3\left(\mathrm{C}^{+}\right), 143.9(\mathrm{C} 4), 143.2(\mathrm{C} 3), 140.4$ (C1), $131.0(\mathrm{C} 2)$.

Triphenylcarbonium1,2-bis(pyridine-2-ylethynyl)benzene tetrafluoroborate (3c). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.84(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$), 8.24 (br dd, $J=7.8,6.7 \mathrm{~Hz} 2 \mathrm{H}, \mathrm{H} 4$), 8.15 (d, $J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} 5$), 7.82 (AA' part of AA'BB', 2H, H10), 7.70 (dd, $J=6.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3$), 7.54 (BB' part of AA'BB', 2H, H11), $7.40-7.38\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H} 15\right.$ and H16), $7.29-7.26(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 14) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 145.0(\mathrm{C} 2), 143.3(\mathrm{C} 4), 143.8 \& 143.6(\mathrm{C} 13), 138.5(\mathrm{C} 6), 134.3$ (C10), 132.5 (C5), 130.8 (C11), $128.68 \& 128.66$ (C16), 128.4 (C15), $128.27 \& 128.22$ (C14), 125.3 (C3), 124.1 (C9), 101.1 (C12), 98.4 (C8), 87.8 (C7).

Tri(p-tolyl)carbenium tetrafluoroborate (1d). ${ }^{3}$ This molecule was synthesized following a previously published procedure. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.67\left(\mathrm{AA}^{\prime}\right.$ part of $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 6 \mathrm{H}, \mathrm{H} 2\right)$, 7.54-7.52 (BB' part of AA'BB', $6 \mathrm{H}, \mathrm{H} 3$), $2.69\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 205.0\left(\mathrm{C}^{+}\right)$ $157.3(\mathrm{C} 4), 142.2(\mathrm{C} 2), 137.9(\mathrm{C} 1), 131.9(\mathrm{C} 3), 23.4\left(\mathrm{CH}_{3}\right)$.

Tri(p-tolyl)carbonium 1,2-bis(pyridine-2-ylethynyl)benzene tetrafluoroborate (3d). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.95$ (dd, $J=5.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$), 8.07 (ddd, $J=7.8,7.81 .6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4$), 7.86 (ddd, $J=7.8,1.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5), 7.73\left(\mathrm{AA}^{\prime}\right.$ part of AA'BB', $\left.2 \mathrm{H}, \mathrm{H} 10\right), 7.69$ (ddd, $J=5.2,7.8,1.1 \mathrm{~Hz}$, 2H, H3), 7.53 (BB' part of AA'BB', 2H, H11), 7.14 - 7.09 (AA'XX', 12H, H14 and H15), 2.33 (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 148.1(\mathrm{C} 2), 144.9(\mathrm{C} 13), 141.5(\mathrm{C} 4), 139.7(\mathrm{C} 6), 137.3$ (C16), 132.9 (C 10), 130.8 (C11), 129.4 (C5), $128.2 \& 129.0$ (C 14 and C 15), 125.7 (C 3), 125.1 (C9), $81.9(\mathrm{C} 12), 90.3(\mathrm{C} 7), 91.8(\mathrm{C} 8), 21.2\left(\mathrm{CH}_{3}\right)$.

Tris(4-methoxyphenyl)methylium tetrafluoroborate (1e). ${ }^{3,4}$ This molecule was synthesized by modifying a previously published procedure (Scheme S 2). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.57$ (AA' part of AA' XX', $6 \mathrm{H}, \mathrm{H} 2$), 7.29 (XX^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}, 6 \mathrm{H}, \mathrm{H} 3$), $4.10\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 193.0\left(\mathrm{C}^{+}\right), 171.1(\mathrm{C} 4), 143.4(\mathrm{C} 2), 132.6(\mathrm{C} 1), 116.9(\mathrm{C} 3), 57.6\left(\mathrm{OCH}_{3}\right)$.

Tris(4-methoxyphenyl)carbonium 1,2-bis(pyridine-2-ylethynyl)benzene tetrafluoroborate (3e). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.72$ (ddd, $J=5.1,1.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$), 7.83 (ddd, $J=7.9$, 7.7, $1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4$), 7.77 (ddd, $J=7.9,1.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5$), 7.67 (AA' part of AA'BB', $2 \mathrm{H}, \mathrm{H} 10$), 7.56 (AA' part of AA'XX', 6H, H14), 7.44 (BB' part of AA'BB', 2H, H11), 7.40 (ddd, J=7.7, $5.2,1.1 \mathrm{~Hz}$, 2H, H3), 7.28 (XX' part of AA' $\left.{ }^{\prime} X^{\prime}, 6 \mathrm{H}, \mathrm{H} 15\right), 4.09\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 192.7$ (C^{+}), 171.0 (C16), 150.0 (C2), 143.3 (C14), 142.6 (C6), 138.1 (C4), 132.6 (C10), 129.8 (C11), 128.6 (C5), 125.7 (C9), 124.2 (C3), 116.9 (C15), 132.6 (C13), 92.8 (C7), 89.5 (C8), $57.6\left(\mathrm{OCH}_{3}\right)$.

Tris(4-(dimethylamino)phenyl)methylium tetrafluoroborate (1f). This molecule is commercially available and was used as received. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.32$ (AA' part of $\left.\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 6 \mathrm{H}, \mathrm{H} 2\right), 6.85$ (XX' part of AA' $\mathrm{XX}^{\prime}, 6 \mathrm{H}, \mathrm{H} 3$), $3.23\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 178.8\left(\mathrm{C}^{+}\right), 156.1(\mathrm{C} 1), 140.1(\mathrm{C} 2), 127.0(\mathrm{C} 4), 112.7(\mathrm{C} 3), 40.8\left(\mathrm{CH}_{3}\right)$.

Tris(4-(dimethylamino)phenyl)methylium1,2-bis(pyridine-2-ylethynyl)benzenetetrafluoroborate (3f). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.61(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2), 7.69-7.72(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4$ and H5), 7.64 (AA' part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} 2 \mathrm{H}, \mathrm{H} 10$), 7.39 (BB^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H} 11$), 7.32 (AA' part of AA' $\mathrm{XX}^{\prime}, 6 \mathrm{H}, \mathrm{H} 14$), 7.27 (ddd, $J=6.4,4.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3$), 6.85 (XX ' part of AA'XX', $6 \mathrm{H}, \mathrm{H} 15$), $3.22\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 178.8\left(\mathrm{C}^{+}\right), 156.1(\mathrm{C} 13), 150.5(\mathrm{C} 2) 143.6(\mathrm{C} 6), 140.2$ (C13), 136.67 (C4), 132.70 (C10), 129.4 (C11), 128.2 (C5), 127.1 (C16), 125.8 (C9), 123.6 (C3), 112.8 (C15), 93.6 (C7), 87.7 (C8), $40.8\left(\mathrm{NCH}_{3}\right)$.

1,2-Bis((4-methylpyridin-2-yl)ethynyl)benzene (2d). ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.48(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$), $7.64\left(\mathrm{AA}^{\prime}\right.$ part of $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H} 10\right), 7.60-7.62$ (br m, 2H, H5), 7.40 (BB^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H} 1$), 7.09-7.13 (br m, 2H, H3), 2.35 (br dd, $J=0.7,0.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 150.4(\mathrm{C} 2), 148.0(\mathrm{C} 4), 143.6(\mathrm{C} 6), 132.6$ (C10), 129.4 (C11), 129.3 (C5), 126.1 (C9), $124.7(\mathrm{C} 3), 93.9(\mathrm{C} 7), 87.4(\mathrm{C} 8), 21.1\left(\mathrm{CH}_{3}\right)$.

Triphenylcarbonium 1,2-bis((4-methylpyridin-2-yl)ethynyl)benzene tetrafluoroborate (3b). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.65(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2), 7.78$ (AA' part of AA'BB', 2H, H10), 7.657.69 (m, 2H, H5), 7.52 (BB' part of AA’BB', 2H, H11), 7.45-7.49 (m, 2H, H3), $7.34-7.36(\mathrm{~m}, 9 \mathrm{H}$, $\mathrm{H} 15 \& \mathrm{H} 16), 7.21-7.23(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 14), 2.56\left(\mathrm{~s}, 6, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 156.4(\mathrm{C} 4)$, 144.3 (C2), 143.9 (C13), 138.2 (C6), 134.4 (C10), 130.3 (C11), 129.7 (C5), 128.7 (C16), 128.5 (C15), $128.3(\mathrm{C} 14), 126.0(\mathrm{C} 3), 124.3(\mathrm{C} 9), 101.1(\mathrm{C} 12), 97.8(\mathrm{C} 8), 93.9(\mathrm{C} 7), 21.2\left(\mathrm{CH}_{3}\right)$.

1,2-Bis((4-(trifluoromethyl)pyridin-2-yl)ethynyl)benzene (2a). ${ }^{1}$ This compound was synthesized following a previous literature procedure. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.21(\mathrm{dd}, J=5.8,0.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H} 2) 8.09-8.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 7.85\left(\mathrm{AA}^{\prime}\right.$ part of $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H} 10\right), 7.74(\mathrm{dd}, J=5.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}$, H 3), 7.67 (BB^{\prime} part of $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H} 11\right) .{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 153.1$ (C2), 144.5 (C6), $141.2\left(\mathrm{q},{ }^{2} J_{C F}=35.3 \mathrm{~Hz}, \mathrm{C} 4\right) 133.5$ (C10), $131.0(\mathrm{C} 11), 124.4$ (C5), 123.9 (C9), $123.0\left(\mathrm{q},{ }^{1} J=274.1\right.$ $\left.\mathrm{Hz}, C \mathrm{~F}_{3}\right), 121.1(\mathrm{C} 3), 101.0(\mathrm{C} 8), 90.3(\mathrm{C} 7)$.

Triphenylcarbonium 1,2-bis((4-(trifluoromethyl)pyridin-2-yl)ethynyl)benzene tetrafluoroborate (3a). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.03(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2), 8.15$ (br s, 1H, H5), 7.76-7.78 (AA' part of AA'XX', 2H, H10), $7.70(\mathrm{~d}, J=5.6 \mathrm{~Hz}, \mathrm{H} 3), 7.54-7.56\left(\mathrm{XX}^{\prime}\right.$ part of AA'XX', 2H, H11), 7.37-7.33 (m, 9H, H15 \& H16), 7.20-7.24 (m, 6H, H14). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 150.3$ (C2), 143.9 \& 143.7 (C 13), 143.4 (C3), 140.0 (C6), 133.1 (C10), 131.3 (C11), 129.2 (C9), 128.7 (C16), 128.7 (C14), 128.5 (C15), 125.1 (C5), 120.7 (C4), 101.1 (C12), 92.0 (C8), 90.9 (C7).

1-(Triphenylmethyl)pyridinium pyridine tetrafluoroborate (5c). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 8.77 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$), $8.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 8.59$ (br d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$ ') , 8.13 (dd, J $=7.7,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3), 7.76\left(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4{ }^{\prime}\right), 7.46-7.51(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H} 10 \& \mathrm{H} 11)$, 7.337.36 (m 2H, H3'), 7.18 - $7.20(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 9) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 149.8$ (C2'), 148.2 (C4), 145.1 (C2), 139.1 (C6), 137.1 (C4'), 130.7 (C7), 130.4 (C9), 129.8 (C8), 128.5 (C3), 124.5 (C3'), 90.4 (C5).

4-Methyl-1-tritylpyridin-1-ium tetrafluoroborate 4-methylpyrdin (5b). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.56(\mathrm{~d}, J=7.03 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2), 8.48(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$ '), $7.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3)$, $7.45-7.50(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H} 10 \& \mathrm{H} 11), 7.34-7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3\right.$ '), $7.20-7.17(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 9), 2.74\left(\mathrm{~s},-\mathrm{CH}_{3} a\right)$, $2.46\left(\mathrm{~s},-\mathrm{CH}_{3} b\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 162.7(\mathrm{C} 4), 152.7(\mathrm{C} 4$ '), 146.9 (C2'), $144.0(\mathrm{C} 2)$, 139.2 (C8), 130.7 (C9), 130.3 (C11), 129.8 (C10), 129.1 (C3), 126.4 (C3'), 89.2 (C7), 21.9 ($\left.\mathrm{CH}_{3} a\right)$, $22.7\left(\mathrm{CH}_{3} b\right)$.

Bis(phenylethynyl)benzene. This molecule was synthesized following a previously published procedure. ${ }^{131} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.58-7.62(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 2, \& \mathrm{H} 9), 7.37-7.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 1 \&$ H3) 7.36 (AA' part of AA'BB', 2H, H8). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 132.4$ (C9), 132.2 (C2), 129.1 (C 1), 129.0 (C3), 128.8 (C8), 126.3 (C7), 123.7 (C4), 94.1 (C5), 88.7 (C6).

$\operatorname{Bis}\left(\right.$ phenylethynyl)benzene triphenylcarbenium tetrafluoroborate. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 8.30 (dd, $J=7.4, \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 14), 7.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 13), 7.71(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 12)$, $7.58-7.62(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 2 \& \mathrm{H} 9)$, 7.37-7.40 (m, 6H, H1, H3) 7.36 (AA' part of AA'BB', $2 \mathrm{H}, \mathrm{H} 8) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 211.3$ $\left(\mathrm{C}^{\dagger}\right), 143.9(\mathrm{C} 4), 143.2(\mathrm{C} 3), 140.4(\mathrm{C} 1), 132.4(\mathrm{C} 9), 132.2(\mathrm{C} 2), 131.0(\mathrm{C} 2) 129.1(\mathrm{C} 1), 129.0(\mathrm{C} 3)$, 128.8 (C8), 126.3 (C7), 123.7 (C4), 94.1 (C5), 88.7 (C6).

2-((2-(phenylethynyl)phenyl)ethynyl)pyridine (7). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.64$ (ddd, $J=$ $4.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.69$ (ddd, $J=7.7,7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $7.67-7.60$ (m, 4H, H12, H9, $2 \times \mathrm{H} 17$), 7.57 (ddd, $J=7.7,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), $7.42-7.35$ (m, $5 \mathrm{H}, \mathrm{H} 10, \mathrm{H} 11,2 \times \mathrm{H} 18, \mathrm{H} 19$), 7.28 (ddd, $J=7.7,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 150.8(\mathrm{C} 2), 143.9,136.6(\mathrm{C} 4), 132.8$, $132.33,132.32,129.4,129.2,129.0,128.7,127.9$ (C5), 126.8, 125.3, 123.6 (C3), 123.5, 94.5 (C14), 93.3 (C6), 88.5(C7), 88.0 (C15).

3. NMR spectra referred to in the main text

Figure S1. Superimposed ${ }^{13} \mathrm{C}$ spectra of $\mathbf{1 a}$ and bis(phenylethynyl)benzene. The unaltered chemical shifts of 1a upon addition of bis(phenylethynyl)-benzene indicates no interaction. This confirms that the nitrogens of ligands $\mathbf{2}$ are necessary for complexation of a carbenium ion.

Figure S2. ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HMBC of $\mathbf{2 c}$ with trityl alcohol. The lack of interaction is revealed by the unaltered ${ }^{15} \mathrm{~N}$ chemical shift. Thus an empty p_{z} orbital is necessary for interaction of $\mathbf{2 c}$, and the observed large chemical shift changes upon mixing 1a with $\mathbf{2 c}$ have to involve the carbenium carbon.

$\begin{array}{llllllllllllllll}.00 & 8.90 & 8.80 & 8.70 & 8.60 & 8.50 & 8.40 & 8.30 & 8.20 & 8.10 & 8.00 & 7.90 & 7.80 & 7.70 & 7.60 & 7.50\end{array}$ Figure S3. Overlaid ${ }^{1} \mathrm{H}$ NMR spectra acquired at $25^{\circ} \mathrm{C}$ (black), $-10^{\circ} \mathrm{C}$ (red) and $-40{ }^{\circ} \mathrm{C}$ (green) showing the pyridine signals of 3d. Observation of one set of signals at various temperatures is indicative of a static $[\mathrm{N} \cdots \mathrm{C} \cdots \mathrm{N}]^{+}$geometry, whereas is incompatible with the presence of a dynamic $[\mathrm{N}-\mathrm{C} \cdots \mathrm{N}]^{+} \rightleftarrows[\mathrm{N} \cdots \mathrm{C}-\mathrm{N}]^{+}$mixture.

 A single ${ }^{15} \mathrm{~N}$ NMR signal observed at various temperatures is indicative of a static $[\mathrm{N} \cdots \mathrm{C} \cdots \mathrm{N}]^{+}$ geometry, whereas is incompatible with the presence of a dynamic $[\mathrm{N}-\mathrm{C} \cdots \mathrm{N}]^{+} \rightleftarrows$ $[\mathrm{N} \cdots \mathrm{C}-\mathrm{N}]^{+}$mixture.

Figure S5. Overlaid ${ }^{15{ }^{150}} \mathrm{C}$ NMR spectra acquired at $25^{\circ} \mathrm{C}$ (black), $-10^{\circ} \mathrm{C}$ (red) and $-40^{\circ}{ }^{\circ} \mathrm{C}$ (green) of 3d. The inserted expansion shows the acetylene signals at $90-92 \mathrm{ppm}$ and the carbonium carbon at 80.5 ppm enlarged. A single ${ }^{15} \mathrm{~N}$ NMR signal observed at various temperatures is indicative of a static $[\mathrm{N} \cdots \mathrm{C} \cdots \mathrm{N}]^{+}$geometry, whereas is incompatible with the presence of a dynamic $[\mathrm{N}-\mathrm{C} \cdots \mathrm{N}]^{+} \rightleftarrows$ $[\mathrm{N} \cdots \mathrm{C}-\mathrm{N}]^{+}$mixture.

Figure S6. ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC of $\mathbf{1 a : 2 c}$ (1:2). Peak splitting observed at -144 ppm upon addition of an excess of 1a to a solution of 2 c reveals alkylation of both Lewis basic nitrogens, which was corroborated by ITC titrations.

4. Compound characterization

Scheme S1. Synthesis of 1d.

The tri- p-tolylmethanol was dissolved in diethyl ether and cooled to $0^{\circ} \mathrm{C}$. Under vigorous stirring, a solution of tetrafluoroboric acid in diethyl ether ($50 \mathrm{wt} \%$) was added dropwise over 10 min . With each drop, a deeply colored green precipitate formed. After the solvent had been removed, the precipitate was washed with diethyl ether and dried in vacuo as a green solid (70\%).

Scheme S2. Synthesis of 1e.
Into an oven-dried vial equipped with a stir bar, $\mathrm{AgBF}_{4}(200 \mathrm{mg}, 1.0274 \mathrm{mmol})$ was weighed in and an Ar balloon was inserted. 3-4 mL of dry DCM was added and the vial kept over an ice bath. Into a separate vial equipped with a stir bar, the tritylchloride ($1 \mathrm{eq}, 1.0274 \mathrm{mmol}$) was weighed in and dissolved in dry DCM. This solution was then delivered slowly to the vial containing the Ag salt. An immediate dark orange color was observed as solid AgCl precipitated out. This mixture was then vigorously stirred for 2 h over an ice bath. Then, this vial was centrifuged at 2500 rpm for 10 min , and the supernatant was transferred into a separate vial. Excess solvent was removed under a N_{2} flow, and $\mathbf{1 e}$ was isolated as a dark red solid (65%).
5. NMR spectra of the starting materials and synthesized compounds

$23022021020019018017016015014013012011010090 \quad 80$ Figure S8. The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 a acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 100.58 MHz .
 Figure S9. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 d}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 399.94 MHz .

Figure S10. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 d}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 100.58 MHz .

Figure S11. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 e acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 399.94 MHz .

Figure S12. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 e}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 100.58 MHz .

$\begin{array}{llcccccccc}4 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 \\ \text { Figure S13. The } & & 4 & 3 \\ & \\ & \\ \text { NMR }\end{array}$

230220210200190180170160150140130120110100 Figure S14. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 f}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 100.58 MHz .

Figure S1	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

Figure S17. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of 2a acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S18. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2b acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.88 MHz .

Figure S19. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 b}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S20. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of 2b acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S21. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 399.95 MHz .

Figure S22. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{2} \mathrm{H}\right\}$ spectrum of $\mathbf{2 c} / \mathbf{2 c}$-d acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S23. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of 2c acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S24. The ${ }^{1} \mathrm{H}$ NMR spectrum of 3a acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz .

Figure S25. The ${ }^{13} \mathrm{C}$ NMR spectrum of 3a acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S26. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of 3a acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 125.71 \mathrm{MHz}$.

Figure S27. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of 3a acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S30. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{3 b}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 125.71 \mathrm{MHz}$.

Figure S31. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{3 b}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S32. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz .

230220210200190180170160150140130120110100
Figure S33. The ${ }^{13} \mathrm{C}$ NMR spectrum of 3c acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S34. The ${ }^{2} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of 3 c acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 125.71 \mathrm{MHz}$.

Figure S35. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{3 c}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

$\begin{array}{llllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { (}\end{array}$

Figure S38. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of 3d acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 125.71 \mathrm{MHz}$.

Figure S39. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{3 d}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.
 Figure S40. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz .

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$
Figure S41. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S42. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{3 e}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 125.71 \mathrm{MHz}$.

Figure S43. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{3 e}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

$\begin{array}{llllllllllllllllllllllllllllll}0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$									

Figure S46. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{3 f}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 125.71 \mathrm{MHz}$.

Figure S47. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{3 f}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

$23022021020019018017016015014013012011010090 \quad 80$ Figure S49. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S50. The ${ }^{1} \mathrm{H},{ }^{1 \cdot} \mathrm{~N}$ HMBC spectrum of $\mathbf{4 b}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S51. The ${ }^{\mathrm{i}} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz

Figure S53. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{5 b}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S54. The ${ }^{1} \mathrm{H}$ NMR spectrum of pyridine (4c) acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz .

$23022021020019018017016015014013012011010090 \quad 80$
Figure S55. The ${ }^{13} \mathrm{C}$ NMR spectrum of pyridine (4c) acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S56. The ${ }^{1} \mathrm{H}$ NMR spectrum of pyridine (5c) acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz .

230220210200190180170160150140130120110100
Figure S57. The ${ }^{13} \mathrm{C}$ NMR spectrum of pyridine (5c) acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S58. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{5 c}$ acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S61. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of 7 acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

Figure S62. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2-((2-(phenylethynyl)phenyl)ethynyl)-1-tritylpyridin-1-ium tetrafluoroborate complex (7 -trityl BF_{4}^{-}) acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz .

23022021020019018017016015014013012011010090
Figure S63. The ${ }^{13} \mathrm{C}$ NMR spectrum of bis(phenylethynyl)benzene triphenylcarbenium tetrafluoroborate complex (7trityl BF_{4}^{-}) acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S64. The ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HMBC spectrum of 2-((2-(phenylethynyl)phenyl)ethynyl)-1-tritylpyridin-1-ium tetrafluoroborate (7 -trityl $\mathrm{BF}_{4}{ }^{-}$) acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 50.66 \mathrm{MHz}$.

$\begin{array}{lllllllllllllllllllll}1.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 \\ 0.5\end{array}$ Figure S65. The ${ }^{1} \mathrm{H}$ NMR spectrum of bis(phenylethynyl)benzene acquired at $25^{\circ}{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 499.87 MHz .

$\begin{array}{llllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
Figure S66. The ${ }^{13} \mathrm{C}$ NMR spectrum of bis(phenylethynyl)benzene acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S67. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of bis(phenylethynyl)benzene and triphenylcarbenium

| 50 | 230 | 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | -1 |
| :--- | Figure S68. The ${ }^{13} \mathrm{C}$ NMR spectrum of the mixture of bis(phenylethynyl)benzene and triphenylcarbenium tetrafluoroborate acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.71 MHz .

Figure S69. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of the mixture of bis(phenylethynyl)benzene and triphenylcarbenium tetrafluoroborate acquired at $25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $499.87 / 125.71 \mathrm{MHz}$.

6. Isotopic perturbation of equilibrium (IPE) NMR

Isotopic perturbation of equilibrium (IPE) is an NMR spectroscopic technique that relies on the observation of secondary isotope effects for distinguishing a single symmetric molecule from rapidly interconverting asymmetric tautomers. ${ }^{14}$ Its major advantage is that it succeeds even when the rapid exchange causes the NMR signals from the individual tautomers to coalesce into one set of signals, which in turn are virtually identical to those of a single static structure. IPE has been applied successfully for example, to symmetry determinations of carbocations, ${ }^{15} \mathrm{O}-\mathrm{H} \cdots \mathrm{O}^{16,17}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}^{18,19}$ hydrogen bonded systems, thiapentelenes, ${ }^{20}$ metal chelating complexes ${ }^{21}$ and halogen bond complexes. ${ }^{1,2,22,23}$ The method requires substitution of a proton with deuterium (or, more generally, one isotope with another) close to the interaction site, causing changes in the vibration spectrum of the molecule, which affect the vibrationally averaged NMR parameters. ${ }^{24}$ IPE relies most commonly on ${ }^{13} \mathrm{C}$ NMR spectroscopic detection. At the analysis of mixtures of a non-deuterated molecule and its deuterated analogue each NMR signal turns into two, one originating from the deuterated molecule and one from the corresponding non-deuterated one, with a small shift difference ${ }^{n} \Delta_{\text {obs }}$, between them, where n denotes the number of intervening bonds between the site of the ${ }^{1} \mathrm{H}$-to- ${ }^{2} \mathrm{H}$ substitution and the investigated carbon.

$$
\begin{equation*}
{ }^{n} \Delta_{\mathrm{obs}}=\delta_{\mathrm{C}(\mathrm{D})}-\delta_{\mathrm{C}(\mathrm{H})} \tag{1}
\end{equation*}
$$

The observed shift difference consists of two independent isotope shift contributions: the intrinsic isotope shift ${ }^{n} \Delta_{0}$ and the equilibrium isotope shift ${ }^{n} \Delta_{\mathrm{eq}}$ (Equation 2).

$$
\begin{equation*}
{ }^{n} \Delta_{\mathrm{obs}}={ }^{n} \Delta_{0}+{ }^{n} \Delta_{\mathrm{eq}} \tag{2}
\end{equation*}
$$

In both static and rapidly equilibrating systems, the isotope substitution slightly changes the vibrationally averaged equilibrium geometry and induces an intrinsic shift, ${ }^{n} \Delta_{0}$, on all nearby ${ }^{13} \mathrm{C}$ nuclei. It is usually small ($<0.4 \mathrm{ppm}$) and negative as the ${ }^{13} \mathrm{C}$ NMR signal corresponding to the heavier, deuterated molecule occurs at a lower chemical shift. The magnitude of ${ }^{n} \Delta_{0}$ attenuates rapidly as n increases. The second component, ${ }^{n} \Delta_{\text {eq }}$, is present only for systems that are involved into an equilibrium process. Isotope substitution slightly changes the vibrational zero-point energies (ZPE) of the two tautomers and, according to Boltzmann's law, the equilibrium constant K between the tautomers. This in turn gives a contribution ${ }^{n} \Delta_{\text {eq }}$ to the isotopic shift that is significant and determined by Equation 3:

$$
\begin{equation*}
{ }^{n} \Delta_{\mathrm{eq}}=D(K-1) /[2(K+1)] \tag{3}
\end{equation*}
$$

where D equals the chemical shift difference between the signals of the tautomeric forms (halogenated $\mathrm{N}^{+}-\mathrm{X}$ and non-halogenated N , in this particular case). It is noteworthy that sizeable ${ }^{n} \Delta_{\text {eq }}$ need not be restricted to small n. According to the van't Hoff equation, ${ }^{25} \mathrm{~K}$ is temperature dependent, and so is therefore ${ }^{n} \Delta_{\text {eq }}$. To induce large isotope effects, selective deuterium substitution was performed as close as possible to the $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{+}$interaction site, at the C 2 position of one of the pyridines of $\mathbf{2 c}$. Here, the monodeuterated analogue of $\mathbf{2 c}$ is referred to as $\mathbf{2 c} \mathbf{c} \boldsymbol{d}$. The synthesis of $\mathbf{2 c}$ and $\mathbf{2 c} \mathbf{c} \boldsymbol{d}$ have followed our previously published synthetic procedure ${ }^{2}$ and is therefore not given here in detail. Isotope shifts ${ }^{n} \Delta_{\text {obs }}$ were obtained by acquisition of ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{2} \mathrm{H}\right\} \mathrm{NMR}$ spectra of the isotopologues of $\mathbf{3 d}$ dissolved in dry $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Similar to previous, related ${ }^{26}$ measurements of intrinsic isotope shifts, a mixture of 2 and its mono-deuterated analogue 2-d, was used as reference static structure (${ }^{n} \Delta_{\text {obs }}={ }^{n} \Delta_{0}$) most similar to the investigated XB system 3d. As reference for a system involved into a rapid exchange process, the hydrogen bond analogue of $\mathbf{3 d}$, the analogous $[\mathrm{N}-\mathrm{H}-\mathrm{N}]^{+}$complex was used. Isotopic shifts for the halogen bonded complex 3d, for the static reference system $\mathbf{2 c}$ and for the most similar analogous equilibrating systems ($[\mathrm{N}-\mathrm{H}-\mathrm{N}]^{+}$complexes) ${ }^{18,19}$ are reported in Table S 1 . Small equilibrium shifts are expected originating from (a) the very small difference in the Lewis basicity of the two nitrogens that is reflected by an equilibrium constant close to unity for the potential exchange process $[\mathrm{N}-\mathrm{C} \cdots \mathrm{N}]^{+}$ $\Longrightarrow[\mathrm{N} \cdots \mathrm{C}-\mathrm{N}]^{+},{ }^{23}$ and (b) from the comparably small chemical shift difference (D, equation 3) of the halogenated and non-halogenated, or protonated and non-protonated (ca 8 ppm at C 2), ${ }^{26}$ tautomeric states. Such small equilibrium isotope effects do not permit straightforward, direct differentiation between a static structure and a tautomerizing system. ${ }^{23}$ Originating from their large magnitudes, the ${ }^{1} \Delta_{\text {obs }}$ and ${ }^{2} \Delta_{\text {obs }}$ values suffer least from measurement errors, and their comparison among the various compounds is therefore expected to provide the most accurate conclusions. Yet, the magnitude pattern of the 3-4 bond IEs may also be informative. Thus, for a static system the magnitude and the

Table S1. Temperature coefficients (ppm K) of the isotope shifts, observed for the $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions of $\mathbf{2 c}$, it's H^{+}complex, and of $\mathbf{3 d}$. The data of $\mathbf{2 c}$ and it's of its H^{+}complex are given as reference for a structurally closely related static and dynamic systems, and have previously been published. ${ }^{1}$ Details of the IPE NMR technique are given in reference 1 . Signal overlaps prohibited the determination of the temperature dependence of the secondary deuterium isotope effects on C4, C5 and C6 and thereby the IPE NMR study did not provide conclusive evidence, neither for a static symmetric structure nor for a dynamic mixture of asymmetric ones.

Structure		$\begin{aligned} & \hline \mathrm{C} 2 \\ & { }^{1} \Delta_{\mathrm{obs}} \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & { }^{2} \Delta_{\text {obs }} \end{aligned}$	$\begin{aligned} & \text { C4 } \\ & { }^{3} \Delta_{\mathrm{obs}} \end{aligned}$	$\begin{aligned} & \hline \text { C5 } \\ & { }^{4} \Delta_{\text {obs }} \end{aligned}$	$\begin{aligned} & \hline \text { C6 } \\ & { }^{3} \Delta_{\text {obs }} \\ & \hline \end{aligned}$	$\begin{gathered} \Sigma \\ \left\|\Delta_{\mathrm{obs}}\right\| \end{gathered}$
	2c, 2c-d	-7	-7	-2	0	-3	19
	$\begin{gathered} \mathbf{2 c}, \mathbf{2 c - d}+ \\ \mathbf{H}^{+} \end{gathered}$	-10	-11	-3	0	+15	39
	3d, 3d-d	-8	-11	n.d.	n.d.	n.d.	n.d.

n.d. - not determined due to signal overlaps
temperature dependency of the IEs depends on the distance from the position of isotope substitution, whereas for systems in equilibrium it is governed by the distance from the distance from the position of the atom involved into the equilibrium process.

For distinguishing between a static $[\mathrm{N}-\mathrm{C}-\mathrm{N}]^{+}$geometry and the corresponding dynamic mixture, the temperature dependence of the isotope shifts, expressed as the slopes of ${ }^{n} \Delta_{\text {obs }}$ vs. reciprocal temperature, ${ }^{27}$ was studied (Table S1). As expected, the IEs of the dynamic reference $[\mathrm{N}-\mathrm{H}-\mathrm{N}]^{+}$complex, $\mathbf{2 c}+\mathrm{H}^{+}$, showed a significantly larger overall temperature dependence than those of the static reference $\mathbf{2 c}$; i.e. $\Sigma\left|\Delta_{\text {obs }}\right| 39$ vs $19 \mathrm{ppb} / \mathrm{K}$ (Table S1). In agreement with the expectations, the temperature dependence of the IEs observed on C-2 and C-3 were significantly larger than that of those observed on C 4 and C 6 , which is in excellent agreement with the previous literature. ${ }^{1,2,23}$

The isotope effects observed on C 2 and C 3 for $\mathbf{3 d} / \mathbf{3 d} \mathbf{d}$ were comparable in magnitude to those of $\mathbf{2 c} / \mathbf{2} \mathbf{c}-\boldsymbol{d}$ and of the dynamic reference $\mathbf{2 c} / \mathbf{2 c} \mathbf{-} \boldsymbol{d}+\mathbf{H}^{+}$. The comparison of the magnitude of the isotope dependence on these positions with those of the static and the dynamic references ${ }^{22,28,29}$ did not allow reliable differentiation of the isotope effects. This might be due to the significantly larger size of \mathbf{c} as compared to $\mathbf{2 c} / \mathbf{2 c} \mathbf{- d}$ and $\mathbf{2 c} / \mathbf{2} \mathbf{c}-\boldsymbol{d}+\mathbf{H}^{+}$. Signal overlaps for C4, C5 and C6 with the signals of the complexed trityl cation at various temperatures prohibited reliable determination of the temperature dependency of the IEs at these positions. Overall, the magnitude and the temperature dependence of the observed IEs of $\mathbf{3 d} / \mathbf{3} \mathbf{d} \mathbf{d}$ is compatible with that expected, however, this data unfortunately does not allow us to draw reliable conclusion on the static, $\left[\mathrm{N} \cdots \mathrm{C}^{\cdots} \mathrm{N}\right]^{+}$, or dynamic, $[\mathrm{N}-\mathrm{C} \cdots \mathrm{N}]^{+} \rightleftharpoons[\mathrm{N} \cdots \mathrm{C}-$ $\mathrm{N}]^{+}$, nature of the complex.

IPE NMR experiments were recorded on a Bruker Avance HD III 500 MHz spectrometer equipped with a 5 mm TCI cryogenic probe using ${ }^{13} \mathrm{C}$ detection (125 MHz) with broadband ${ }^{1} \mathrm{H}$ and inversegated ${ }^{2} \mathrm{H}$ decoupling. In the absence of ${ }^{2} \mathrm{H}$ decoupling, the $\mathrm{CD}{ }^{13} \mathrm{C}$ NMR signals are split into triplets
and/or are broadened due to $J_{C D}$ couplings, which makes the isotope shifts difficult to measure. The lack of the nuclear Overhauser enhancement additionally decreases the sensitivity of the $\mathrm{C}(\mathrm{D})$ signals if not ${ }^{2} \mathrm{H}$-decoupled. NMR spectra were recorded for the temperature interval 25 to $-40{ }^{\circ} \mathrm{C}$ (lower temperature limit of the probe), for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions. To obtain high quality spectra for determination of small variations in isotopic shifts $\left({ }^{n} \Delta_{\text {obs }}\right){ }^{13} \mathrm{C}$ NMR spectra have been recorded with 32768 data points and a reduced spectral window providing a ca $0.5 \mathrm{~Hz} /$ point original resolution. The data was then zero-filled to 262144 points providing a digital resolution of $0.07 \mathrm{~Hz} /$ point, using the software MestreNova V10.2. Error estimates for the IPE measurements are comparable to that of previous investigations. ${ }^{23}$

The temperature dependency of the IEs of $\mathbf{3 d} / \mathbf{3 d} \mathbf{d}$ is show in Figure S7-S8. The data of the common reference systems $\mathbf{2 c} / \mathbf{2 c} \boldsymbol{d}$ and $\mathbf{2 c} / \mathbf{2 c} \mathbf{-} \boldsymbol{d}+\mathbf{H}^{+}$have been previously published and are therefore not shown here; the reader is advised to references ${ }^{1,22,23}$.

Figure S70. The temperature dependence of the isotope shifts of ($\mathbf{3} / \mathbf{3} \mathbf{- d}$) observed on its C 2 position.

Figure $\mathbf{S 7 1}$. The temperature dependence of the isotope shifts of $\mathbf{(3 / 3 - d})$ observed on its C3 position.

7. X-ray crystallography

The details of the crystals data, data collection, and the refinement results.
Crystal data for CCDC 1581474: $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BF}_{4} \mathrm{~N}, F_{\mathrm{W}}=409.22$, monoclinic, space group $C 2 / c$ (no. 15), a $=25.7941(7), b=7.4589(2), c=20.1543(6) \AA, \beta=90.743(3)^{\circ}, V=3877.27(19) \AA^{3}, Z=8, \rho_{\text {calc }}=$ $1.402 \mathrm{Mg} / \mathrm{m}^{3}, \mu=0.903 \mathrm{~mm}^{-1}, F_{000}=1696$, crystal size $0.30 \times 0.14 \times 0.04 \mathrm{~mm}^{3}, \theta$ range $=$ $3.427-74.194^{\circ}, 11788$ collected reflections (before HKLF5), 3862 independent reflections, 99.7 \% data completeness, no restraints, 273 parameters, Goodness-of-fit $\left(F^{2}\right)=1.140$, Final R indices $[I>2 \sigma(I)]: R 1=0.1142$, $\mathrm{w} R 2=0.3662 . R$ indices (all data): $R 1=0.1164$, $\mathrm{w} R 2=0.3671$. Largest residual electron densities: 0.802 and $-0.676 \mathrm{e} . \AA^{-3}$.
PLAT084_ALERT_3_B High wR2 Value (i.e. > 0.25)
0.37 Report

Author Response: The crystal is a weak scatterer and nonmerohedric 2-component twin, resulting poor data with high R values.

8. Isothermal titration calorimetry

Titrations of 2c with carbenium ion 1a revealed two well-resolved transitions (Figure 4, main text). Initially, addition of carbenium to 2 c led to formation of a $1: 1$ complex, as indicated by the first transition at a $\mathbf{1 a} / \mathbf{2 c}$ molar ratio of 1 , where the ligand became saturated with carbenium. Further addition of carbenium 1a resulted in disruption of complex $\mathbf{3 c}$ and formation of a 1:2 complex, $\mathbf{6 c}$, as borne out by the second transition occurring at a $\mathbf{1 a} / \mathbf{2 c}$ molar ratio of 2 . This mode of binding was quantitatively confirmed by fitting a "reverse" titration of carbenium 1a with 2c using the same set of best-fit parameters (Figure S9).

Figure S72. "Reverse" titration performed at $25^{\circ} \mathrm{C}$. Titration of the carbenium ion 1a with the bidentate ligand 2c first yielded their strong $2: 1$ complex, $\mathbf{6 c}$. Upon addition of excess $\mathbf{2 c}$, the $1: 1$ complex of $\mathbf{1 a} / \mathbf{2 c}, \mathbf{3 c}$ was formed. The bidentate ligand $\mathbf{2 c}$ at a concentration of 3.75 mM was titrated to the triphenylcarbenium tetrafluoroborate 1 a at a concentration of 0.5 mM . The main panel shows the isotherm depicting normalized heats of reaction, Q, as a function of the $\mathbf{1 a} / \mathbf{2 c}$ molar ratio in the calorimeter cell (blue circles) along with uncertainties (blue horizontal lines) resulting from baseline assignment and peak integration. ${ }^{8}$ Nonlinear least-squares fits (red solid line) was based on the presumption of two interaction sites, ${ }^{\mathbf{1 0}}$ as reflected in the bimodal shape of the isotherm. Inset: Corresponding raw thermogram displaying differential heating power, Δp, versus time, t.

Table S2. Confidence intervals (CI) for the thermodynamic data.

	Lower 68.3\% CI	Best fit	Upper 68.3\% CI
$K_{1}{ }^{\circ}$	1,0	1,9	3,6
ΔG°	$-51,3$	$-49,8$	$-48,2$
$\Delta H^{\circ}{ }_{1}$	$-100,5$	$-93,4$	$-88,0$
$-T \Delta S^{\circ}{ }_{1}$		43,7	
K_{2}	150	237	359
$\Delta G^{\circ}{ }_{2}$	$-39,0$	$-37,8$	$-36,8$
$\Delta H^{\circ}{ }_{2}$	$-56,1$	$-53,1$	$-50,7$
$-T \Delta S^{\circ}{ }_{2}$		15,3	

9. Preliminary computations

Computational model - thermochemistry and NMR properties. All quantum-chemical calculations were performed with Density Functional Theory (DFT). For geometry optimizations and thermochemical calculations we used the M06 exchange and correlation (XC) functional ${ }^{30}$ and a mixed-level basis set constructed in the following way: (i) The carbenium C atoms and the N atoms were described with Jensen's aug-pc- $2^{31,32-34}$ basis set., (ii) all atoms that are nearest neighbors to those mentioned in (i) were described with the $\mathrm{pc}-2^{31-33}$ basis set, (iii) all other atoms, with the pc-1 basis set. ${ }^{31-33}$ This basis set provides an accurate description of the interesting bonds at a reasonable overall computational cost. Solvent effects were covered with the Polarizable Continuum Model (PCM). ${ }^{35}$ For all geometries, vibrational frequencies were calculated to characterize the structures and to determine thermochemical corrections. The latter were calculated for 298 K and 1 atm , corresponding to the experimental conditions. Where applicable, the basis-set interaction error (BSSE) was corrected by the counterpoise (CP) method. ${ }^{36}$
${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ NMR chemical shieldings were calculated at the optimized geometries obtained as above, using the gauge-independent atomic orbitals (GIAO) method. ${ }^{37}$ For the NMR calculations, the modification by Wilson et al. ${ }^{38}$ of the Becke 97 XC functional ${ }^{39}$ (B97-2) was employed. The basis set was constructed analogously as above except that Jensen's pcS basis sets ${ }^{40}$ were used. For the computation of ${ }^{15} \mathrm{~N}$ NMR chemical shifts, pyridine was used as a secondary reference with an experimental shift of $\delta_{\exp }\left({ }^{15} \mathrm{~N}\right)=-67.0$. For the determination of ${ }^{13} \mathrm{C}$ chemical shifts, the chemical shieldings for TMS were calculated as reference. In this latter calculation, the geometry was optimized at the M06/pc-1 level of theory. In the calculation of the shieldings, the C atoms were escribed with the aug-pcS-2 basis set, all other atoms, with the pcS-2 basis set. All mentioned calculations were performed with the Gaussian09 programming package. ${ }^{41}$

Computational model - visualizations. Calculations, providing the structures for Figure 1, were performed using release 2015-3 of the Schrödinger program package. ${ }^{42}$ Geometries were optimized with density functional theory (DFT), using the M06 functional ${ }^{30}$ and the LACVP** basis set and effective core potentials ${ }^{15}$ as implemented in Jaguar. ${ }^{43}$ To obtain electron densities and electrostatic potentials, single-point calculations with the M06 functional and the (all-electron) MIDI! basis set ${ }^{44}$ were performed at the optimized geometries. The molecular surfaces were generated using Gaussview 5.0. Here, 1 a.u. of electron density $=$ electron $/ \AA^{3}$. Atomic coordinates are given below.

Computed geometries. The preliminary calculations were performed for $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$ (Figure 2), i.e. for the compounds $\mathbf{1 c}, \mathbf{2 c}, \mathbf{3 c}, \mathbf{4 c}$, and $\mathbf{5 c}$ (Fig S73). For reference purposes, we investigated in addition [pyridine-tris(phenyl)carbenium] ${ }^{+} \mathbf{7 c}$. For the species $\mathbf{3 c}, \mathbf{5 c}$, and $\mathbf{7 c}$, two stable geometries each were found. In one of them, the $\mathbf{1 c}$ constituent has undergone N-alkylation with a distance between the carbenium carbon and the bonded nitrogen being 1.54-1.57 \AA. The nitrogen of the second pyridine moiety (for $\mathbf{3 c}$ and $\mathbf{5 c}$) is not coordinated to the carbenium carbon. Rather, it is bonded by van der Waals and electrostatic interactions, with distances to the carbenium carbon of 5.05 (3c) or $3.88 \AA$ $(4 \mathbf{c})$, respectively. We denote the structures containing an N-alkylated $\mathbf{1 c}$ moiety with the suffix $-\mathbf{a l k}$. The second stable structure found for $\mathbf{5 c}$ shows two weak coordinative bonds between the N atom(s) and the carbenium carbon, with bond distances $\sim 3 \AA$, i.e. a tetrel structure. For 7c, a weakly bonded coordinative structure with a $\mathrm{C}($ carbenium $)-\mathrm{N}$ bond length of $2.99 \AA$ is predicted. The corresponding structure for $3 \mathbf{c}$ shows one "coordinative" $\mathrm{C}($ carbenium $)-\mathrm{N}$ bond with a bond length of $3.20 \AA$, whereas the second C (carbenium)- N bond length is $4.56 \AA$, indicating an unspecific bonding based on electrostatic and van der Waals attraction. Fig. S73 gives an overview over the obtained stable structures. The tetrel structure that is indicated by the experimental findings could not be identified.

Table S3 presents the DFT predicted thermochemical properties of the investigated compounds. According to the calculated ΔG^{298} values, none of the experimentally investigated compounds is predicted to be thermochemically stable under ambient conditions (only the reference compound $7 \mathbf{c}$ is slightly more stable than its constituents). This is in contradiction both to the outcome of the NMR investigation and to that of the calorimetric studies. For both $\mathbf{3 c}, \mathbf{5 c}$, and $\mathbf{7 c}$, the structure featuring an
alkylated 1c moiety is more stable than the alternative structure. For the two structures of $\mathbf{5 c}$, the comparison with $4 \mathbf{c}+7 \mathbf{c}$ reveals that the addition of a second pyridine to $7 \mathbf{c}$ gives only a small gain in enthalpy (13 to $15 \mathrm{~kJ} \mathrm{~mol}^{-1}$) whereas results in a loss of three times as much entropy.

1 c

2c

4c

5c

5c-alk

7c

7c-alk

Figure S73. Overview of the structures studied in the numerical investigations.

Table S3. Relative energies, enthalpies and Gibbs free energies of the investigated compounds. All values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Compound	Reference	ΔE	ΔH^{298}	ΔG^{298}
$\mathbf{3 c}$	$\mathbf{1 c}+\mathbf{2 c}$	-46.4	-40.9	15.6
$\mathbf{3 c - a l k}$	$\mathbf{1 c}+\mathbf{2 c}$	-77.4	-68.4	1.8
	$\mathbf{3 c}$	-31.0	-27.5	-13.8
$\mathbf{7 c}$	$\mathbf{1 c}+\mathbf{4 c}$	-18.8	-11.6	30.4
$\mathbf{7 c - a l k}$	$\mathbf{1 c}+\mathbf{4 c}$	-70.4	-59.7	-2.3
	$\mathbf{7 c}$	-51.6	-48.1	-32.6
$\mathbf{5 c}$	$\mathbf{1 c}+\mathbf{2} \mathbf{4 c}$	-36.1	-25.0	55.4
	$\mathbf{4 c}+\mathbf{7 c}$	-17.3	-13.4	25.1
$\mathbf{5 c - a l k}$	$\mathbf{1 c}+\mathbf{2} \mathbf{4 c}$	-91.0	-74.9	28.9
	$\mathbf{4 c}+\mathbf{7 c - a l k}$	-20.6	-15.2	31.2
	$\mathbf{5 c}$	-54.9	-49.9	-26.5

Table S4. Calculated ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ NMR Chemical Shifts and Complexation Shifts of the Investigated Compounds (All Values in ppm).

Complex	ligand	$\delta^{15} \mathrm{~N}_{\text {ligand }}$	$\delta^{15} \mathrm{~N}_{\text {complex }}$	$\Delta \delta^{15} \mathrm{~N}_{\text {coord }}$	$\delta^{13} \mathrm{C}_{\text {ligand }}$	$\delta^{13} \mathrm{C}_{\text {complex }}$	$\Delta \delta^{13} \mathrm{C}_{\text {coord }}$
3c	2c	-60.94	-64.62	-3.68	214.25	217.95	3.70
			-65.24	-4.30			
3c-alk	2c	-60.94	-156.45	-95.52	214.25	96.76	-117.50
			-64.26	-3.32			
5c	4c	-67.00	-61.53	5.47	214.25	220.08	5.82
			-62.15	4.85			
5c-alk	4c	-67.00	-149.57	-82.57	214.25	95.82	-118.43
			-66.34	0.66			
7c	4c	-67.00	-62.13	4.87	214.25	217.07	2.82
7c-alk	4c	-67.00	-153.25	-86.25	214.25	95.71	-118.54

The calculated NMR properties are compiled in Table S4. For N-alkylation, the coordination shifts both for ${ }^{15} \mathrm{~N}$ and for the carbenium ${ }^{13} \mathrm{C}$ are close to the experimental chemical shifts observed for 3 c $\left(\delta^{15} \mathrm{~N}_{\text {coord }}:-79.5 \mathrm{ppm}, \delta^{13} \mathrm{C}_{\text {coord }}:-109.8 \mathrm{ppm}\right.$) and $\mathbf{5 c}\left(\delta^{15} \mathrm{~N}_{\text {coord }}:-86.3 \mathrm{ppm}\right.$ and $-8.8, \delta^{13} \mathrm{C}_{\text {coord }}:-121.0$ ppm). However, only a single ${ }^{15} \mathrm{~N}$ NMR shift observed for $\mathbf{3 c}$ experimentally (Table 1), which is compatible with a symmetric structure, whereas $\mathbf{3 c}$-alk is asymmetric and would be expected to show two separate peaks with different ${ }^{15} \mathrm{~N}$ NMR chemical shifts ($\delta^{15} \mathrm{~N}_{\text {complex }}-156.45$ and -64.26 ppm). The predicted chemical shifts for complex $\mathbf{5 c}$ show a better agreement to the experiments (predicted $\delta^{15} \mathrm{~N}_{\text {complex }}-149.57$ and -66.34 ppm versus experimental $\delta^{15} \mathrm{~N}_{\text {complex }}-153.3$ and -75.8 ppm). This finding suggests that $\mathbf{5 c}$ may indeed have a structure similar to $\mathbf{5 c}$-alk; however, the thermochemical stability of the complex remains unexplained. Regarding $\mathbf{3 c}$, none of the computationally predicted structures is consistent with the measured coordination shifts. For the structure 3c (without N-alkylation), all calculated coordination shifts are less than 10 ppm in absolute value, and the predicted geometry is, in contrast to the experimental observation, not fully symmetric. For the structure $\mathbf{3 c}$-alk, the calculated coordination shift for one of the nitrogens and the carbenium carbon are in reasonable agreement with the experiment values. However, the calculated coordination shift of the second nitrogen atom is close to zero, which is in contradiction to the experimental findings where such a small coordination shift is not observed. Neither are the computed coordination shifts compatible with a situation where 3c rapidly oscillates between $\mathbf{3 c}$-alk and its mirror image as in this case, the observed ${ }^{15} \mathrm{~N}$ coordination shift for $\mathbf{3 c}$ should be considerably smaller, roughly half the value observed for $\mathbf{5 c}$.

Altogether, the computed thermochemical and NMR data for $\mathbf{3 c}$ and $\mathbf{5 c}$ give at hand that the calculated structures do not correctly represent the experimental ones. We ascribe this in first instance to the known difficulties of DFT to handle systems with strongly delocalized electrons arising from the selfinteraction error on the one hand ${ }^{45}$ and the non-dynamic correlations on the other hand. ${ }^{46}$ It will thus be necessary to perform and more detailed numerical investigations involving more advanced (wavefunction based) computational models.

Data for thermochemical and NMR calculations. Coordinates are given in Ångström, energies in Hartree, and chemical shieldings in ppm. For molecules where the BSSE was calculated the fragment numbers for the atoms are given in the rightmost column of the coordinate block.


```
1C
Number of atoms: 34
Point group: C1
1 1
C 0.0010624903 0.0014362931 0.0009577998
```


	0.5842800754	3.3717683008	2.0367916285	1
C	1.5698285903	3.7085798931	1.1107146919	1
C	1.9712208819	2.7838580553	0.1651916887	1
H	5.2282517274	-0.4403990004	-3.7575677311	1
H	2.8296626498	-0.1827046267	-3.2381635482	1
H	3.8366499961	0.9741049080	0.7923916318	1
H	6.2342332412	0.7268759839	0.2588729794	1
H	6.9322053808	0.0144796173	-2.0124831261	1
H	2.0256844757	-2.0476893123	-1.5799643906	1
H	0.3303247173	-3.4166767591	-2.7529698222	1
H	-1.8618582045	-2.4207214303	-3.3577091554	1
H	-2.3668445511	-0.0619913141	-2.7756022427	1
H	-0.7067841362	1.3002985654	-1.5626675764	1
H	-0.1204614742	0.2215254607	0.9912546766	1
H	-0.7802434330	1.8535883769	2.7321153507	1
H	0.2819731760	4.0959136416	2.7938952914	1
H	2.0275998797	4.6965475879	1.1329021938	1
H	2.7358927982	3.0450345020	-0.5656456045	1
C	-3.1417809883	-3.7394702348	-0.3406123362	2
C	-2.7730397992	-2.4458763649	0.0531465714	2
C	-3.6337220291	-1.3662114988	-0.2428285293	2
C	-4.8303433270	-1.6170575170	-0.9265154960	2
C	-5.1733505155	-2.9019878352	-1.3156357045	2
C	-4.3268034627	-3.9668841068	-1.0209070061	2
C	-3.3037382894	-0.0173856336	0.0778899847	2
C	-3.0829196690	1.1644476624	0.2365881772	2
C	-2.8012351304	2.5603835994	0.3739860130	2
C	-3.3583820268	3.2941243125	1.4179911767	2
C	-3.0518868380	4.6425515621	1.5154820156	2
C	-2.2081674121	5.2069703967	0.5702374720	2
C	-1.7087241681	4.3922170672	-0.4356679523	2
N	-1.9895531367	3.1025124981	-0.5420569273	2
C	-1.5231850814	-2.2799896750	0.7175889818	2
C	-0.4319766365	-2.2761413080	1.2483110201	2
C	0.8325226170	-2.3779245903	1.9106878601	2
N	1.8786735529	-1.7229890030	1.3917229695	2
C	3.0529647822	-1.8696516185	1.9888177134	2
C	3.2552467801	-2.6459789799	3.1192335526	2
C	2.1661527287	-3.3110237732	3.6628519289	2
C	0.9322056449	-3.1784980156	3.0477501019	2
H	-2.4707082666	-4.5666038303	-0.1086832710	2
H	-5.4869707902	-0.7776786715	-1.1551578979	2
H	-6.1065516842	-3.0735431299	-1.8509496963	2
H	-4.5912028593	-4.9796684228	-1.3228142256	2
H	-4.0172392091	2.8064902179	2.1352059593	2
H	-3.4705694086	5.2459777176	2.3205234816	2
H	-1.9420553858	6.2618959682	0.6084797737	2
H	-1.0442757745	4.8043146885	-1.1909665112	2
H	3.891100055	-1.3429760055	1.5392740129	2
H	4.2465148328	-2.7264735642	3.5615100104	2
	2.2750043123	-3.9298990764	4.5529688310	2
	0.0484191422	-3.6868631754	3.4307438029	2

Electronic energy:
Zero-point correction=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
-1610.37498835
0.537596
-1609.837392
-1609.803656
-1609.802712
-1609.905683

Lowest frequency:

A 12.8823
Bond distances:

```
r(C7 - N48 ) = 4.5604
r(C7 - N52 ) = 3.1965
```

15N shieldings:
$\begin{array}{lll}\mathrm{N} & 48 & -81.2422\end{array}$
N 52 -80.6192
13C shielding for carbenium C:
$\begin{array}{ll}\text { C } & 7 \\ \end{array}$
$3 \mathrm{c}-\mathrm{alk}$

Number of atoms： 68
Point group：C1

1

-1.4926155012 －2．6940207620 －3．8875999157
－3．8984644529
－2． 7137199778
－1． 5238881762
－0．2390485239
－2．7403588773
－4．8135505162
－4．8402301513
－2．7195119047
－0．5905616273
－2．8982373948 0.8753127414 -3.5385240694 －2． 6726273201
－2．4644148258 －3．1273310940 －4．0217852639 －4．2277009172 －3．6710116746 －2．1213235191 －4．5375079113 －4．9189744095 4.8641063250 4.1308935794 2.8400701219 2.2201457613 2.9350888026 4.2584457908 5.9040617809 4.5765516603 2.4146734489 4.8098590574 2.0871991027 4.7953723363 4.2751222065 3.4076923413 3． 0535774388 3.5726164066 4.4377945407 5.4712312038 4.5415373610 3．0019284083 3.2987907487 4.8264232216 -0.9501614642

-2.6549334247	0.6722850378
-1.9090711484	0.6469467497
-2.5455127079	1.0096838306
-3.8754984548	1.3991683298
-4.6060486743	1.4321906824
-4.0012477035	1.0678714082
-2.1144796130	0.2888860385
-0.5363931127	0.2724802869
-1.9719892885	0.9839527278
-4.3459547023	1.6788758412
-5.6510174718	1.7384247651
-4.5635912101	1.0820108720
0.6363656790	0.0076908194
-1.7524444413	-0.0293958863
4.6554927818	-0.7887107574
4.1985848575	0.1942320793
2.9153807170	0.4488391946
2.0169608880	-0.2857502768
2.3730108023	-1.2931750313
3.7192609446	-1.5468043529
5.7234227477	-0.9533143738
4.9070586108	0.8069264278
1.5999667087	-1.8615859103
4.0338323922	-2.3282655874
-1.5555583078	-1.2156540753
-0.4131702397	-1.0273405644
-0.4310359136	-0.6478608411
-1.6305591381	-0.4317142510
-2.8108463642	-0.6117211705
-2.7852321585	-1.0020096383
-1.4699106347	-1.5178675683
0.5593905836	-1.1649199141
-3.7483638753	-0.4326920063
-3.7141870002	-1.1346016956
0.8908575170	-0.3638996116
4.2429227413	-0.8541483465
3.5775674733	-1.9610468789
2.5128024780	-1.7852238086
2.0749591629	-0.5046977849
2.7507931778	0.5923390779
3.8283277982	0.4189887377
5.0871096670	-0.9885592432
3.8963435793	-2.9682322571
2.0094690168	-2.6641079653
2.4587987333	1.6033826318
4.3478748788	1.2943281310
1.6259871925	-3.3633364995

C	-0.6754630968	2.5521975803	-2.3628777111
C	0.2908684055	2.2825931128	-1.4080241578
C	0.9954994945	1.0779318539	-1.4180712752
C	0.7422877698	0.1774052178	-2.4438088246
C	-0.2294462583	0.4430373293	-3.4047830107
H	-1.7114009715	1.8368439349	-4.1146427481
H	-1.2090299147	3.5028258677	-2.3334405138
H	0.5118141208	3.0353939585	-0.6503608899
H	1.3040082509	-0.7493421811	-2.5416413602
H	-0.4098693021	-0.2837926069	-4.1962423015
C	0.7419117820	0.3993058095	3.7259557966
C	2.0337691525	0.0455227194	3.3504346761
C	2.4465220173	0.2190277480	2.0382782403
C	1.5822015478	0.7432815797	1.0749370909
C	0.3004648862	1.1046127512	1.4618581834
C	-0.1175685007	0.9334402547	2.7771494061
H	0.4091312846	0.2565052205	4.7538900203
H	2.7247978108	-0.3710842609	4.0826060992
H	3.4635056464	-0.0711385165	1.7685949850
H	-0.4222905399	1.4961168012	0.7503038918
H	-1.1365294860	1.2135363409	3.0472441113

Electronic energy:
Zero-point correction=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
-1610.37876795
0.540277
-1609.838491
-1609.806085
-1609.805141
-1609.902903
Lowest frequency:
A $\quad 14.2285$
Bond distances:
$r(C 35-N 17)=5.0474$
$r(C 35-N 27)=1.5475$
Electronic energy (NMR): -1610.89629655
15N shieldings:
$\begin{array}{llr}\mathrm{N} & 17 & -83.7865 \\ \mathrm{~N} & 27 & 10.5943\end{array}$
13C shielding for carbenium C :
C $35 \quad 88.5113$

4 C

Number of atoms: 11
Point group: C2V
01

N	0.0000000000	0.0000000000	1.4124844965
C	0.0000000000	1.1370074914	0.7242058776
C	0.0000000000	1.1929079064	-0.6603047304
C	0.0000000000	0.0000000000	-1.3691371363
C	0.0000000000	-1.1929079064	-0.6603047304
C	0.0000000000	-1.1370074914	0.7242058776
H	0.0000000000	2.0557622625	1.3056039121
H	0.0000000000	2.1542263859	-1.1726859889
H	0.0000000000	0.000000000	-2.4593345014
H	0.0000000000	-2.1542263859	-1.1726859889
H	0.0000000000	-2.0557622625	1.3056039121

Electronic energy:
-248.13185059
Zero-point correction=
0.088230
Sum of electronic and zero－point Energies＝
－248．043621 Sum of electronic and thermal Energies＝
-248.039321
Sum of electronic and thermal Enthalpies＝
－248．038377 Sum of electronic and thermal Free Energies＝
-248.070366
Lowest frequency： A2 380.8710
Electronic energy（NMR）：－248．21443943
15N shieldings：
N 1 - % % 8592
N 1 - % % 8592

5 C

Number of atoms： 56
Point group：C1
1
－1．7542489768
0.4072354119
1.6421621660
－3．1363959071
0.3775509514
1.6508349686
1
－3．8719859196
-3.1824693955
－1．7999639728
－1．0848567817
-5.3111065739
． 5574971318
1.8474348724
2.05754519471
2.08052720151
$1.8632719714 \quad 1$
1.82719414251
1.28053966901
2.35964727891
3.43543982071
3.98216849761
3.45345571031
2.37364006591
1.83688675471
1.77577795351
1.23888614691
0.19066434021
-0.31462615381
0.22932028631
1.4595224205 1
1.45529370881
2.25032370691
2.26957144251
1.8670485421 1
3.87766584831 4.83324234871
3.88323994161
$1.9466594410 \quad 1$
0.96926704541
2.62159501881 1.64489012531
-0.23581681751
－1．1440342740 1
-0.19682913551
-1.20938296392
-1.66356409252
－2．9133706517 2
－3．4636897247 2
－2．7391387973 2
－1．4957221721 2
－0．9613111429 2
4.85255727603
5.34863084473
4.64870659053
5.23761691683

C	-4.6820985315	3.9453916696	6.5329895901	3
C	-5.8054736553	3.5661595303	7.2538475749	3
C	-6.7342551531	2.7306812220	6.6479244313	3
H	-7.6248345338	0.6100049860	-3.4458971530	2
H	-6.1009448212	-1.1145927084	-4.4460253515	2
H	-4.0890180514	-1.8326967888	-3.1318095582	2
H	-3.6973334614	-0.8080410950	-0.9056586833	2
H	-3.6673970834	3.7503572359	4.6505207796	3
H	-3.9250264351	4.5956564379	6.9683543035	3
H	-5.9543039819	3.9147937630	8.2756511619	3
H	-7.6290502750	2.4043205836	7.1756449079	3

Electronic energy：
Zero－point correction＝
Sum of electronic and zero－point Energies＝
Sum of electronic and thermal Energies＝
Sum of electronic and thermal Enthalpies＝
Sum of electronic and thermal Free Energies＝

$$
\begin{array}{r}
-1228.53748978 \\
0.457402 \\
-1228.080088 \\
-1228.053002 \\
-1228.052058 \\
-1228.142991
\end{array}
$$

Lowest frequency：
A $\quad 12.0080$
Bond distances：
$r(C 7-N 41)=3.0124$
$r(C 7-N 4)=3.0479$

BSSE correction＝
0.00590607 -1228.94811370

```
Electronic energy (NMR):
                                    -1228.94811370
```

15N shieldings:
$\begin{array}{lll}\text { N } & 41 & -84.3275\end{array}$
N $44 \quad-83.7074$
13 C shielding for carbenium C :
$\begin{array}{lll}\text { C } & 7 & -34.8081\end{array}$

5c-alk

Number of atoms： 56
Point group：C1

1

$$
\begin{array}{r}
-1.2829002504 \\
-0.3954454446 \\
0.6060990795 \\
0.6822903283 \\
-0.2070042945 \\
-1.1913941523 \\
1.5770009768 \\
2.3389355732 \\
0.8020153650 \\
-0.2781532999 \\
-1.0726604601 \\
-0.8186344921 \\
0.2345715216 \\
1.0378183003 \\
2.1262909175 \\
2.8412950914 \\
3.7881734664 \\
4.0263214063 \\
3.3127594909
\end{array}
$$

0． 8302508956 3.8055034515 2.90919179281 2.54321998161

9080
1
2.5534105011
3.06508489651

3．48679178757
3.96010544621
0.1474650057 2.3851488631 1

$$
1.13
$$

$$
0.594706
$$

$$
-1.1598974388
$$

$$
-1.1544572038
$$

$$
\begin{array}{ll}
1.3286688030 & 1
\end{array}
$$

$$
1.1745033732
$$

$$
-3.4284585679 \quad 1.9180994654
$$

$$
-3.4325473356 \quad 2.8176262272
$$

$$
-2.3034103129 \quad 2.9665823822 \quad 1
$$

$$
0.0402010586-0.1230956676 \quad 1
$$

$$
0.4888019334-1.2301889522
$$

$$
1.4932248581 \quad-1.0979826833
$$

$$
2.0404178255 \quad 0.1582375986
$$

$$
1.5892061837 \quad 1.2574695119
$$

$$
1.4312855524 \quad 5.0265470755
$$

$$
\begin{array}{rrr}
-0.2134145236 & 4.1079239133 & 1 \\
2.8933660674 & 1.8210141549 & 1
\end{array}
$$

H	-0.1305748061	4.5285632351	2.7541127947	1
H	-1.8913669587	3.8270418333	4.3636699475	1
H	-0.5024122708	-0.2520594477	0.7536046021	1
H	-1.9048049682	-2.2553383327	0.4709831085	1
H	-1.4470287430	-4.3110817782	1.8013535931	1
H	0.4382818024	-4.3155979859	3.4227823940	1
H	1.8306951117	-2.3473816643	3.7119152013	1
H	1.4029475462	-0.7580379125	-0.2639292816	1
H	2.6539666941	0.0362701713	-2.2036828207	1
H	4.3470880752	1.8426311084	-1.9658973408	1
H	4.7764236946	2.8201900691	0.2860099470	1
H	3.5334279385	2.0234108735	2.2335939992	1
H	3.6889377525	-1.2705401059	2.0628727517	1
C	3.7118467411	-0.8830157909	3.0721303965	1
C	4.7287064562	-1.1713732287	3.9433948548	1
C	4.6955023991	-0.6336379314	5.2248993482	1
C	3.6317265388	0.1778906640	5.5840984095	1
C	2.6358078835	0.4296792303	4.6685049671	1
N	2.6808163032	-0.0957640357	3.4367744204	1
H	5.5424064457	-1.8123111879	3.6155912308	1
H	5.4947459822	-0.8438946999	5.9332476122	1
H	3.5654787205	0.6272277918	6.5711541647	1
H	1.7900518083	1.0604309427	4.9002632201	1
N	-0.7658263328	1.7666725093	-0.2507716040	2
C	-0.0845990003	2.7670770639	-0.7995892707	2
C	-0.5461008551	4.0730643471	-0.8333966261	2
C	-1.7805785593	4.3524095227	-0.2625679674	2
C	-2.4967262300	3.3139067382	0.3157752604	
C	-1.9459173631	2.0434593416	0.2929215381	2
H	0.8813995392	2.5140494498	-1.2322146581	2
H	0.0509936187	4.8562447302	-1.2984230853	2
H	-2.1787611047	5.3671852311	-0.2663553443	2
H	-3.4672105813	3.4856379428	0.7796358923	2
H	-2.4816283875	1.2091543277	0.7430021142	2

Electronic energy:			
Zero-point correction=			
Sum of electronic and			
Sum of electronic and thermal			
Sum of electronic and thermal			
Sum of electronic and thermal			
Lowest frequency:			
A 27.6223			
Bond distances:			
r (C7	$7-\mathrm{N} 41$)		1.5439
r (C7	$7-\mathrm{N} 46)$		3.8806

BSSE correction=
0.00389048 -1228.95921395

Electronic energy (NMR):
-1228.55638801
0.461223
-1228.095165
-1228.069987
-1228.069043
-1228.151082

15N shieldings:
$\begin{array}{llr}\mathrm{N} & 41 & 3.7137 \\ \mathrm{~N} & 46 & -79.5234\end{array}$
13C shielding for carbenium C :
$\begin{array}{lll}\text { C } & 7 & 89.4483\end{array}$

```
========================================================================
7c
```

Number of atoms: 45
Point group: C1

1

-1.8504275583	0.2229014870	1.6500593978	1
-3.2309625768	0.2415229067	1.6838635542	1
-3.9256659762	1.4544007331	1.8467519075	1
-3.1905380803	2.6424811234	2.0045821466	1
-1.8081074711	2.6148722526	1.9969729380	1
-1.1373972774	1.4094874390	1.8084474911	1
-5.3625440355	1.4595419182	1.8501557530	1
-6.0927473135	2.5902546820	1.3527237127	1
-6.0695008093	0.3417461249	2.4200215327	1
-5.5482610284	-0.3305294394	3.5395443465	1
-6.2439263290	-1.3787440998	4.1141104591	1
-7.4513317113	-1.7954047614	3.5615012571	1
-7.9718859373	-1.1527741843	2.4401201802	1
-7.2970196858	-0.0839661340	1.8830936365	1
-7.3428984860	2.9288346828	1.9036744612	1
-8.0549113122	4.0099843933	1.4189300114	1
-7.5405302869	4.7619998504	0.3665338713	1
-6.3043816868	4.4412674878	-0.1923526761	1
-5.5816091769	3.3729196304	0.2991050871	1
-1.3211642432	-0.7159944391	1.4956158742	1
-3.7935085798	-0.6797203535	1.5369377905	1
-3.7116478603	3.5806202235	2.1892708338	1
-1.2464960893	3.5359307315	2.1439970874	1
-0.0478131357	1.3932863557	1.7893967164	1
-4.6181894287	0.0131211195	3.9898747536	1
-5.8472350442	-1.8717922786	5.0001189812	1
-7.9924160197	-2.6292494588	4.0083684362	1
-8.9070844926	-1.4938149074	1.9992134959	1
-7.6902110036	0.398330722	0.9900838110	1
-7.7286224369	2.3643420640	2.7512956102	1
-9.0116015170	4.2751731083	1.8656651029	1
-8.1079542831	5.6073609322	-0.0222360131	1
-5.9137128181	5.0237011363	-1.0251835753	1
-4.6410325052	3.0910489429	-0.1703202298	1
-7.2445619005	1.3243151789	-1.1987853622	2
-6.4739713794	0.7248774005	-1.6831454940	2
-6.6370103641	0.3234693453	-2.9980464252	2
-5.6289850241	-0.4287103588	-3.5864077959	2
-4.5049606532	-0.7403322144	-2.8345351788	2
-4.4426083595	-0.2907588096	-1.5256377207	2
-5.4052357289	0.4236420903	-0.9538820760	2
-7.5347975215	0.5954482865	-3.5505167288	2
-5.7180676013	-0.7659661078	-4.6190423240	2
-3.6870813728	-1.3225359482	-3.2563063188	2
-3.5713398304	-0.5140401999	-0.9126227352	2

Electronic energy：
Zero－point correction＝
Sum of electronic and zero－point Energies＝
Sum of electronic and thermal Energies＝
Sum of electronic and thermal Enthalpies＝
Sum of electronic and thermal Free Energies＝
-980.39604475
0.368981
－980．027064
－980．006494
-980.005550
－980．079155
Lowest frequency：
A 6.9220
Bond distances：

$$
r(C 7-N 41)=2.9896
$$

BSSE correction＝
Electronic energy（NMR）：
0.00288805
-980.73471424

15N shieldings：
$\begin{array}{lll}\mathrm{N} & 41 & -83.7291\end{array}$

```
13C shielding for carbenium C:
C 7 -31.8067
```


7c-alk

Number of atoms: 45
Point group: C1
11
C $\quad-2.8982350315$
-2.0287299640
-0.9158200846
-0.7248761123
-1.6071573057
-2. 6886452840
-0.0177714476 1.0986834224
-0.9437946337
-1.7500306992
-2. 6544126167
-2.7873776496
-2.0157138073
-1.1023164623 1. 2087255033 2.2698040011 3.2372872127 3.1447915622 2.0880788271
-3.7523469744
-2.2212373424 0.1047404554
-1.4440103674
-3.3779572792
-1.6786248443
-3.2668484857
-3.5007270164
-2.1230897910
-0.5425363013 0.4768340909 2.3379585863 4.0683719763 3.9022982437 2.0377034369 1. 7235247582 1.6380435317 2.3932334970 2.2507018156 1.3487436949 0.6109340615 0.7487639786 3.0953566305
2.0125339029

$$
0.9831453024
$$

1.4443127921
1.1267360878
0.3101578608
$2.4779942420-0.2175141163$
$3.5119195114 \quad 0.0866602825$
$3.2865130831 \quad 0.9231443852$
$0.0229360417-0.0467764310$
$0.3855078423-1.0288292902$
$-1.0918348976-0.5331850532$
$-0.8069019282-1.6375024259$
$-1.7386493206-2.1185202234$
$-2.9736998359-1.4900012497$
$-3.2523379831-0.3741142887$
$-2.3145060870 \quad 0.1036498939$
$-0.1787162511-2.2917467897$
$0.1596963137-3.1282875744$
$1.0578777968-2.7060222625$
$1.6150239807-1.4337680691$
$1.2758405527-0.6051027445$
$1.8173594347 \quad 2.0917295468$
$-0.0158473397 \quad 1.5215312388$
$2.6797325456-0.8915857348$
$4.4989390142-0.3448364857$
4.09623838031 .1610559545
$0.1671487812-2.1233599846$
$-1.4951913978-2.9860827496$
$-3.7073694108-1.8644156460$
$-4.2047195369 \quad 0.1440478078$
$-2.5686064415 \quad 1.0024365406$
$-0.9031675894-2.6430028144$
$-0.2951339879-4.1160087069$
$1.3196697540-3.3603797963$
$2.3153000432-1.0833672363$
$1.7152858962 \quad 0.3925972348$
$-1.8467375331-0.0044822588$
$-1.4656238922 \quad 1.0039803649$
-1.9557436289 2.0359012502
$-1.4001031516 \quad 3.3022528095$
$-0.3644610533 \quad 3.4817074643$
0.08218979292 .4097338435
$-0.4705685791 \quad 1.1969824302$
$-2.7623617186 \quad 1.8438342065$
$-1.7664894916 \quad 4.1364794811$
$0.1121143917 \quad 4.4488755370$
0.89642728092 .4993939190

Electronic energy:
Zero-point correction=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
-980.41280995
0.371688
-980.041122
-980.021934
-980.020990
-980.088694

Lowest frequency:
A 37.1979

Data for visualizations. Coordinates are given in Ångström, energies in Hartree.
[bis(pyridine)iodine] ${ }^{+}$

N	-5.54290	2.38590	3.83190
C	-6.52400	3.21670	4.21380
C	-6.55310	3.76290	5.48500
C	-5.53850	3.43700	6.37810
C	-4.52620	2.57480	5.97200
C	-4.55960	2.06520	4.68580
H	-7.29160	3.43730	3.47530
H	-7.36050	4.43210	5.76440
H	-5.53680	3.85150	7.38230
H	-3.71720	2.29650	6.63970
H	-3.79390	1.38700	4.31570
N	-5.55010	0.63530	-0.40910
C	-4.56900	-0.19550	-0.79100
C	-4.53990	-0.74160	-2.06220
C	-5.55450	-0.41580	-2.95530
C	-6.56680	0.44640	-2.54920
C	-6.53340	0.95600	-1.26300
H	-3.80140	-0.41610	-0.05250
H	-3.73260	-1.41090	-2.34160
H	-5.55620	-0.83030	-3.95950
H	-7.37580	0.72470	-3.21690
H	-7.29910	1.63420	-0.89290
I	-5.54650	1.51060	1.71140

```
E(M06/LACVP**) -507.346653
E(M06/MIDI!//M06/LACVP**) -7383.267438
```

[bis(pyridine)triphenylcarbenium] ${ }^{+}$

C	-1.79040	0.32210	1.70310
C	-3.17410	0.31210	1.72150
C	-3.89940	1.51180	1.86580
C	-3.18370	2.71800	2.00320
C	-1.79980	2.72000	2.00300
C	-1.10140	1.52420	1.84800
C	-5.34420	1.49960	1.86500
C	-6.08610	2.64150	1.37820
C	-6.05550	0.33450	2.34860
C	-5.54880	-0.42120	3.42560
C	-6.24000	-1.52380	3.89610
C	-7.43550	-1.90690	3.29120
C	-7.94600	-1.17880	2.21920
C	-7.27080	-0.06250	1.75740
C	-7.34520	2.96630	1.92300
C	-8.05140	4.06140	1.45660
C	-7.52760	4.84130	0.42780
C	-6.29060	4.52870	-0.13300
C	-5.57240	3.44460	0.33890
H	-1.24380	-0.60760	1.57110
H	-3.71310	-0.62050	1.57610
H	-3.72950	3.64490	2.15900
H	-1.25960	3.65420	2.12950
H	-0.01440	1.52920	1.84080

H	-4.64830	-0.08220	3.93000
H	-5.85410	-2.08220	4.74430
H	-7.97400	-2.77660	3.65950
H	-8.87030	-1.48870	1.73970
H	-7.65040	0.48390	0.89870
H	-7.73810	2.38080	2.74940
H	-9.01020	4.31610	1.89930
H	-8.08870	5.69590	0.05770
H	-5.89510	5.12520	-0.95030
H	-4.64080	3.15670	-0.13950
H	-7.05690	1.62320	-1.26880
C	-6.38960	0.85800	-1.67590
C	-6.67270	0.26450	-2.89940
C	-5.78970	-0.69060	-3.38860
C	-4.66360	-1.00520	-2.63890
C	-4.47450	-0.35370	-1.42590
N	-5.31680	0.55920	-0.93910
H	-7.10640	1.53790	4.94090
C	-6.41240	2.27970	5.34570
N	-5.29960	2.49290	4.63950
C	-4.42290	3.37170	5.12810
C	-4.61660	4.07450	6.31130
C	-5.78550	3.85160	7.02740
C	-6.70410	2.93110	6.53730
H	-7.56260	0.54760	-3.45430
H	-5.97490	-1.17960	-4.34160
H	-3.94260	-1.74030	-2.98440
H	-3.59490	-0.57250	-0.81650
H	-3.51080	3.51910	4.54530
H	-3.86620	4.77820	6.65980
H	-5.97630	4.38390	7.95570
H	-7.62810	2.71860	7.06730
E (M06/LACVP**)			
E (MO6/MIDI $1 / /$ M06/LACVP**)	-1228.470740		
		-1221.870933	

10. References

(1) Carlsson, A.-C. C.; Mehmeti, K.; Uhrbom, M.; Karim, A.; Bedin, M.; Puttreddy, R.; Kleinmaier, R.; Neverov, A. A.; Nekoueishahraki, B.; Gräfenstein, J.; Rissanen, K.; Erdelyi, M. Substituent Effects on the [N-I-N] ${ }^{+}$Halogen Bond, J. Am. Chem. Soc. 2016, 138, 9853.
(2) Carlsson, A.-C. C.; Gräfenstein, J.; Budnjo, A.; Laurila, J. L.; Bergquist, J.; Karim, A.; Kleinmaier, R.; Brath, U.; Erdelyi, M. Symmetric Halogen Bonding Is Preferred in Solution, J. Am. Chem. Soc. 2012, 134, 5706.
(3) Horn, M.; Mayr, H. Stabilities of Trityl-Protected Substrates: The Wide Mechanistic Spectrum of Trityl Ester Hydrolyses, Chem. Eur. J. 2010, 16, 7469.
(4) Blasing, K.; Ellinger, S.; Harloff, J.; Schulz, A.; Sievert, K.; Taschler, C.; Villinger, A.; Zur Taschler, C. Lewis Acid Catalyzed Synthesis of Cyanidophosphates, Chem. Eur. J. 2016, 22, 4175.
(5) OD, R. 2015.
(6) Sheldrick, G. M. Shelxt - Integrated Space-Group and Crystal-Structure Determination, Acta Crystallogr. A 2015, 71, 3.
(7) Sheldrick, G. M. Crystal Structure Refinement with Shelx1, Acta Crystallogr. C 2015, 71, 3.
(8) Keller, S.; Vargas, C.; Zhao, H.; Piszczek, G.; Brautigam, C. A.; Schuck, P. High-Precision Isothermal Titration Calorimetry with Automated Peak-Shape Analysis, Anal. Chem. 2012, 84, 5066.
(9) Brautigam, C. A.; Zhao, H.; Vargas, C.; Keller, S.; Schuck, P. Integration and Global Analysis of Isothermal Titration Calorimetry Data for Studying Macromolecular Interactions, Nature Protoc. 2016, 11, 882.
(10) Houtman, J. C.; Brown, P. H.; Bowden, B.; Yamaguchi, H.; Appella, E.; Samelson, L. E.; Schuck, P. Studying Multisite Binary and Ternary Protein Interactions by Global Analysis of Isothermal Titration Calorimetry Data in Sedphat: Application to Adaptor Protein Complexes in Cell Signaling, Protein Sci. 2007, 16, 30.
(11) Kemmer, G.; Keller, S. Nonlinear Least-Squares Data Fitting in Excel Spreadsheets, Nature Protoc. 2010, 5, 267.
(12) Hinz, A.; Labbow, R.; Reiss, F.; Schulz, A.; Sievert, K.; Villinger, A. Synthesis and Structure of Tritylium Salts, Struct. Chem. 2015, 26, 1641.
(13) Chen, C.; Harhausen, M.; Liedtke, R.; Bussmann, K.; Fukazawa, A.; Yamaguchi, S.; Petersen, J. L.; Daniliuc, C. G.; Frohlich, R.; Kehr, G.; Erker, G. Dibenzopentalenes from B $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-Induced Cyclization Reactions of 1,2-Bis(Phenylethynyl)Benzenes, Angew. Chem. Int. Ed. Engl. 2013, 52, 5992.
(14) Siehl, H. U. Isotope Effects on Nmr-Spectra of Equilibrating Systems, Adv. Phys. Org. Chem. 1987, 23, 63.
(15) Saunders, M.; Telkowski, L.; Kates, M. R. Isotopic Perturbation of Degeneracy - C-13 Nuclear MagneticResonance Spectra of Dimethylcyclopentyl and Dimethylnorbornyl Cations, J. Am. Chem. Soc. 1977, 99, 8070.
(16) Perrin, C. L.; Lau, J. S.; Kim, Y. J.; Karri, P.; Moore, C.; Rheingold, A. L. Asymmetry of the "Strongest" Oho Hydrogen Bond, in the Monoanion of (+/-)-Alpha,Alpha'-Di-Tert-Butylsuccinate, J. Am. Chem. Soc. 2009, 131, 13548.
(17) Perrin, C. L.; Lau, J. S. Hydrogen-Bond Symmetry in Zwitterionic Phthalate Anions: Symmetry Breaking by Solvation, J. Am. Chem. Soc. 2006, 128, 11820.
(18) Perrin, C. L.; Ohta, B. K. Symmetry of N-H-N Hydrogen Bonds in 1,8-Bis(Dimethylamino)Naphthalene. H^{+}and 2,7-Dimethoxy-1,8-Bis(Dimethylamino)Naphthalene.H+, J. Am. Chem. Soc. 2001, 123, 6520.
(19) Perrin, C. L.; Ohta, B. K. Symmetry of O-H-O and N-H-N Hydrogen Bonds in 6-Hydroxy-2Formylfulvene and 6-Aminofulvene-2-Aldimines, Bioorg. Chem. 2002, 30, 3.
(20) Perrin, C. L.; Kim, Y. J.; Kuperman, J. Structures of 1,6-Dioxa-6a Lambda(4)-Thiapentalene and of 1,6,6a Lambda(4)-Trithiapentalene: C-S or C-2v Symmetry?, J. Phys. Chem. A. 2001, 105, 11383.
(21) Perrin, C. L.; Kim, Y. J. Symmetry of Metal Chelates, Inorg. Chem. 2000, 39, 3902.
(22) Bedin, M.; Karim, A.; Reitti, M.; Carlsson, A. C.; Topic, F.; Cetina, M.; Pan, F.; Havel, V.; Al-Ameri, F.; Sindelar, V.; Rissanen, K.; Gräfenstein, J.; Erdelyi, M. Counterion Influence on the N-I-N Halogen Bond, Chem. Sci. 2015, 6, 3746.
(23) Carlsson, A.-C. C., Gräfenstein, J.; Laurila, J. L.; Bergquist, J.; Erdelyi, M. Symmetry of [N-X-N] ${ }^{+}$ Halogen Bonds in Solution, ChemComm 2012, 17, 1458.
(24) Perrin, C. L.; Flach, A. No Contribution of an Inductive Effect to Secondary Deuterium Isotope Effects on Acidity, Angew. Chem. Int. Ed. Engl. 2011, 50, 7674.
(25) van't Hoff, J. H., Z. Phys. Chem. 1887, 1, 483.
(26) Perrin, C. L. Are Short, Low-Barrier Hydrogen Bonds Unusually Strong?, Acc. Chem. Res. 2010, 43, 1550.
(27) Perrin, C. L.; Kim, Y. J. Symmetry of the Hydrogen Bond in Malonaldehyde Enol in Solution, J. Am. Chem. Soc. 1998, 120, 12641.
(28) Carlsson, A. C.; Mehmeti, K.; Uhrbom, M.; Karim, A.; Bedin, M.; Puttreddy, R.; Kleinmaier, R.; Neverov, A. A.; Nekoueishahraki, B.; Grafenstein, J.; Rissanen, K.; Erdelyi, M. Substituent Effects on the [N-I-N] ${ }^{+}$Halogen Bond, J. Am. Chem. Soc. 2016, 138, 9853.
(29) Kleinmaier, R.; Arenz, S.; Karim, A.; Carlsson, A. C.; Erdelyi, M. Solvent Effects on ${ }^{15}$ N NMR Coordination Shifts, Magn. Reson. Chem. 2013, 51, 46.
(30) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals, Theor. Chem. Acc. 2008, 120, 215.
(31) Jensen, F. Polarization Consistent Basis Sets: Principles, J. Chem. Phys. 2001, 115, 9113.
(32) Jensen, F. Polarization Consistent Basis Sets. Ii. Estimating the Kohn-Sham Basis Set Limit, J. Chem. Phys. 2002, 116, 7372.
(33) Jensen, F.; Helgaker, T. Polarization Consistent Basis Sets. V. The Elements Si-Cl, J. Chem. Phys. 2004, 121, 3463.
(34) Jensen, F. Polarization Consistent Basis Sets. III. The Importance of Diffuse Functions, J. Chem. Phys. 2002, 117, 9234.
(35) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models, Chem. Rev. 2005, 105, 2999.
(36) Boys, S. F.; Bernardi, F. Calculation of Small Molecular Interactions by Differences of Separate Total Energies - Some Procedures with Reduced Errors, Mol. Phys. 1970, 19, 553.
(37) Wolinski, K.; Hinton, J. F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical-Shift Calculations, J. Am. Chem. Soc. 1990, 112, 8251.
(38) Wilson, P. J.; Bradley, T. J.; Tozer, D. J. Hybrid Exchange-Correlation Functional Determined from Thermochemical Data and Ab Initio Potentials, J. Chem. Phys. 2001, 115, 9233.
(39) Becke, A. D. Density-Functional Thermochemistry .5. Systematic Optimization of Exchange-Correlation Functionals, J. Chem. Phys. 1997, 107, 8554.
(40) Jensen, F. Basis Set Convergence of Nuclear Magnetic Shielding Constants Calculated by Density Functional Methods, J. Chem. Theory Comput. 2008, 4, 719.
(41) Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
(42) Musher, J. I. Chemistry of Hypervalent Molecules, Angew. Chem. Int. Ed. Engl. 1969, 8, 54.
(43) Jaguar: A High-Performance Chemistry Software Program with Strengths in Life and Materials Sciences. Int. J. Quantum Chem. 113, 2110-2142 (2013).
(44) Easton, R. E.; Giesen, D. J.; Welch, A.; Cramer, C. J.; Truhlar, D. G. The Midi! Basis Set for Quantum Mechanical Calculations of Molecular Geometries and Partial Charges, Theor. Chim. Acta 1996, 93, 281.
(45) Grafenstein, J.; Cremer, D. An Efficient Algorithm for the Density-Functional Theory Treatment of Dispersion Interactions, J. Chem. Phys. 2009, 130, 124105.
(46) Becke, A. D. A Real-Space Model of Nondynamical Correlation, J. Chem. Phys. 2003, 119, 2972.

