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General Considerations 

Materials and Reagents 

All chemical reagents and solvents were obtained from Sigma-Aldrich and used without 

further purification unless otherwise noted. All cell culture materials are listed in cell 

culture methods. ImmunoCult™ human CD3/CD28 T cell activator was purchased from 

STEMCELL Technologies, Inc. Recombinant mouse IFN-γ, recombinant mouse PD-L1-

human Fc Chimera (PD-L1-hFc), CFSE cell division tracker kit, APC Streptavidin, anti-

mouse CD3 (17A2)-FITC, anti-mouse CD8 (53-6.7)-PE, anti-mouse CD45.1 (A20)-

Pacific blue, anti-mouse Thy1.1 (OX7)-Alexa Fluor 700, anti-mouse IgG (Poly4060)-

APC, anti-human Fc (HP6017)-APC, anti-rat IgG (Poly4050)-APC, anti-His Tag 

(J095G46)-PE, anti-human CD3 (HIT3a)-APC, anti-human CD45 (HI30)-FITC, anti-

human CD4 (RPA-T4)-PE/Cy7, anti-human CD8 (SK1)-Pacific Blue, anti-human CD25 

(M-A251)-PerCP/Cy5.5, anti-human CD44 (BJ18)-FITC, anti-human CD45RO 

(UCHL1)-Alexa Fluor 700, anti-human CD62L (DREG-56)-PE and human Fc Receptor 

blocking solution were purchased from Biolegend. Bulky monoclonal antibodies 

including isotype mouse IgG2a (C1.18.4), anti-mouse PD-L1 (α-PD-L1, 10F.9G2), 

isotype rat IgG2b (LTF-2) and anti-human EGFR (528) were purchased from Bio X Cell. 

Therapeutic Herceptin were from Genentech. The control human IgG was obtained from 

Athens Research and Technology. Recombinant human HER2/ErbB2 Protein with His 

Tag (HER2-His) was purchased from Sino Biological, Inc. Click reagents including 

biotin-PEG3-azide (AZ-104, MW: 444.5), methyltetrazine-PEG4-azide (1014, MW: 

389.40), methyltetrazine-PEG4-alkyne (1013-old, MW: 487.5, a discontinued product in 

their website), TCO-PEG4-NHS Ester (A137, MW: 514.6) and Cy5-TCO (1089, MW: 

959.20) were purchased from Click Chemistry Tools LLC. Cy3-Azide (MW: 712.8) is a 

gift from Prof. Xing Chen’s lab (PKU, China). (5OctdU)-5’-

CAGTCAGTCAGTCAGTCAGT-3’(6-FAM) was ordered from Integrated DNA 

Technologies, Inc. D-Luciferin (monosodium salt), TNF-α mouse ELISA kit, IFN-γ 

mouse ELISA kit, Granzyme B human ELISA kit, DiD' solid, Hoechst 33342, DAPI, 

Alexa Fluor 647 NHS Ester, cell tracker green (CMFDA) and orange (CMTMR) were 

purchased from Thermo Fisher Scientific. 5×RIPA buffer kit were purchased from Cell 
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Biolabs, Inc. CytoTox 96® non-radioactive cytotoxicity assay and Bright-Glo™ 

luciferase assay system were purchased from Promega Corporation. Inorganic 

pyrophosphatase, FKP and FucT were expressed in endotoxin free bacteria (ClearColi® 

BL21-DE3, Lucigen) and purified as previously reported1. Pure GDP-Fucose, GF-Al and 

BTTP were synthesized as previously described 1,2. The plasmid of Sortase A (5M) is a 

kind gift from Prof. Peng Chen (PKU). The enzyme was expressed and purified 

according to their work 3.  Human FucTs 1,3,5,6,7,8,9 were from Prof. Kelley Moremen 

lab (UGA). Free LacNAc was bought from Carbosynth (#OA08244). α2,3 Sialyl LacNAc 

(sLacNAc) is a kind gift from Prof. Paulson (TSRI). 

Equipment 

All of the flow cytometry analyses were performed on an Attune NxT Flow Cytometer. 

Images of protein gels including coomassie SDS-PAGE gel and western blotting 

membrane were taken on ChemiDoc XRS+ (Bio-Rad). Absorbance, fluorescence 

intensity and luminescence were monitored in a Multi-Mode Microplate Reader 

(SynergyTM H4, Bio-Tek). Confocal images were taken on a Nikon spinning disk 

confocal microscope (TE2000). Fluorescent and phase contrast microscope images were 

taken on an All-In One fluorescence microscope (Keyence, BZ-X700). Bioluminescence 

imaging of live mice were acquired using an IVIS Spectrum system. 

Cells 

Cell lines were all purchased from ATCC unless otherwise specified. CHO cell lines (WT, 

Lec2 and Lec8, from Prof. Pamela Stanley at Albert Einstein College of Medicine) were 

grown as monolayer in alpha-Minimum Essential medium (α-MEM) (GIBCO) 

supplemented with 10% fetal bovine serum (FBS) (Omega Scientific, Inc). NK-92MI cell 

line was grown in MyeloCult™ H5100 (STEMCELL Technologies, Inc). Cancer cell 

lines including BT474, SKBR3, MDA-MB-435 (HER2+ and HER2-), MDA-MB-468, 

SKOV3 and mouse B16-OVA (from Prof. Gregoire Lauvau lab) are all grown in grown 

in DMEM (Dulbecco’s modified Eagle’s medium, GlutaMAX, GIBCO) supplemented 

with 10% FBS. Human blood samples were collected from healthy donors under the 

TSRI Normal Blood Donor Services program (#IRB 15-6710). Peripheral blood 

mononuclear cells (PBMCs) were obtained by Ficoll (Ficoll-Paque Plus, GE) density 
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centrifugation. PBMC, activated human T cells and mouse T cells were all cultured in 

RPMI 1640 (GlutaMAX) with 10% heat-inactivated FBS, 1 mM sodium pyruvate, 50 μM 

β-ME, 10mM HEPES and 1×MEM NEAA (GIBCO) (referred as T cell culture media 

later). Cytokines in T cell culture media were added as indicated (rhIL2, rhIL7 and 

rhIL15 are all from NIH program). All cells cultures were incubated at 37 oC under 5% 

CO2.  

Mice 

All mice were bred or housed under specific pathogen free (SPF) conditions. All animal 

experiments were approved by TSRI Animal Care and Use Committee. OT-1 mice are 

purchased from Taconic Biosciences. CD 45.1 mice from C57BL/6J (B6) genetic 

background were purchased from the Jackson Laboratory. The strain of OT-1+/-/CD 

45.1+/- was generated by cross breeding. Six female B6 background P14 mice were gifts 

from Prof. John Teijaro lab. 176 female NSG mice are gifts from Prof. Philippe A. Gallay 

lab. Both male and female mice of 8–20 weeks of age were used for most experiments.  

 

Supplementary Methods 

1. One-pot protocol for producing GDP-Fucose derivatives 

Reactions were typically carried out in a 15 mL corning tube with 5 mL 100 mM HEPES 

buffer (pH 7.5) containing L-fucose analogues (final concentration, 10 mM), ATP (10 

mM), GTP (10 mM), MgSO4 (10 mM), KCl (50 mM), inorganic pyrophosphatase (90 

units, ~0.17 g/L, endotoxin free), and FKP (9 units, ~0.6 g/L, endotoxin free). The 

reaction mixture was incubated at 37 °C for 5–6 h with shaking (225 rpm). After the 

reaction finished (monitored by TLC analysis1), enzymes were precipitated by adding 5 

mL cold EtOH into the crude product. After the precipitates were removed through 

centrifuge (8000×g, 5 min), the crude products (containing ~10 mM GDP-Fucose 

analogues) could be directly used. For GF-Al and GF-Az, further modification could be 

achieved through CuACC reaction. Crude GF-Al/GF-Az sample (~5 mM, in HEPES 

buffer) were reacted with azide/alkyne probes (6 mM, the information of these 

commercial available compounds could be found in Materials and Reagents) in the 
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presence of Cu/BTTP (1/2, 500 μM) and sodium ascorbate (2 mM) at 30 °C for 6h (For 

Tz substrates, add one volume of MeOH in reaction mixture). After reaction finished 

(monitored by TLC and LC-MS analysis, representative figures of GF-Az-Tz and GF-Al-

Tz are shown in Spectra part), BCS (bathocuproine sulphonate, 2 mM) were added to 

quench the reaction. These biocompatible crude products were lyophilized and 

reconstituted in pure water to a final concentration of 10 mM, which could be directly 

used in cell labeling. Following this protocol, we made one-pot products of GF-Al-

Biotin, GF-Al-Cy3, GF-Al-Tz and GF-Az-Tz. Their structures are shown in Figure S1. 

Since GF-Al-Tz and GF-Az-Tz are important starting materials for making GF-IgG, we 

purified these two GDP-Fucose derivatives and characterize them using high-resolution 

ESI-TOF MS and NMR (Spectra), which also confirm the one-pot procedure is reliable. 

2. General procedure for enzymatic transfer of GDP-Fucose derivatives to cell surface 

Live cells (1~2 million) were resuspended in 100 μL HBSS buffer containing 20 mM 

MgSO4, 3 mM HEPES, 0.5% FBS, 100 μM GDP-Fucose derivatives and 30 mU FucT 

(~0.02 mg/mL). After the incubation for 20 minutes (works from on ice to 37 °C), the 

cells were washed with PBS and ready for further application or analysis. For biotin 

detection, the cells were stained with APC Streptavidin after reaction. For Tz detection, 

the cells were reacted with 20 μM TCO-Cy5 on ice for 30 minutes and washed three 

times. 

3. Comparison of Sortagging and Fucosylation 

For sortagging reaction, NK-92MI cells (5 million/mL) were incubated with soluble SrtA 

and biotin-LPETG in RPMI complete media (10% inactivated fetal bovine serum, 1% 

MEM (Gibco) Non-Essential Amino Acids Solution, 1 mM sodium pyruvate, 1% 

GlutaMAX, (Gibco) 0.1 mM β-mercaptoethanol) supplemented with 10 mM CaCl2 at 

37 °C for 2 hr4. For fucosylation reaction, NK-92MI cells (5 million/mL) were incubated 

with FucT and GF-biotin in fucosylation buffer described in Methods 2 for different 

times (2-30 min). Different concentrations of enzymes and substrates were used as 

indicated.  
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4. Preparation of GDP-Fucose modified antibodies 

All of the antibodies (full-length IgG, MW: ~150 KDa) for conjugation were first 

desalted into PBS and concentrated to a 6 mg/mL solution. TCO group was first 

introduced onto antibodies according to the standard labeling protocol of TCO-PEG4-

NHS ester (https://clickchemistrytools.com/product/tco-peg4-nhs-ester/) and previous 

reports5,6 about its application on IgG labeling. Briefly, we prepared fresh 50 mM stock 

of TCO-PEG4-NHS reagent in DMSO and add it to the IgG sample (final concentration 6 

mg/mL) at a final concentration of 0.5 mM. The reactions were incubated at room 

temperature for 30 minutes and quenched by adding Tris buffer (pH 8.0) to a final 

concentration of 50mM Tris. The quenched reaction mixtures were incubated at room 

temperature for 5 minutes and then desalted into PBS using G25 desalting column (PD-

10, GE). The concentrations of desalted TCO-IgGs were around 4.5 mg/mL (~1-4 TCO 

per IgG). After that, ~10 mM one-pot products of GF-Az-Tz were added to TCO-IgGs 

with a final concentration at 0.15 mM (5eq of IgG). After 30 minutes of incubation at 

room temperature, these one-pot GF-IgG products were ready to use and could be kept at 

4 °C for up to 2 months. All the GDP-Fucose modified antibodies were characterized by 

MALDI-TOF MS. The molecular weights and average numbers of GF modification were 

shown in Supplementary Figure S5B. To make Alexa Fluor 647 labeled GF-IgGs used 

in confocal imaging and fluorescent gel analysis, the GF-IgG molecule was labeled with 

Alexa Fluor 647 probes following the manual. The antigen binding affinities of GF-

Herceptin, GF-anti-EGFR and GF-anti-PD-L1 were titrated on MDA-MB-435 Her2, 

SKOV3 and B16-OVA (IFN-γ treated) cells, respectively, according to the reference5. 

5. General procedure for enzymatic transfer of GF-IgG to cell surface 

Live cells (1~2 million) were resuspended in 100 μL HBSS buffer containing 20 mM 

MgSO4, 3 mM HEPES, 0.5% FBS, 0.1 mg/mL GF-IgG (different concentrations were 

used in titration) and 60 mU FucT (~0.04 mg/mL) (additional MgSO4 is not needed if use 

RPMI 1640 as reaction buffer). After the incubation for 20 minutes (on ice, room 

temperature or 37 °C), the cells were washed with PBS twice and ready for further 

application or analysis. For flow cytometry analysis, IgG labeled cells were stained with 
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DAPI and fluorescent secondary antibody against labeled IgG (1/50-1/200 dilution) on 

ice for 30 minutes. For confocal imaging, Lec2 cells plated on a chamber cover glass 

(Nunc) were treated with 0.1 mg/mL Alexa Fluor 647 labeled GF-rIgG in the same 

fucosylation condition as described above. After conjugation, live cells were washed and 

stained with Hoechst 33342 for 30 minutes on ice and then washed for imaging. To 

confirm the binding activity of cell surface conjugated antibodies, labeled cells were 

allowed to bind with 10 μg/mL antigen (PD-L1-hFc or HER2-His) in binding buffer 

(HBSS with 5mM HEPES, 2mM CaCl2, and 1mM MgCl2) on ice for 30 minutes. After 

binding, cells were washed twice with PBS and stained with DAPI and APC-anti-human 

Fc (1/50 dilution) or PE-anti His (1/100 dilution). For the SDS-PAGE fluorescent gel 

imaging analysis, fluorescent GF-IgG-A647 was used instead of GF-IgG. At the 

saturated labeling condition, labeled cells and control cells were collected and washed 

three times. After that, counted cells were lysed in SDS loading buffer and subjected to 

SDS-PAGE analysis. Pure GF-IgG-A647 proteins were also loaded as standards in 

quantification. For example, 2×105 Lec2 cells labeled with IgG-A647 were lysed in 20 

μL SDS loading buffer and loaded to one lane of a SDS-PAGE gel. In the same gel, 1 ng, 

5ng and 10ng pure GF-IgG-A647 proteins were loaded on separated lanes as the 

references. The resolved fluorescent gel was analyzed by ChemiDoc XRS+ (Bio-Rad). In 

brief, a linear plot was generated from the reference protein intensities and the quantity of 

IgG labeled on 2×105 Lec2 cells was then derived by cross-referencing its intensity, 

which is 12.6 ng. As the MW of IgG is around 150KDa, we can calculate the total IgG 

numbers labeled on 2×105 Lec2 cells were (12.6×10-9/150,000) ×6.02×1023=5×1010. 

Then, each Lec2 cell has (5×1010)/(2×105)=2.5×105 IgG molecules. 

6. Primary human T cells preparation and IgG labeling on their surface 

Fresh PBMCs were freshly prepared as described above. 4 million per mL PBMCs were 

cultured in T cell culture media with 15 ng/mL rhIL2 and activated with human 

CD3/CD28 T cell activator for two days. After that, activated human T cells were kept 

under 4×106 cells/mL in T cell culture media (fresh media with cytokine were added 

every two days). Phenotypes were characterized after two weeks expansion (>95% are 

human T cells). LacNAc levels on CD4+ and CD8+ T cells were tracked through 
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fucosylation with GF-biotin on day 0 (naïve T cells), day 2, day 4, day 7, day 11 and day 

13. Activated human T cells were labeled with mIgG using the general procedure for 

enzymatic GF-IgG transfer. After that, the labeling detection was confirmed. Labeled 

human T cells were then cultured in T cell culture media at a start cell density of 5×105 

cells/mL. The decay of cell surface mIgG molecule was tracked in 24 hours after labeling 

(anti-mouse IgG staining). The cell proliferation rate of labeled T cells was compared 

with unlabeled human T cells in three days (live cell counting).  

7. IgG labeling on NK-92MI cells 

NK-92MI cells or irradiated NK-92MI cells (6 Gy) were labeled with Herceptin or 

control human IgG according to the general protocol. After labeling, the labeling 

detection and the antigen (HER2-His) binding were both confirmed. NK-92MI cells with 

or without IgG conjugation were then cultured in T cell media with a start cell density of 

5×105 cells/mL. The decay of ell surface conjugated Herceptin were tracked at day 0, day 

1 and day 2 (anti-human Fc staining). The proliferation rates of cells were tracked at day 

0, day 1, day 2 and day 3 (DAPI staining and FACS counting). For dual antibodies 

labeling, NK-92MI cells were conjugated with GF-α-EGFR first and then conjugated 

with GF-Herceptin after washing. 

8. FACS and imaging analysis of binding between NK-92MI and BT474 

For flow cytometry analysis, NK-92MI cells were stained with CFSE and then labeled 

with Herceptin or not according to the general protocol. BT474 cells were stained with 

DiD first and then mixed with Herceptin labeled or unlabeled NK-92MI cells at the ratio 

of 1:1. Two hours later, the cells mixture was analyzed by flow cytometry. For 

fluorescence imaging, BT474 cells were stained with CFSE and cultured in glass bottom 

petri dish overnight. NK-92MI cells were then stained with cell tracker orange and then 

labeled with Herceptin or not. NK-92MI cells were added to BT474 culture at ratio of 

1:1. Two hours later, the co-cultured cells were imaged by fluorescent microscope before 

and after PBS wash. 

9. Analysis of NK-92MI cells-mediated cytotoxicity against HER2+ cancer cells 
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Labeled or unlabeled NK-92MI cells were co-cultured with different type of cancer cells 

at indicated effector/target ratios for 4 hours in a 96-well plate. In most of the 

experiments, the effector/target ratio is 5/1. Free Herceptin were added at a final 

concentration of 5 μg/mL if indicated. Specific cancer cell lysis was detected by LDH 

secretion in supernatant (CytoTox 96, Promega). Set-up of control groups and 

calculations of specific lysis were according to manufactory’s instruction 

(https://www.promega.com/products/cell-health-assays/cell-viability-and-cytotoxicity-

assays/cytotox-96-non_radioactive-cytotoxicity-assay/?catNum=G1780). Supernatant of 

each group (one hour incubation) were also collected and subjected to granzyme B 

ELISA kit for quantification. 

10. Mice model of NK-92MI mediated killing of HER2+ cancer 

Thirty female NSG mice (6-8 weeks old) were inoculated with 5×105 MDA-MB-435 

HER2+/F-luc cells through tail vein injection. One day later, mice were randomly divided 

into three groups  (10 mice per group). Each group were treated with HBSS, NK-92MI or 

Herceptin labeled NK-92MI cells through tail vein injection (3×106 NK cells each mice). 

Six days after tumor challenge, mice were injected with 200 μL D-luciferin (15mg/mL) 

through i.p. injection. Twelve minutes later, the bioluminescence signal in mice were 

analyzed by PerkinElmer IVIS system. The total photons indicating the tumor mice were 

quantified by IVIS software. For the established tumor model, NSG mice were injected 

intravenously with 5×105 MDA-MB-435/HER2+/F-luc cells on day 0. Three days later, 

the animals were imaged to confirm the tumor formation and then treated by i.v. injection 

of 5×106 NK-92MI or Herceptin-NK-92MI cells or HBSS. The animals were imaged 

again on day 4. The animals were received one more treatment of 5×106 NK-92MI or 

Herceptin-NK-92MI cells (i.v. injection) on day 9 and day17. On day 23, all of the mice 

were sacrificed and the lungs were collect for bioluminescence analysis.  

11. Primary OT-1 CD8+ T cells preparation and IgG labeling on their surface   

Splenocytes from OT-1 mice were activated by 1nM OVA peptides in T cell media for 

two days. After that, activated cells were in vitro expanded in fresh T cell media with 15 

ng/mL rhIL2 or 10 ng/mL rhIL7 and 20 ng/mL rhIL15 for several days (kept under 8×106 
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cells/mL, fresh media with cytokine were added every two days). Phenotypes were 

characterized (>95% are OT-1 CD8+ T cells). LacNAc levels on OT-1 T cells (cultured 

with two different cytokines) were tracked through fucosylation with GF-biotin on day 0 

(naïve T cells), day 2, day 4, day 7, day 9, day 11 and day 13. Activated OT-1 T cells 

were labeled with α-PD-L1 and mIgG control using the general procedure for enzymatic 

GF-IgG transfer. After that, the labeling detection and the antigen (PD-L1-hFc) binding 

were both confirmed. Labeled OT-1 T cells were then cultured in T cell culture media at 

a start cell density of 5×105 cells/mL. The decay of cell surface α-PD-L1 molecule was 

tracked in 24 hours after labeling (anti-rat IgG staining).  

12. OT-1 T cells re-stimulation using OVA-pulsed splenocytes   

Splenocytes from B6 WT mice were pulsed with SIINFEKL (OVA) peptide (1 μg/mL, in 

T cell media) for 2h. After that, cells were washed three times before use. OT-1 T cells 

with CD45.1 congenic marker were stained with CFSE and then labeled with rIgG. 105 

OT-1 T cells (labeled or unlabeled) were mixed with 106 OVA-pulsed splenocytes in 500 

μL T cell media. Control groups were also set up without splenocytes. The cell mixtures 

were cultured for 3 days. After that, cells were stained with APC anti-CD45.1 and DAPI. 

The CFSE dilution signals were analyzed on live CD45.1 positive cells. 

13.  Analysis of OT-1 CD8+ T cells mediated cytotoxicity against B16-OVA 

B16-OVA cells (stably transduced with firefly luciferase) were seeded in 96-well plate 

and treated with 10 ng/mL IFN-γ overnight (B16-OVA cells were all treated with IFN-γ 

to induce high expression level of PD-1 in this work). Labeled or unlabeled OT-1 cells 

were co-cultured with B16-OVA cancer cells at indicated effector/target ratios for 3 

hours or 20 hours in a 96-well plate (free anti-PD-L1 was added at 5 μg/ml when 

indicated). In most of the experiments, the effector/target ratio is 5/1. Phenotype of T cell 

clusters was imaged before cell number quantification. B16-OVA cell numbers were 

quantified through the luciferase activity according to the reference. The detection 

reagent was directly added to medium in each well according to the manufactory’s 

manual (Bright-Glo, Promega). For cytokine secretion quantification, cells were cultured 

for 9 hours and supernatant were collected and subjected to TNF-α and IFN-γ ELISA kit. 
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For OT-1 T cells proliferation in killing B16-OVA, OT-1 cells were stained by CFSE 

before IgG labeling. Modified cells were mixed with B16-OVA cells in the effector/target 

ratio of 2/1. After 72 hours, the cell mixtures were stained with APC-anti CD8 and DAPI. 

CFSE dilution signal was analyzed on CD8+ cells. 

14.  Statistical Analysis 

Statistical analyses were performed using GraphPad Prism software (version 7.0). 

Comparisons over groups were analyzed using two-way ANOVA tests followed by 

Sidak's multiple comparisons test, and comparisons of multiple samples at one group 

were analyzed using one-way ANOVA followed by Tukey's multiple comparisons test. 

For cell-based experiments, three biological replicates were performed. For tumor 

experiments in NSG mice, each group has 10 mice. In all figures, ns, P > 0.05; *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001 
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Figure S1. Chemical structures of GDP-Fucose derivatives including GF-Al-Biotin, 

GF-Al-Cy3, GF-Al-Tz and GF-Az-Tz.   
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Figure S2. The one-step enzymatic transfer of one-pot GDP-Fucose derivatives to 

Lec2 cells. (A) Schematic representation of transferring one-pot GDP-Fucose derivatives 

using FucT to LacNAc epitopes on Lec2 CHO cell surface. (B) Lec2 cells were treated 

with FucT and GF-Al-Cy3, FucT alone, or GF-Al-Cy3 alone, or untreated. Then cells 

were analyzed by flow cytometry, which only showed successful labeling when treated 

with both FucT and GF-Al-Cy3. (C) Lec2 cells were treated with FucT and GF-Az-Tz, 

FucT alone, or GF-Az-Tz alone, or untreated. Then the cells were reacted with TCO-Cy5 

and analyzed by flow cytometry. Significant labeling was only observed in the group 

treated with FucT and GF-Az-Tz. (D) GF-Al-Tz and GF-Az-Tz were compared in the 

FucT-mediated transfer reaction on Lec2 cells. Cells were reacted with TCO-Cy5 after 

enzymatic reaction and analyzed by flow cytometry. The GF-Az-Tz group generated 

stronger signal than GF-Al-Tz. (E) Lec2 cells were treated with FucT and GF-Az-

ssDNA-FAM, or GF-Az-ssDNA-FAM alone, or untreated. Then the cells were analyzed 
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by flow cytometry. The group treated with FucT and GF-Az-ssDNA-FAM has the 

strongest FAM signal. Error bars, mean values ± SD. ****P < 0.0001; one-way ANOVA 

followed by Tukey's multiple comparisons test. 

 

 
Figure S3. The one-step enzymatic labeling is more efficient and biocompatible than 

the two-step approach. (A) Schematic representation of the one-step and the two-step 

labeling systems. In the one step labeling system, the one-pot product of GF-Al-biotin 
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was directly transferred to LacNAc epitope on Lec2 cell surface using FucT. By contrast, 

the two-step labeling involved the first step of enzymatic transfer of GF-Al and a 

followed step of CuAAC reaction between surface alkyne and azide-biotin probe. (B) 

Flow cytometry analysis of biocompatibility in one-step or two-step labeling process. 

Lec2 cells after reaction were stained with DAPI. (C) Comparison of efficiency in one-

step and two-step labeling process described in (A). Cells were stained by streptavidin-

APC. Error bars, mean values ± SD. ****P < 0.0001; one-way ANOVA followed by 

Tukey's multiple comparisons test. 

 

 
Figure S4. Direct comparison of FucT and Sortase A (5M) for NK-92MI cell surface 

engineering. (A) FucT and GF-biotin were used in the cell-surface fucosylation and SrtA 

5M and biotin-LPETG were used in sortagging. Enzyme alone, biotin probe alone or 

untreated were shown as negative controls. Different enzyme and probe concentrations 

were used in the direct comparison experiment. (B) Time course of enzymatic transfer of 

GF-biotin to NK-92 MI cells on ice; reaction at 37 ºC was used as the maximum labeling 

control.  
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Figure S5. Characterization of GDP-Fucose modified antibodies. (A) Antigen binding 

capacities of GDP-Fucose modified antibodies were titrated and compared with un-

modified antibodies. (B) Molecular weights of GDP-Fucose modified antibodies were 

characterized by MALDI-TOF MS. Average numbers of GDP-Fucose on each antibody 

were calculated (one GF attachment leads to a 1489 Da shift).  
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Figure S6. Fluorescent SDS-PAGE gel analysis of IgG labeled cells. GF-IgG 

molecules that are modified with Alexa Fluor 647 on the IgG portions were used to 

quantify the numbers of IgG molecules conjugated to the surface of one cell. Cells were 

washed three times after treated with antibody and FucT. Different amounts of pure GF-

IgG-A647 proteins were used as standards in the quantification. At the saturated 

condition, approximately 2.5×105 IgG molecules were introduced to one Lec2 cell 

surface (A); approximately 2.9×104 IgG molecules were introduced to one primary 

human T cell surface (B); approximately 3×105 IgG molecules were introduced to one 

NK-92MI cell surface (C); approximately 7×104 IgG molecules were introduced to one 

mouse OT-1 T cell surface (D). The example of IgG numbers calculation could be found 

in Supplementary Methods 5. 
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Figure S7. Flow cytometry analysis of the viability of Lec2 cells before and after IgG 

conjugation. 

 

 
Figure S8. Dual labeling of two different IgG molecules on Lec2 cells. Lec2 cells were 

treated with GF-mIgG, GF-rIgG and FucT. GF-mIgG and GF-rIgG treated was shown as 

a negative control. The labeled cells were stained with anti-mIgG-FITC and anti-rIgG-

APC antibodies and analyzed by flow cytometry. 
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Figure S9. GDP-Fucose or LacNAc analogues inhibit the FucT-mediated transfer of 

GF-IgG to the cell surface in a dose-dependent manner. (A) Schematic representations 

of substrate competition assays and reaction sites blocking experiments. (B) Substrates 

competition experiments, reaction scheme 2 and 3: NK-92MI cells were treated with 60 

mU FucT, 0.1 mg/mL GF-IgG and LacNAc or α2,3 sialyl LacNAc (sLacNAc) with series 

dilution (varying from 0 to 10 mM) together for half an hour. The fucosylated cells were 

then stained by a secondary antibody for flow cytometry analysis. (C) Blocking 

experiments, reaction scheme 4: Lec2 cells were first treated with 30 mU FucT and 100 

µM GDP-Fucose for half an hour. The blocked Lec2 cells were then labeled with 60 mU 

FucT and 0.1 mg/mL GF-rIgG antibody followed by secondary-antibody staining and 

flow cytometry analysis. (D) NK-92MI cells were first treated with 30 mU FucT and 

GDP-Fucose with series dilution (0–500 µM) for half an hour. The blocked cells were 

then treated with 60 mU FucT and 0.1 mg/mL GF-IgG, followed by secondary antibody 

staining and flow cytometry analysis.  
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Figure S10. Transfer of IgG to the NK-92MI cell surface enabled by additional 

fucosyltransferases and sialyltransferases. (A) Comparison of the efficiency of various 

recombinant human fucosyltransferases with H. pylori FucT (HpFT) in transferring GF-

IgG to NK-92MI cells. Human FucTs 1,3,5,6,7,8,9 were included. Each enzyme (40 

ug/mL) was added with 0.1 mg/mL GF-IgG in the reaction mixture. FucT shows the best 

efficiency in IgG transfer. Staining antibody: anti-human IgG-APC.  (B) Efficiency 

comparisons between different sialyltransferases in transferring CS-IgG (CMP-Sia 

conjugated IgG) to NK-92MI cells. Each enzyme (40 ug/mL) was added with 0.1 mg/mL 

CS-IgG in the reaction mixture. Staining antibody: anti-mouse IgG-APC. Three STs, 

including recombinant ST6Gal1, Pasteurella multocida α(2,3) sialyltransferase M144D 

mutant (Pm2,3ST-M144D), Photobacterium damsel α(2,6) sialyltransferase (Pd2,6ST).  

 

 

Figure S11. Transferring IgG molecules onto human T cells. (A) LacNAc on Human 

PBMC was labeled by GF-Biotin on different days after activation. Labeled cells were 

stained with streptavidin-APC, anti-CD4-PE and anti-CD8-FITC fluorescent antibodies, 
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and analyzed by flow cytometry. (B) Human T cells were treated with FucT and GF-

mIgG, or GF-mIgG alone, or untreated. After 15 min of labeling, cells were stained with 

anti-mIgG-APC antibody and analyzed by flow cytometry. (C) Human T cells labeled 

with mIgG were stained with anti-mIgG-APC antibody and analyzed by flow cytometry 

at different time points after labeling. (D) Human T cells with or without mIgG labeling 

were cultured in T cell media and live cells in each group were counted on different days 

after labeling. Error bars, mean values ± SD. In all figures: ****P < 0.0001; one-way 

ANOVA followed by Tukey's multiple comparisons test. 

 
Figure S12. Phenotype of human T cells before and after mIgG labeling. (A) Human 

PBMC were activated by anti-CD3/CD28 antibody and expanded in vitro for 

approximately two weeks. The cells were stained with anti-CD3-APC, anti-CD45-FITC, 

anti-CD4-PE and anti-CD8-Pacific Blue antibodies, and analyzed by flow cytometry. (B) 

Activated human T cells were treated with GF-IgG and FucT. Labeled or unlabeled cells 

were stained with anti-CD4-PE/Cy7, anti-CD8-Pacific Blue, anti-CD25-PerCP/Cy5.5, 
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anti-CD45RO-Alexa Fluor 700, anti-CD44-FITC and anti-CD62L-PE antibodies and 

analyzed by flow cytometry. Naïve T cells were used as control.  CD4+ or CD8+ human T 

cells were gated as indicated in (A). 

 

 

Figure S13. Transferring IgG molecules onto NK-92MI cells. (A) NK-92MI cells were 

treated with GF-hIgG and FucT, or GF-hIgG alone, or untreated. The cells were stained 

with anti-hFc APC antibody and analyzed by flow cytometry. (B) NK-92MI cells were 

treated with GF-Herceptin and FucT, or GF-Herceptin alone, or untreated. The cells were 

stained with anti-hFc APC antibody and analyzed by flow cytometry. (C) NK-92MI cells 

with different modifications were then incubated with HER2-His6 protein and then 

stained with anti-His6-PE antibody for flow cytometry analysis. (D) NK-92MI cells 

conjugated with Herceptin were stained with anti-hFc APC antibody and analyzed by 

flow cytometry at different time points post labeling. (E) NK-92MI cells conjugated with 

or without Herceptin were co-cultured with BT474 at a ratio of 5:1 (Effector : Target) for 

1h. Granzyme B secretion in culture supernatant was analyzed by ELISA. Error bars, 

mean values ± SD. In all figures: ns, P >0.05; **P < 0.01; one-way ANOVA followed by 

Tukey's multiple comparisons test (A, B), two-way ANOVA followed by Sidak's multiple 
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comparisons test (E). 

 
Figure S14. Titration of GF-Herceptin concentrations in the enzymatic transfer. 

NK-92MI cells were treated with different concentrations of GF-Herceptin in the 

standard labeling condition. Labeled cells were directly stained with anti-hFc-APC 

antibody (A), or incubated with HER2-His6 and then stained with anti-His6-PE antibody 

(B) before flow cytometry analysis.  

 

 
Figure S15. Dual antibody labeling on NK-92MI cells. NK-92MI cells were treated 

with FucT and GF-Herceptin, and then treated with FucT and GF-α-EGFR. Labeled cells 

were stained with anti-hFc-APC antibody (A), or stained with anti-mIgG-APC antibody 

(B) before flow cytometry analysis.  



 25 

 

 

Figure S16. Proliferation and stability of Herceptin-NK-92MI conjugates with or 

without γ-irradiation. NK-92MI cells were received with or without 6 Gy gamma 

irradiations before the enzymatic reaction.  Labeled and unlabeled NK-92MI cells were 

cultured for another three days. (A) Viable cells were counted by flow cytometry at 

different time points after irradiation and labeling. (B) Herceptin labeled cells were 

cultured in cell media and then stained with anti-hFc APC antibody and analyzed by flow 

cytometry at different time points post labeling. Irradiated cells have a slower decay of 

Herceptin labeling. Error bars, mean values ± SD. In all figures: ns, P >0.05; ***P < 

0.001; ****P < 0.0001; two-way ANOVA followed by Sidak's multiple comparisons test. 
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Figure S17. Herceptin-NK-92MI conjugate shows enhanced antitumor activity in 

established lung metastasis mice model. (A) On day 0, NSG mice were injected 

intravenously with 0.5 million MDA-MB-435/HER2+/F-luc cells. Three days later, the 

animals were imaged in IVIS system to detect bioluminescent signals for the 

confirmation of tumor formation and then treated by i.v. injection of 5 million NK-92MI 

or Herceptin-NK-92MI cells. The control mice received HBSS. The animals were imaged 

again to see the efficacy of NK cell treatment on day 4. The animals were received one 

more treatment of 5 million NK-92MI or Herceptin-NK-92MI cells (i.v. injection) on day 

9 and day 17. The lungs of mice were collected on day 23 and imaged for 

bioluminescence analysis. (B) Two mice were imaged on day 1 and day3 to show a 3fold 
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increase in bioluminescence, which confirms that tumors are growing after inoculation. 

(C) Representative bioluminescent mice images on day 3, day 4 and lung images on day 

23 are shown. (D) The sizes of the tumors of the mice and mean values ± SD are shown; 

n = 10. In all figures, ns, P > 0.05; **P < 0.01; ***P < 0.001; unpaired t test. 

 

 
Figure S18. Enzymatic transfer of rIgG to OT-1 CD8+ T cells. (A-B) Spleenocytes 

from OT-1 mice were activated by the OVA peptides and in vitro expanded by adding 

IL2 or IL7/IL15. After expansion for four days, the cells were stained with anti-CD3-

FITC and anti-CD8-PE antibodies and analyzed by flow cytometry (A). The cells were 

also treated with GF-Al-Biotin and FucT, and then stained with streptavidin-APC and 

analyzed by flow cytometry to track the LacNAc level on different days after T cell 

activation (B). (C) OT-1 T cells were treated with GF-rIgG and FucT, or GF-rIgG alone, 

or untreated. Then the cells were stained with anti-rIgG-APC antibody and analyzed by 

flow cytometry. (D) OT-1+/-CD45.1+/- T cells were first labeled with CFSE and then 

treated with GF-rIgG and FucT, or untreated. After fucosylation, the cells were co-

cultured with OVA peptide pulsed WT B6 spleenocytes for 48h and T cell proliferation 

was analyzed by flow cytometry. Error bars, mean values ± SD. In all figures: ns, 

P >0.05; ****P < 0.0001; one-way ANOVA followed by Tukey's multiple comparisons 

test. 
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Figure S19. Transferring α-PD-L1 onto OT-1 CD8+ T cells. (A) OT-1 CD8+ T cells 

were treated with GF-α-PD-L1 and FucT, or GF-α-PD-L1 alone, or untreated. The cells 

were then stained with anti-rIgG-APC antibody and analyzed by flow cytometry. (B-C) 

CD8+ T cells from P14 mice were treated with GF-α-PD-L1 and FucT, or GF-α-PD-L1 

alone, or untreated. The cells were stained with anti-rIgG APC antibody (B), or incubated 

with PD-L1-hFc first and then stained with anti-hFc APC antibody (C). After staining, 

these cells were analyzed by flow cytometry. (D) OT-1 T cells were labeled under 

different concentrations of GF-α-PD-L1 with or without FucT. After labeling, cells were 

stained with anti-rIgG-APC antibody and analyzed by flow cytometry. (E) OT-1 T cells 

were treated with GF-α-PD-L1 and FucT, or GF-α-PD-L1 alone, or untreated. The cells 

were then stained with anti-rIgG-APC antibody and analyzed by flow cytometry at 

different time points after reaction. Error bars, mean values ± SD. In all figures: ns, 

P >0.05; ****P < 0.0001; one-way ANOVA followed by Tukey's multiple comparisons 

test (A, B, C, E), two-way ANOVA followed by Sidak's multiple comparisons test (D). 
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Figure S20. OT-1 T cells modified by α-PD-L1 exhibited enhanced cytokine 

secretion in the presence of target  cancer cells. (A) OT-1 T cells and P14 T cells were 

treated with GF-α-PD-L1 and FucT, or GF-rIgG and FucT, or untreated. T cells were 

then co-cultured with B16-OVA cells for 9 hours. TNF-α concentrations in culture 

supernatant were quantified via ELISA kit. (B-C) OT-1 T cells were treated under 

different concentrations of GF-α-PD-L1 with or without FucT, and then co-cultured with 

B16-OVA cells for 9 hours. TNF-α and IFN-γ in culture supernatant were analyzed by 

ELISA. Error bars, mean values ± SD. In all figures: ns, P >0.05; ***P < 0.001; ****P < 

0.0001; one-way ANOVA followed by Tukey's multiple comparisons test (A), two-way 

ANOVA followed by Sidak's multiple comparisons test (B,C). 

 
Figure S21. Transferring α-PD-L1 onto T cell surface increases the size of T-cell 

clustering and T cell proliferation. (A) OT-1 T cells and P14 T cells were treated with 

GF-α-PD-L1 and FucT, or GF-rIgG and FucT, or untreated. The cells were then co-

cultured with B16-OVA cells for 20 hours. T cell cluster during killing were imaged 

using microscope. Scale bar: 50 μm. (B) OT-1 T cells were stained with CFSE and 

treated with GF-α-PD-L1 and FucT, or GF-rIgG and FucT, or untreated. Then the cells 

were cultured with or without B16-OVA cells for 72 hours. Proliferations of OT-1 T cells 

were traced by CFSE dilution and flow cytometry analysis.  
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Spectra 

1. Spectra of GF-Al-Tz 

 
TLC  

 
ESI-TOF MS            
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1H NMR (400 MHz in D2O) 

 
13C NMR (125 MHz in D2O) 
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31P NMR (161 MHz in D2O) 

 
1H NMR (400 MHz, D2O): 8.20-8.14 (m, 2H), 7.98-7.85 (m, 4H), 7.06-7.01 (m, 2H), 7.76 (d, 1H, J = 12 Hz), 
5.67 (d, 1H, J = 6 Hz), 5.05 (t, 1H, J = 6 Hz), 4.80 (s, 1H), 4.57 (t, 1H, J = 6 Hz), 4.47-4.43 (m, 3H), 4.37 (t, 1H, 
J = 6 Hz), 4.46-4.43 (m, 3H), 4.38-4.38 (m, 1H), 4.20 (br m, 2H), 4.15 (br s, 1H), 4.09-4.05 (m, 4H), 3.86-3.82 
(m, 4H), 3.69-3.67 (m, 2H), 3.60-3.51 (m, 9H), 2.95 (s, 3H); 13C NMR (150 MHz, D2O): 166.07 (C=O), 161.37, 
160.31, 143.84, 136.59, 129.11, 129.04, 124.35, 114.88, 114.82, 98.12, 98.08, 73.13, 71.64, 70.54, 70.49, 69.93, 
69.64, 69.61, 69.30, 69.28, 69.16, 69.11, 69.03, 68.99, 68.44, 68.21, 66.82, 64.79, 64.76, 49.43, 22.78, 19.49 
19.62 (CH3); 31P NMR (161 MHz, D2O): -8.22 (d, J = 19 Hz), -10.25 (d, J = 19 Hz); HRMS (ESI-ve): Found 
987.2410 [M – H]–; C34H46N12O19P2 requires 987.2405 [M – H]–. 
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2. Spectra of GF-Az-Tz 

 
 
TLC 

 
ESI-TOF MS    
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1H NMR (600 MHz in D2O) 

 
13C NMR (125 MHz in D2O) 
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31P NMR (161 MHz in D2O) 

 
1H NMR (600 MHz, D2O): 8.20 (dd, 2H, J = 6 Hz, J = 18 Hz), 7.98 – 7.89 (m, 4H), 7.44 – 7.37 (m, 2H), 7.27 (d, 
1H, J = 6 Hz), 5.73 (dd, 2H, J = 6 Hz, J = 24 Hz), 4.83 – 4.78 (m, 1H), 4.63 – 4.44 (m, 7H), 4.33 – 4.10 (m, 6H), 
3.92 – 3.87 (m, 2H), 3.76 – 3.68 (m, 3H), 3.61 – 3.46 (m, 9H), 2.97 (s, 2H), 2.87 (br s, 1H), 2.64 (s, 2H), 2.56 – 
2.52 (m, 2H); 13C NMR (150 MHz, D2O): 173.85 (C=O), 166.70 (C=O), 163.21, 153.33, 142.59, 129.42, 127.44, 
127.39, 125.33, 98.57, 97.93, 88.48, 86.21, 83.08, 83.02, 73.10, 72.95, 71.57, 71.54, 70.51, 70.46, 69.85, 69.12, 
69.11, 69.06, 69.05, 69.03 (2 x C), 69.00, 68.39, 68.37, 68.00, 66.34, 62.44, 62.00, 49.67, 42.27, 38.24, 35.67, 
19.62 (CH3); 31P NMR (161 MHz, D2O): -8.31 (d, J = 21 Hz), -10.47 (d, J = 21 Hz); HRMS (ESI-ve): Found 
1116.3194 [M – H]–; C40H57N13O21P2 requires 1116.3185 [M – H]–. 
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