## Supporting Information: 3 figures and 3 tables across 6 pages

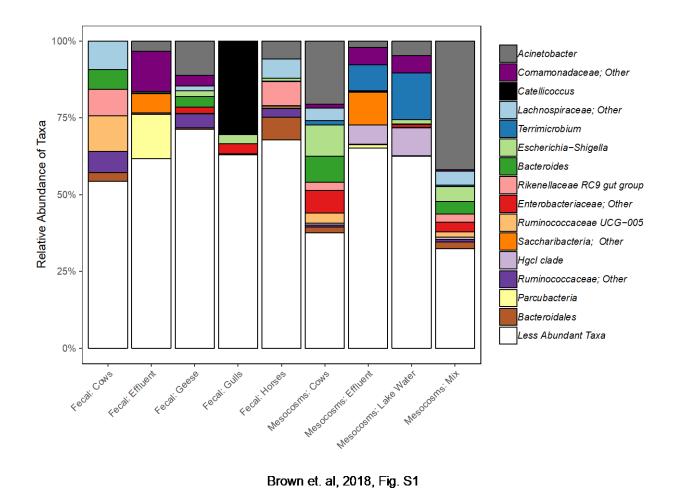
## Influence of Library Composition on SourceTracker Predictions for Community-Based Microbial Source Tracking

Clairessa M. Brown<sup>1</sup>, Prince P. Mathai<sup>1</sup>, Tina Loesekann<sup>1,2</sup>, Christopher Staley<sup>1,3</sup>, and Michael J. Sadowsky<sup>1,4\*</sup>

<sup>1</sup>BioTechnology Institute, University of Minnesota, St. Paul, MN

<sup>2</sup>Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN

<sup>3</sup>Department of Surgery, University of Minnesota, Minneapolis, MN


<sup>4</sup>Department of Soil, Water & Climate, and Department of Microbial and Plant Biology,

University of Minnesota, St. Paul, MN

## \*Correspondence:

Michael J. Sadowsky: 1479 Gortner Ave., 140 Gortner Labs, BioTechnology Institute, University of Minnesota. St. Paul, MN 55108, USA; Email: sadowsky@umn.edu

Keywords: DNA sequencing; operational taxonomic units; computational biology; community-based microbial source tracking; SourceTracker; predictions



**Figure S1**. **Stacked taxonomic bar charts.** The averaged relative abundances of the most abundant 15 taxonomic groups.

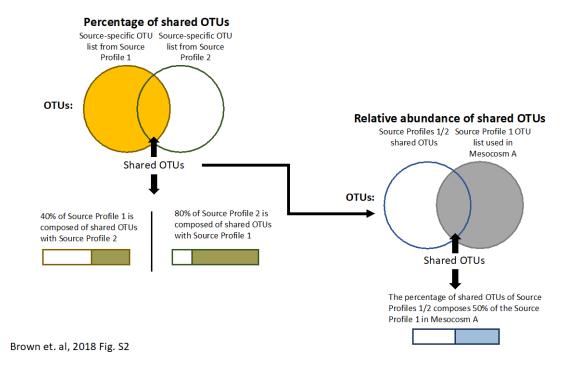



Figure S2. Depiction of the percentage of shared OTUs and relative abundance of shared

**OTUs.** The percentage of shared OTUs are the percentages of taxa in each source profile that are shared between two different source profiles. The relative abundance of shared OTUs is the fraction of the percentage of shared OTUs that compose a source profile used to predict a source in a mesocosm.

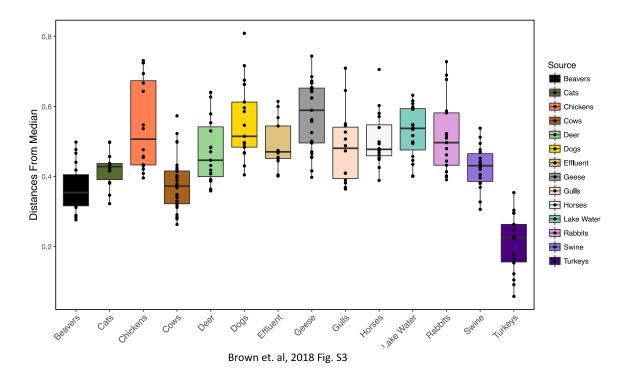



Figure S3. Boxplot depicting intra-group variances of source groups. Black dots are all samples within a group. A multivariate version of Levene's test for homogeneity of variances was performed on source group samples. Higher distances from the median indicate higher variation within the group. To have sample numbers that resembled other source groups, the cow source group was reduced to 20 samples instead of 32 for this analysis.

Table S1. Presence and Absence of SourceTracker predictions in all mesocosms

|                                                          |            | Source |       |          |               |       |  |  |  |  |
|----------------------------------------------------------|------------|--------|-------|----------|---------------|-------|--|--|--|--|
| FTL Configuration                                        | Mesocosm   | Cow    | Horse | Effluent | Lake<br>Water | Other |  |  |  |  |
|                                                          | Cow        | Cow +  |       | -        | +             | NA    |  |  |  |  |
| Only Known Sources with lake water as source             | Effluent   | -      | -     | +        | +             | NA    |  |  |  |  |
| with take water as source                                | Mix        | +      | +     | -        | +             | NA    |  |  |  |  |
|                                                          | Cow        | +      | +     | +        | NA            | NA    |  |  |  |  |
| Only Known Sources                                       | Effluent   | -      | -     | +        | NA            | NA    |  |  |  |  |
| with lake water as sink                                  | Mix        | +      | +     | +        | NA            | NA    |  |  |  |  |
|                                                          | Lake Water | -      | -     | +        | NA            | NA    |  |  |  |  |
| AN A . N A . C                                           | Cow        | +      | +     | -        | +             | +     |  |  |  |  |
| All Available Sources with lake water as source          | Effluent   | -      | -     | +        | +             | -     |  |  |  |  |
| with take water as source                                | Mix        | +      | +     | -        | +             | +     |  |  |  |  |
|                                                          | Cow        | +      | +     | +        | NA            | +     |  |  |  |  |
| All Available Sources                                    | Effluent   | -      | -     | +        | NA            | +     |  |  |  |  |
| with lake water as sink                                  | Mix        | +      | +     | +        | NA            | +     |  |  |  |  |
|                                                          | Lake Water | -      | -     | +        | NA            | +     |  |  |  |  |
| Missing Sources Sources Available: Cow & Lake Water      | Cow        | +      | NA    | NA       | +             | NA    |  |  |  |  |
|                                                          | Effluent   | -      | NA    | NA       | +             | NA    |  |  |  |  |
|                                                          | Mix        | +      | NA    | NA       | +             | NA    |  |  |  |  |
|                                                          | Cow        | NA     | NA    | -        | +             | NA    |  |  |  |  |
| Missing Sources Sources Available: Effluent & Lake Water | Effluent   | NA     | NA    | +        | +             | NA    |  |  |  |  |
| Sources Available. Effluent & Lake Water                 | Mix        | NA     | NA    | -        | +             | NA    |  |  |  |  |
| Mining Commen                                            | Cow        | NA     | +     | NA       | +             | NA    |  |  |  |  |
| Missing Sources Sources Available: Horse & Lake Water    | Effluent   | NA     | -     | NA       | +             | NA    |  |  |  |  |
| Sources Available. Horse & Lake Water                    | Mix        | NA     | +     | NA       | +             | NA    |  |  |  |  |
|                                                          | Cow        | +      | NA    | NA       | NA            | NA    |  |  |  |  |
| <b>Missing Sources</b>                                   | Effluent   | +      | NA    | NA       | NA            | NA    |  |  |  |  |
| Sources Available: Cow                                   | Mix        | +      | NA    | NA       | NA            | NA    |  |  |  |  |
|                                                          | Lake Water | +      | NA    | NA       | NA            | NA    |  |  |  |  |
|                                                          | Cow        | NA     | NA    | +        | NA            | NA    |  |  |  |  |
| Missing Sources                                          | Effluent   | NA     | NA    | +        | NA            | NA    |  |  |  |  |
| Sources Available: Effluent                              | Mix        | NA     | NA    | +        | NA            | NA    |  |  |  |  |
|                                                          | Lake Water | NA     | NA    | +        | NA            | NA    |  |  |  |  |
|                                                          | Cow        | NA     | +     | NA       | NA            | NA    |  |  |  |  |
| <b>Missing Sources</b>                                   | Effluent   | NA     | +     | NA       | NA            | NA    |  |  |  |  |
| Sources Available: Horse                                 | Mix        | NA     | +     | NA       | NA            | NA    |  |  |  |  |
|                                                          | Lake Water | NA     | +     | NA       | NA            | NA    |  |  |  |  |

Unknown source not included in table. Results from both experiments represented in this table. Presence indicated by "+" and absence indicated by "-". NA means that the source was not available for SourceTracker to use. Sources were considered present when the SourceTracker predictions were above 1% and the RSD value was below 100%.

Table S2. RSD values associated with SourceTracker predictions

| FTL Configuration       | Mesocosm   | Source   | Average<br>SourceTracker<br>Prediction (%) | RSD (%) |  |
|-------------------------|------------|----------|--------------------------------------------|---------|--|
| Only Known Sources      |            | Cows     | 48                                         | 22      |  |
|                         |            | Effluent | 18                                         | 26      |  |
|                         | Cow        | Horses   | 20                                         | 42      |  |
|                         |            | Unknown  | 14                                         | 22      |  |
|                         | TI CO      | Effluent | 41                                         | 10      |  |
|                         | Effluent   | Unknown  | 59                                         | 7       |  |
|                         |            | Cows     | 22                                         | 18      |  |
| with lake water as sink | )          | Effluent | 4                                          | 18      |  |
|                         | Mix        | Horses   | 61                                         | 8       |  |
|                         |            | Unknown  | 13                                         | 17      |  |
|                         |            | Cows     | 4                                          | 150     |  |
|                         | Y 1 XX     | Effluent | 42                                         | 16      |  |
|                         | Lake Water | Horses   | 8                                          | 146     |  |
|                         |            | Unknown  | 46                                         | 26      |  |
| All Available Sources   |            | Cows     | 40                                         | 30      |  |
|                         |            | Effluent | 13                                         | 31      |  |
|                         |            | Geese    | 23                                         | 63      |  |
|                         | Cow        | Gulls    | 9                                          | 65      |  |
|                         |            | Horses   | 2                                          | 76      |  |
|                         |            | Unknown  | 13                                         | 19      |  |
|                         |            | Effluent | 32                                         | 15      |  |
|                         | Ti ca      | Geese    | 4                                          | 46      |  |
|                         | Effluent   | Gulls    | 3                                          | 60      |  |
|                         |            | Unknown  | 61                                         | 8       |  |
| with lake water as sink |            | Cows     | 19                                         | 21      |  |
|                         |            | Effluent | 2                                          | 17      |  |
|                         | Mix        | Geese    | 31                                         | 34      |  |
|                         |            | Horses   | 37                                         | 16      |  |
|                         |            | Unknown  | 10                                         | 20      |  |
|                         |            | Dogs     | 1                                          | 149     |  |
|                         |            | Effluent | 32                                         | 28      |  |
|                         | Lake Water | Geese    | 14                                         | 129     |  |
|                         |            | Gulls    | 2                                          | 90      |  |
|                         |            | Unknown  | 50                                         | 33      |  |

The relative standard deviation (RSD) was calculated for all sources in all mesocosms to assess confidence in the SourceTracker predictions.

Table S3. Significance values from pairwise comparisons of intra-group variances

|                   | Beaver | Cat | Chicken | Cow | Deer | Dog | Effluent | Goose | Gull | Horse | Rabbit | Swine | Turkey | Cow Mesocosm | Effluent Mesocosm | Mix Mesocosm | Lake Water |
|-------------------|--------|-----|---------|-----|------|-----|----------|-------|------|-------|--------|-------|--------|--------------|-------------------|--------------|------------|
| Beaver            |        | *   | **      |     | **   | **  | **       | **    | **   | **    | **     | **    | **     | **           | **                | *            | **         |
| Cat               |        |     | **      |     |      | **  | **       | **    |      | **    | **     |       | **     | **           | **                |              | **         |
| Chicken           |        |     |         | **  |      |     |          |       |      |       |        | **    | **     |              |                   | **           |            |
| Cow               |        |     |         |     | **   | **  | **       | **    | **   | **    | **     | *     | **     | **           | **                | *            | **         |
| Deer              |        |     |         |     |      | *   |          | **    |      |       |        |       | **     |              |                   |              |            |
| Dog               |        |     |         |     |      |     |          |       |      |       |        | **    | **     |              |                   | **           |            |
| Effluent          |        |     |         |     |      |     |          | *     |      |       |        | *     | **     |              |                   | *            |            |
| Goose             |        |     |         |     |      |     |          |       | *    | *     |        | **    | **     |              |                   | **           |            |
| Gull              |        |     |         |     |      |     |          |       |      |       |        |       | **     |              |                   |              |            |
| Horse             |        |     |         |     |      |     |          |       |      |       |        | **    | **     |              |                   | *            |            |
| Rabbit            |        |     |         |     |      |     |          |       |      |       |        | **    | **     |              |                   | **           |            |
| Swine             |        |     |         |     |      |     |          |       |      |       |        |       | **     | **           | **                |              | **         |
| Turkey            |        |     |         |     |      |     |          |       |      |       |        |       |        | **           | **                | **           | **         |
| Cow Mesocosm      |        |     |         |     |      |     |          |       |      |       |        |       |        |              |                   | **           |            |
| Effluent Mesocosm |        |     |         |     |      |     |          |       |      |       |        |       |        |              |                   | **           |            |
| Mix Mesocosm      |        |     |         |     |      |     |          |       |      |       |        |       |        |              |                   |              | **         |
| Lake Water        |        |     |         |     |      |     |          |       |      |       |        |       |        |              |                   |              |            |

Different asterisks symbolize different ranges of p-values generated from permutation test of the betadisper function. \* signals a p-value below 0.05 but above 0.01. \*\* signals a p-value below 0.01 but above 0.001.