Supplemental Information

Superhard Tungsten Diboride-Based Solid Solutions

Lisa E. Pangilinan¹, Christopher L. Turner¹, Georgiy Akopov¹, Mackenzie Anderson¹, Reza Mohammadi², and Richard B. Kaner^{1,3,4}*

¹Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA ²Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA ³Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA ⁴California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA

*Corresponding author: kaner@chem.ucla.edu

(a)

S2

Figure S1. Powder XRD patterns of: (a) $W_{1-x}Nb_xB_2$ and (b) $W_{1-x}Ta_xB_2$, where x = 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30, 0.40 and 0.50. For (a), the solubility limit of Nb in WB₂ is < 8 at. % Nb. At increasing concentration of Nb, the WB₂ phase decreases and niobium diboride (NbB₂) increases. 50 at. % Nb contains a combination of WB₄ and NbB₂. For (b), the solubility limit of Ta in WB₂ is < 10 at. % Ta. Above the solubility limit, the WB₂ phase decreases and tantalum diboride (TaB₂) increases. 50 at. % Ta contains both WB₄ and TaB₂. The asterisk (*) denotes visible WB₄ peaks at low concentrations of Nb and Ta substitution.

Figure S2. Powder XRD patterns of: $W_{1-x}Sc_xB_2$, where x = 0.01, 0.05, 0.10, 0.20, 0.35, and 0.50. Above 1 at. % Sc, a secondary phase, ScB₂ (JCPDS 03-065-6646) increases with increasing scandium substitution.

Figure S3. Powder XRD patterns of: $W_{1-x}Sc_xB_2$, where x = 0.01, 0.02 and 0.04 (top to bottom) and M : B = 1 : 2.1. The solubility limit of Sc in WB₂ is < 4 at. % Sc. A minimum amount of 1 at. % Sc was used to stabilize phase-pure WB₂ by PXRD analysis.

Figure S4. Survey XPS spectrum of WB₂ and W_{0.99}Sc_{0.01}B₂ polished samples having nominal compositions of M : B = 1 : 2.1. W 4f, Sc 2p, and B 1s electron regions are labeled.

Figure S5. Survey XPS spectrum of (a) $W_{0.94}Nb_{0.06}B_2$ and (b) $W_{0.92}Ta_{0.08}B_2$ polished samples having nominal compositions of M : B = 1 : 2.1. Electron regions of interest are labeled. Binding energy regions for the Nb 3d peaks and Ta 4f peaks are included as inset graphs in (a) and (b), respectively.

Figure S6. Vickers hardness measurements at applied loads ranging from 0.49 N to 4.9 N for 0 at. % and 1 at. % Sc in WB₂. Hardness values for both samples are within error at each load, indicating that the presence of WB₄ has minimal effect on overall hardness.

Figure S7. Thermal gravimetric analysis data for WB₂ and the hardest WB₂ solid solutions with Ta and Nb. These data indicate that the samples are thermally stable in air up to a temperature of ~520 °C, ~570 °C and ~550 °C for WB₂, W_{0.92}Ta_{0.08}B₂, and W_{0.94}Nb_{0.06}B₂, respectively.