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1 Computational details

1.1 Continuum remover potential

Recent advances in ab initio electronic structure theories have established successful computa-
tional methods for studying the chemical reactions induced by the resonantly captured LEE.! Of
particular note is the recent introduction of a L? stabilization method known as the real-valued
continuum remover method.? The working principle underlying this method can be understood as
follows. The NIRS wavefunction is a scattering solution of negative-ion Hamiltonian which can
be viewed as a bound state coupled and interacting with the autoionization continuum. Adding a
real-valued continuum remover potential, which does not support the autoionization continuum,
to the non-interacting asymptote of the negative ion Hamiltonian removes the outgoing part of
the continuum wavefunction contributing to the NIRS wavefunctions, which are thereby converted
into a bound state wavefunction localized in the interaction region.? In other words, the NIRS
wavefunction is obtained as a bound eigenstate of the continuum remover potential (W) added

modified negative ion Hamiltonian.
(ﬁelec + WACR) |\IJCR> — ECR |\I]OR> (1)

Hence, this method enables us to study the chemical reactions induced by the resonantly captured
LEE in terms of a well defined potential energy surface corresponding to the negative ion reso-
nance state (NIRS). This method has also been successfully used for removing the non-physical
resonances of the complex absorbing potential based analytically continued molecular Hamilto-
nian.’

When a large basis set which span the entire interaction region is used, the W% is an optimally
projected wavefunction of the NIRS inside the interaction region, i.e.,

<\IICR|\IINIRS> -1 (2)

inside interaction region



Since the energy position of the NIRS is decided by the many-electron effects inside the inter-
action region of the Hamiltonian, the electronic energy corresponding to the optimally projected

NIRS is a very good approximation to the energy of the NIRS.
ECR ~ ENIRS' (3)

For our numerical calculations, we have used a box-shaped quadratic-potential of the form

All electrons

WCR = A Z (sz + Wyi + WZI)

elec
=1

Wy = x*(1 — 0.5[tanh(x + x¢) — tanh(x — x4))) (4)

as the one-electron continuum remover potential, where x; is a point in the non-interacting asymp-
tote at which the potential is turned-on. Since the potential W is taken to be zero inside the
many-electron interaction region of the physical Hamiltonian, the £°% is not directly perturbed by
the potential W, 1.e.,

(TR W W) = 0 (5)

One may note that, in numerical calculations, the turn-on point for the potential, y;, is taken
far enough from the geometrical center of the molecule such that the condition given in Eq. 5 is
achieved. However, in practical calculations using finite basis set, the condition given in Eq. 5 is
difficult to be satisfied, even for large values of y;, if any Rydberg type orbitals or dipole stabilized
orbitals contribute to the NIRS. Hence, for such cases, there can be an error in the energy position
due to the continuum remover potential. Since in our case, the NIRS are mixed significantly with
dipole orbitals, in order to avoid CRCAP-induced artificial perturbation, we took the turn-on point
of the potential to be far away from the interaction region ( 10 au away from the peripheral atom)
where the iso-density value of the dipole orbitals fell below 10~ 4. This choice of the potential helps
us to minimize the artificial perturbation due to the continuum remover potential. The perturbation

is further minimized in the computed energy by subtracting the perturbation energy due to the



continuum remover potential.

ECR — ECR . <\I/CR|W|\IJCR> (6)

corrected

1.2 Ab initio methods

The continuum remover potential method has been used successfully within the framework of ab
initio electronic structure methods for computing the LEE induced reaction paths.*’ The non-
catalyzed and the LEE catalyzed reaction paths are computed at the second order perturbation
level using the closed shell and restricted open-shell Mgller-Plesset perturbation methods, respec-
tively.® In order to restrict the repair to the least-motion path, a C; molecular-symmetry is enforced
in the reaction path. The electron-attached and electron-ionized equation-of-motion coupled clus-
ter singles and doubles (EA-EOMCCSD and IP-EOMCCSD) methods® are used respectively for
computing the kinetic energy of the LEE corresponding to the first and the second resonant attach-
ments. An in-house modified Gamess-US quantum chemical code is used for all the molecular

calculations.

1.3 Basis sets

The basis set for the quantum chemical computation is selected as follows. Atom centered valence
triple zeta contracted [5s3p] basis set derived from (10s6p) primitive basis sets of Huzinaga ' is
selected as the one-electron parent basis set. This parent basis set for the C atoms and the O atoms
of the uracil dimer are further augmented with a diffuse set of even-tempered primitive Gaussian
functions. This augmented basis set is used as the atomic basis set for the molecular calculation.
The exponents of the even-tempered Gaussian functions are calculated using

s d s (1/Ns/p/d) s/p/d
g/t = (¢ el (7
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where N is the total number of the even-tempered basis functions and ( is the orbital exponent of

the most diffused function in the parent basis set.

Table 1: Even-tempered primitive Gaussian basis set
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Oxygen Carbon
Type | Exponent || Type | Exponent
0.0808911 0.0339356
0.0255800 0.0085242
0.0080891 S 0.0021412
0.0025580 0.0005378
s 0.0008089 0.0001351
0.0002558 0.0091060
0.0000809 p | 0.0009106
0.0000256 0.0000911
0.0261666
0.0041471
p | 0.0006573
0.0001042
0.0000165
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