Supporting information

Amorphous Iron and Cobalt Based Phosphate Nanosheets Supported on Ni Foam as Superior Catalysts for Hydrogen Evolution Reaction

Cong Li, Xuanhao Mei, Frank Leung-Yuk Lam,* and Xijun Hu*

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong * Corresponding Author. E-mail: kefrank@ust.hk; kexhu@ust.hk

Table of Contents

- 1. Experimental Procedures
 - 1.1 Synthesis of Fe_{1-2x/3}Co_xPO₄ nanosheets supported on Ni foam
 - 1.2 Materials characterization
 - 1.3 Electrochemical measurements
- 2. Supplementary Results

1. Experimental Procedures

1.1 Synthesis of Fe_{1-2x/3}Co_xPO₄ nanosheets supported on Ni foam

One piece of Ni foam was washed with ethanol, diluted HCI and deionized (DI) water several times before use. A colloidal chemical method was used for the catalyst synthesis. Typically, 1 mmol of $Fe(NO_3)_3 \cdot 9H_2O$ and 1 mmol of $Co(NO_3)_2 \cdot 6H_2O$ were dissolved in 10 mL OM under ultrasonication for 1 h. In the meantime, 3 mmol Na₂HPO₄ was dissolved in 10 mL DI water under ultrasonication for 1 h. Then they were mixed and transferred into a 100 mL Teflon-lined autoclave with a piece of Ni foam partially immersed in it. The autoclave was sealed and heated in an oven at 150 °C for 24 h. The sample was then carefully washed with cyclohexane, ethanol and DI water several times. Finally, the sample was put into a furnace under the protection of Ar gas and heated at 200 °C to remove the remnant organic reagent.

1.2 Materials characterization

SEM measurements were performed on a JEOL-6700F scanning electron microscope with an accelerating voltage of 10 kV. XRD patterns were obtained on a PW1830 (Philips) Powder X-ray diffractometer fitted with Cu Kα radiation. XPS measurements were carried out on a Physical Electronics 5600 multi-technique system with an exciting source of Al with the working power of 150 W. TEM measurements were performed on a JEM 2010F (JEOL) Transmission Electron Microscope with an acceleration voltage of 200 kV. The FT-IR experiment was carried out on a Vertex 70 Hyperion 1000 FTIR spectrometer in a KBr pellet, scanning from 4000 to 400 cm⁻¹. The N₂ adsorption-desorption measurements were conducted using an autosorb-1 surface area analyzer. And the specific surface area of samples were calculated using Brunauer-Emmett-Teller (BET) method.

1.3 Electrochemical measurements

A CHI 660D electrochemical analyzer (CH Instruments, Inc. USA) was utilized for all the electrochemical measurements. A typical three-electrode system including $Fe_{1-2x/3}Co_xPO_4/Ni$ foam directly as the working electrode, a carbon rod as the counter electrode and a saturated calomel electrode (SCE) as the reference electrode was constructed for measurements. All potentials applied were calibrated to RHE following the equation: E(RHE) = E(SCE) + 1.068 V. All linear-sweep voltammetry (LSV) curves were obtained in a scan rate of 5 mV s⁻¹ with 95% iR compensation. The durability test was conducted at a constant potential of -100 mV (vs. RHE) for over 20 h. EIS measurements were performed at a potential of -60 mV (vs. RHE) with the frequency range from 10⁵ to 10⁻¹ Hz. The electrochemical active surface area (ECSA) measurements were completed by a cyclic voltammetry (CV) technique with the potential scanning range within open circuit potential (OCP) \pm 0.05 V at different scan rates.

2. Supplementary Results

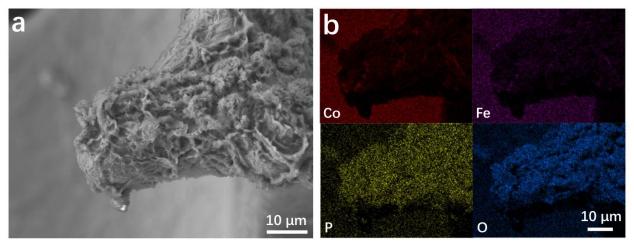
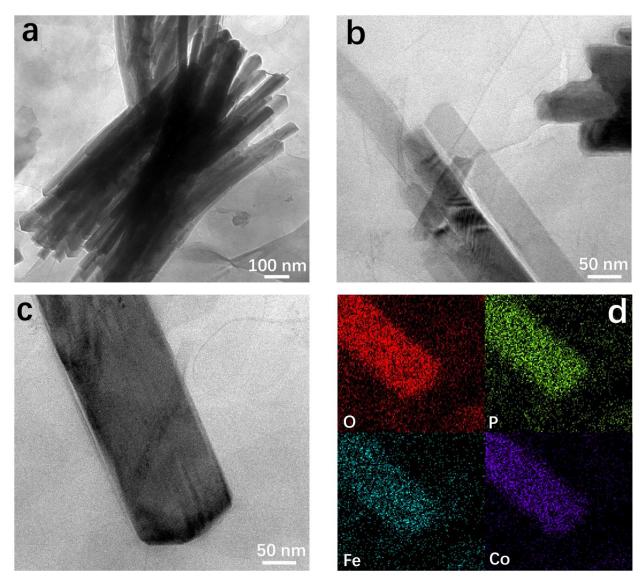



Figure S1. (a) SEM images of Fe_{1-2x/3}Co_xPO₄ on Ni foam. (b) The elemental mapping of the Co, Fe, P and O elements of the catalyst.

Figure S2. Transmission electron microscopy (TEM) images of (a) a bundle of $Fe_{1-2x/3}Co_xPO_4$ nanorods and (b) single $Fe_{1-2x/3}Co_xPO_4$ nanorod collected from the reaction solution. (c-d) TEM elemental mapping of a single nanoraod.

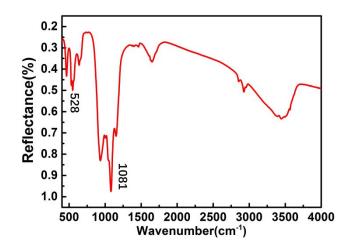


Figure S3. FTIR spectra of as-grown catalyst, confirming the existence of PO₄³⁻.

Table S1. Comparison of HER efficiency of $Fe_{1-2x/3}Co_xPO_4$ nanosheets on Ni foam with some representative catalysts reported recently.

Catalysts	Substrate	Electrolyte	η ₁₀ (mV)	Tafel slope (mV/dec)	Reference
Fe _{0.72} Co _{0.42} PO ₄ nanosheets	Ni foam	1.0 M KOH	77	80.7	This work
Co ₂ P nanorods	Ti foil	1.0 M KOH	152	N/A	[1]
Porous Co-based film	Au film	1.0 M KOH	~375	N/A	[2]
WC	Ni foam	0.1 M KOH	220	N/A	[3]
$Co(S_xSe_{1-x})_2$ nanoparticles	Carbon fiber	1.0 M KOH	122	85.7	[4]
MoS ₂ -Ni ₃ S ₂ Heteronanorods	Ni foam	1.0 M KOH	98	61	[5]
CdS-MoO ₃ /Ni ₃ S ₂	Ni foam	1.0 M KOH	121	110	[6]
NiSe/Ni ₃ Se ₂	Ni foam	1.0 M KOH	92	101.2	[7]
N-doped C dots / Ni ₃ S ₂	Ni foam	1.0 M KOH	187 @ 20 mA cm ⁻²	127	[8]
NiCo ₂ S ₄ nanoflakes	Ni foam	1.0 M KOH	169	97.1	[9]
NiSe	Ni foam	1.0 M NaOH	177	58.2	[10]

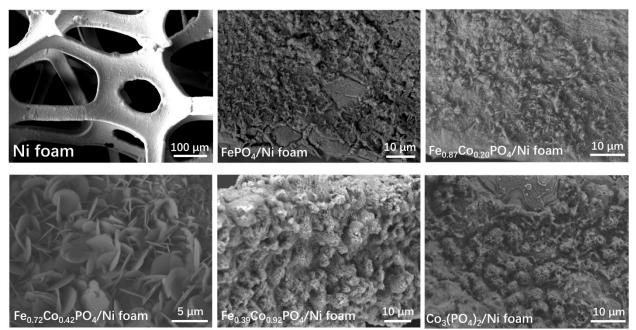
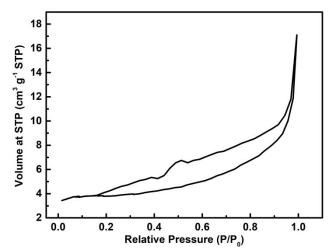


Figure S4. SEM images of Ni foam and various catalysts on Ni foam.



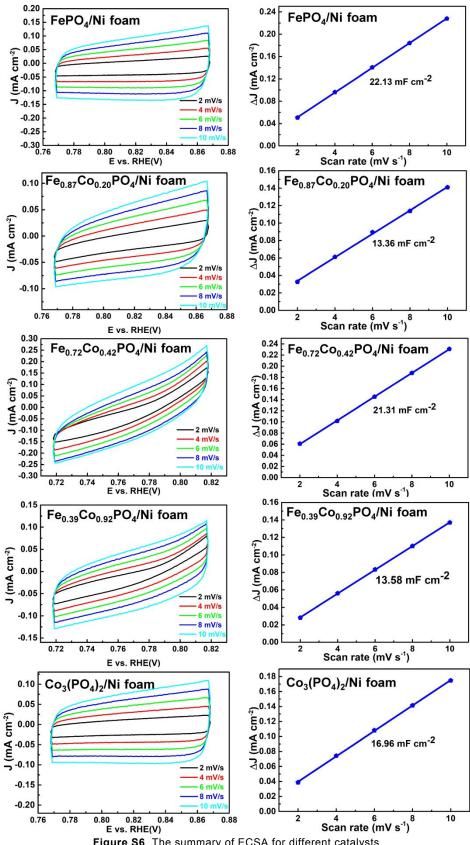

Figure S5. Typical N_2 adsorption desorption curve of $Fe_{0.72}Co_{0.42}PO_4$ nanosheets/Ni foam.

 Table S2. A summary of BET surface areas of different catalysts on Ni foam.

Catalysts	BET surface area (m ² g ⁻¹)	
FePO ₄	1.989	
Fe_Co_PO_4	1.961	
Fe_Co_PO_4	11.551	
Fe _{0.39} Co _{0.92} PO ₄	1.237	
Co ₃ (PO ₄) ₂	0.436	

Table S3. A summary of total resistance of the cell (R_s) extracted from the Electrical Equivalent circuit model.

Catalysts	R _s (Ohm)		
FePO ₄	2.22		
Fe_Co_PO_4	2.01		
Fe_Co_PO_4	1.68		
Fe_Co_PO_4	1.08		
Co ₃ (PO ₄₂)	1.90		
Ni foam	1.73		

Reference

1. Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Humphrey, M. G.; Zhang, C., Cobalt Phosphide Nanorods as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. *Nano Energy* **2014**, *9*, 373-382.

2. Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M., Porous Cobalt-Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. *Adv. Mater.* **2015**, *27*, 3175-3180.

3. Zhu, J.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T.-P., A General Salt-Templating Method To Fabricate Vertically Aligned Graphitic Carbon Nanosheets and Their Metal Carbide Hybrids for Superior Lithium Ion Batteries and Water Splitting. *J. Am. Chem. Soc.* **2015**, *137*, 5480-5485.

4. Fang, L.; Li, W.; Guan, Y.; Feng, Y.; Zhang, H.; Wang, S.; Wang, Y., Tuning Unique Peapod-Like Co(S_xSe_{1-x})₂ Nanoparticles for Efficient Overall Water Splitting. *Adv. Funct. Mater.* **2017**, *27*, 1701008.

5. Yang, Y.; Zhang, K.; Lin, H.; Li, X.; Chan, H. C.; Yang, L.; Gao, Q., MoS₂–Ni₃S₂ Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. *ACS Catal.* **2017**, *7*, 2357-2366.

6. Qu, S.; Huang, J.; Yu, J.; Chen, G.; Hu, W.; Yin, M.; Zhang, R.; Chu, S.; Li, C., Ni₃S₂ Nanosheet Flowers Decorated with CdS Quantum Dots as a Highly Active Electrocatalysis Electrode for Synergistic Water Splitting. *ACS Appl. Mater. Interfaces* **2017**, *9*, 29660-29668.

7. Zhang, F.; Pei, Y.; Ge, Y.; Chu, H.; Craig, S.; Dong, P.; Cao, J.; Ajayan, P. M.; Ye, M.; Shen, J., Controlled Synthesis of Eutectic NiSe/Ni₃Se₂ Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting. *Adv. Mater. Interfaces* **2018**, *5*, 1701507.

8. Rao, Y.; Ning, H.; Ma, X.; Liu, Y.; Wang, Y.; Liu, H.; Liu, J.; Zhao, Q.; Wu, M., Template-free Synthesis of Coral-like Nitrogen-doped Carbon Dots/Ni₃S₂/Ni Foam Composites as Highly Efficient Electrodes for Water Splitting. *Carbon* **2018**, *129*, 335-341.

9. Yu, J.; Lv, C.; Zhao, L.; Zhang, L.; Wang, Z.; Liu, Q., Reverse Microemulsion-Assisted Synthesis of NiCo₂S₄ Nanoflakes Supported on Nickel Foam for Electrochemical Overall Water Splitting. *Adv. Mater. Interfaces* **2018**, *5*, 1701396.

10. Wu, H.; Lu, X.; Zheng, G.; Ho, G. W., Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis. *Adv. Energy Mater.* **2018**, *8*, 1702704.