Supporting Information for:

Chemical and Electrochemical Properties of [Cp*Rh] Complexes Supported by a Hybrid Phosphine-Pyridine Ligand

Julie A. Hopkins, Davide Lionetti, Victor W. Day, and James D. Blakemore *
Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
*E-mail: blakemore@ku.edu (J.D.B.)

Figure S1. Numbering scheme for complex 1-Cl S3
Figure S2. Numbering scheme for complex 2 S3
Figure S3. Numbering scheme for complex 3 S4
NMR Spectra S5
Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Cl S5
Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 - C l}$ S6
Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 - C l}$ S7
Figure S7. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{1 - C l}$ S8
Figure S8. COSY NMR spectrum of 1-Cl S9
Figure S9. HMBC NMR spectrum of $\mathbf{1 - C l}$ S10
Figure S10. HSQC NMR spectrum of 1-Cl S11
Figure S11. NOESY NMR spectrum of 1-Cl S12
Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 S13
Figure S13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 S14
Figure S14. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 S15
Figure S15. COSY NMR spectrum of 2 S16
Figure S16. HMBC NMR spectrum of 2 S17
Figure S17. HSQC NMR spectrum of $\mathbf{2}$ S18
Figure S18. NOESY NMR spectrum of 2 S19
Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ S20
Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ S21
Figure S21. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ S22
Figure S22. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{3}$ S23
Figure S23. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3}$ S24
Figure S24. COSY NMR spectrum of $\mathbf{3}$ S25
Figure S25. HMBC NMR spectrum of $\mathbf{3}$ S26
Figure S26. HSQC NMR spectrum of 3 S27
Figure S27. NOESY NMR spectrum of $\mathbf{3}$ S28
Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - \mathrm { NCCH } _ { 3 }}$ S29
Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}-\mathrm{NCCH}_{3}$ S30
Figure S30. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 -} \mathrm{NCCH}_{3}$ S31
Figure S31. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{1 -} \mathrm{NCCH}_{3}$ S32
Figure S32. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum chemical reduction of $\mathbf{3}$ S33
Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum bulk electrolysis of $\mathbf{1 - \mathbf { N C C H } _ { 3 }}$ with acid S34
Figure S34. ${ }^{1}$ H NMR spectrum (bulk electrolysis of 1- Cl with acid S35
Figure S35. ${ }^{1}$ H NMR spectrum chemical reduction of $\mathbf{3}$ with acid S36
Figure S36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum chemical reduction of $\mathbf{3}$ with acid S37
UV-Vis Spectra S38
Figure S37. UV-Vis spectra of 1-Cl, 2, and $\mathbf{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ S38
Figure S38. UV-Vis spectra of bulk electrolysis aliquot of $\mathbf{3}$ S39
Figure S39. UV-Vis spectra of bulk electrolysis aliquot of $\mathbf{1}-\mathbf{N C C H}_{3} \mathbf{w} /$ acid S40
Electrochemistry S41
Figure S40. CV data for 1-Cl S41
Figure S41. Scan rate dependence for 1-Cl S42
Figure S42. Scan rate dependence for 1-Cl S43
Figure S43. Cyclic voltammetry of $\mathbf{1}-\mathrm{NCCH}_{3}$ S44
Figure S44. Scan rate dependence for $\mathbf{1 - \mathrm { NCCH } _ { 3 }}$ S45
Figure S45. CV data for $\mathbf{2}$ S46
Figure S46. Scan rate dependence for 2. S47
Figure S47. CV of titration of $\mathbf{1 - N C C H} 3$ with $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right][\mathrm{Cl}]$ S48
Figure S48. CV of titration of $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ with $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right][\mathrm{Cl}]$ S49
Figure S49. Linear regression of i_{pa} vs. concentration of [$\left.{ }^{\mathrm{n}} \mathrm{Bu} \mathrm{u}_{4} \mathrm{~N}\right][\mathrm{Cl}]$ S50
Figure S50. CV of chloride oxidation region of 2 S51
Figure S51. CV of chloride oxidation region of $\mathbf{1}-\mathrm{NCCH}_{3}$ S52
Figure S52. CV data for 3 S53
Figure S53. CV data for $\mathbf{3}$ at increased scan rates S54
Figure S54. CV data for PQN S55
Figure S55. CV data for $\mathbf{1 - C l}$ with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+} / \mathrm{Et}_{3} \mathrm{~N}$ S56
Figure S56. CV of electrode background following CV of 1 with acid S57
Figure S57. Bulk electrolysis data blank [$\left.\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Br}$ S58
Figure S58. Bulk electrolysis data for 3. S59
Figure S59. Bulk electrolysis data for $\mathbf{1}-\mathbf{N C C H}_{3}$ with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$OTf S60
Figure S60. Bulk electrolysis data for $\mathbf{1 - \mathbf { C l }}$ with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$OTf S61
Crystallographic Information S62
Refinement Details S62
Table S1. Crystal and Refinement Data S63
Table S2. Selected Bond Lengths S64
Figure S61. Full solid-state structure of 1-Cl. S65
Figure S62. Full solid-state structure of 2. S66
Figure S63. Full solid-state structure of 3. S67
References S68

Figure S1. Numbering scheme for assignment of NMR data for complex 1-Cl (* in ring denotes phenyl group closest to Cp * ring).

Figure S2. Numbering scheme for assignment of NMR data for complex 2.

Figure S3. Numbering scheme for assignment of NMR data for complex $\mathbf{3}$ (* in ring denotes phenyl group closest to Cp * ring).

NMR Spectra

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1 - C l}$.

Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1 - C l}$.

Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of 1-Cl.

Figure S7. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{1 - C l}$.

Figure S8. COSY NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of 1-Cl.

Figure S9. HMBC NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of 1-Cl.

Figure S10. HSQC NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of 1-Cl.

Figure S11. NOESY NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1 - C l}$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{2}$.

Figure S13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{2}$.

Figure S14. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{2}$.

Figure $\mathbf{S 1 5}$. COSY NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{2}$.

Figure S16. HMBC NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{2}$.

Figure $\mathbf{S 1 7}$. HSQC NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{2}$.

Figure S18. NOESY NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{2}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{3}$.

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{3}$.

Figure S21. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{3}$.

Figure S22. ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of 3. ${ }^{2} J_{\mathrm{P}, \mathrm{H}}$ is not observed, while ${ }^{1} J_{\mathrm{P}, \mathrm{Rh}}$ of 158 Hz is observed.

Figure S23. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{3}$.

Figure S24. COSY NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{3}$.

Figure S25. HMBC NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{3}$.

Figure S26. HSQC NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{3}$.

Figure S27. NOESY NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{3}$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1}-\mathrm{NCCH}_{3}$.

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1}-\mathbf{N C C H}_{3}$.

Figure S30. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1}-\mathbf{N C C H}_{3}$.

0ε "6く-

Figure S31. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1 - \mathbf { N C C H } _ { \mathbf { 3 } }}$.

Figure S32. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of aliquot from chemical reduction of 3 with decamethylcobalacene.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of aliquot from bulk electrolysis of $\mathbf{1 -}$ $\mathbf{N C C H}_{3}$ with 10 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of aliquot from bulk electrolysis of $\mathbf{1 -} \mathbf{C l}$ with 10 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of aliquot from chemical reduction of $\mathbf{3}$ with 1 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$and decamethylcobaltacene.

Figure S36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of aliquot from chemical reduction of $\mathbf{3}$ with 1 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$and decamethylcobaltacene.

Figure S37. Electronic absorption spectra of 1-Cl (upper panel), 2 (middle panel), and 3 (lower panel) in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S38. Electronic absorption spectrum of aliquot $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ from bulk electrolysis of $\mathbf{3}$.

Figure S39. Electronic absorption spectrum of aliquot $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ from bulk electrolysis of for $\mathbf{1}-\mathrm{NCCH}_{3}$ with 10 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$.

Electrochemistry

Figure S40. Cyclic voltammetry of $\mathbf{1 - C l}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$

Figure S41. Left: cyclic voltammetry of first reduction event $\mathbf{1 - C l}$ at varying scan rate in $\mathrm{CH}_{3} \mathrm{CN}\left(0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right)$. Right: linear dependence of peak cathodic current on square root of scan rate with the y-intercept set to 0 .

Figure S42. Left: cyclic voltammetry of second reduction event $\mathbf{1 - C l}$ at varying scan rate in $\mathrm{CH}_{3} \mathrm{CN}\left(0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right)$. Right: linear dependence of peak cathodic current on square root of scan rate.

Figure S43. Cyclic voltammetry of $\mathbf{1 -} \mathbf{N C C H}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$.

Figure S44. Left: cyclic voltammetry of second reduction event $\mathbf{1 - \mathbf { N C C H } _ { 3 }}$ at varying scan rate in $\mathrm{CH}_{3} \mathrm{CN}\left(0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right)$. Right: linear dependence of peak cathodic current on square root of scan rate.

Figure S45. Cyclic voltammetry of $\mathbf{2}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$

Figure S46. Left: cyclic voltammetry of 2 at varying scan rate in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M}$ [$\left.{ }^{\mathrm{B}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$). Right: linear dependence of peak cathodic current on square root of scan rate with the y-intercept set to 0 .

Figure S47. Titration of $\mathbf{1 -} \mathbf{N C C H}_{3}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ solution with increasing equivalents of [$\left.{ }^{\mathrm{B}} \mathrm{Bu}_{4} \mathrm{~N}\right][\mathrm{Cl}]\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$.

Figure S48. Titration of blank $0.1 \mathrm{M}\left[{ }^{[} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ solution with increasing equivalents of $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right][\mathrm{Cl}]\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$.

Figure S49. Linear regression of $i_{p a} v s$. concentration of [$\left.{ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right][\mathrm{Cl}]$. Titration of blank 0.1 M [$\left.{ }^{\mathrm{B}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ solution with increasing equivalents of $\left[{ }^{\mathrm{n}} \mathrm{Bu}{ }_{4} \mathrm{~N}\right][\mathrm{Cl}]\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\right.$ [$\left.{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}$).

Figure S50. CV of chloride oxidation region of $2\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$.

Figure S51. CV of chloride oxidation region of $\mathbf{1 - N C C H} 3\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100\right.$ mV / s).

Figure S52. Cyclic voltammetry of $\mathbf{3}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$

Figure S53. Cyclic voltammetry of $\mathbf{3}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 4000 \mathrm{mV} / \mathrm{s}\right)$.

Figure S54. Cyclic voltammetry of $\mathrm{PQN}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)\left({ }^{*}\right)$ denotes an anodic, electrode-based process resulting from cathodic scanning to rather negative potentials.

Figure S55. Cyclic voltammetry of $\mathbf{1 - C l}$ with 1 equv. of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+} / \mathrm{Et}_{3} \mathrm{~N}$ in $50 \mu \mathrm{~L}$ additions $\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$. (Inset): Plot of $\mathrm{i}_{\text {cat }} /\left(\mathrm{i}_{\mathrm{p} / 2}\right)$ vs equivalents (mMol) of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+} / \mathrm{Et}_{3} \mathrm{~N}$ added.

Figure S56. Cyclic voltammetry of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$(top); $\mathbf{1 - C l}$ and 1 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$ (bottom) $\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$.

Figure S57. Chronoamperometry experiments conducted during bulk electrolyses with 1 mM $\mathbf{1 - N C C H} 3$ plus acid (black line) and an acid-only blank (blue line). Polarization at -1.75 V vs $\mathrm{Fc}^{+/ 0}$. Ten equivalents of ferrocene included as sacrificial reductant, and 10 equivalents of $\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Br}$ added as the acid. Supporting electrolyte was $0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in each case.

Figure S58. Bulk electrolysis data for $\mathbf{3}$ polarized at $-1.75 \mathrm{~V}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right)$.

Figure S59. Bulk electrolysis data for $\mathbf{1 -} \mathbf{N C C H}_{3}$ with 10 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$polarized at $-1.75 \mathrm{~V}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$.

Figure S60. Bulk electrolysis data for $\mathbf{1 - C l}$ with 10 equiv. of $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{OTf}^{-}$polarized at -1.75 $\mathrm{V}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right], 100 \mathrm{mV} / \mathrm{s}\right)$.

X-ray crystallography

Refinement Details for 1-Cl, 2 and 3.
Sets of diffraction data [16617 (1-Cl), 25594 (2) and 17776 (3) reflections using 1^{0}-wide ω - or ϕ-scan frames with scan times of 4-6 seconds (1-CI), 5 seconds (2) or 4-6 seconds (3)] were collected ${ }^{1}$ for single-domain crystals of $\mathbf{1 - C l}, \mathbf{2}$, and $\mathbf{3}$ using monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$) on a Bruker Proteum Single Crystal Diffraction System with dual CCD detectors and associated Helios high-brilliance multilayer optics and a shared Bruker MicroSTAR microfocus Cu rotating anode x-ray source operating at 45 kV and 60 mA . Data for both compounds were collected with an Apex II CCD detector. The integrated data were corrected empirically for variable absorption effects using equivalent reflections. ${ }^{2}$ The Bruker software package SHELXTL was used to solve both structures using "direct methods" techniques. ${ }^{3}$ All stages of weighted full-matrix least-squares refinement were conducted using $\mathrm{F}_{\mathrm{o}}{ }^{2}$ data using the Olex software package ${ }^{4}$ equipped with SHELXTL XL v2014. ${ }^{5}$ Final crystallographic details are summarized in Table S1.

In the structure of $\mathbf{3}$, the Rh-bound hydride ligand (H41) was located as residual electron density in the Fourier difference map; it was therefore included in the model as an isotropic atom and its position was freely refined.

Table S1. Crystal and Refinement Data for $[\mathrm{Cp} * \mathrm{Rh}(\mathrm{QPN})(\mathrm{Cl})]^{+}[\mathrm{OTf}](\mathbf{1 - C l}),[\mathrm{Cp} * \mathrm{Rh}(\mathrm{QPN})]$ (2) and $[\mathrm{Cp} * \mathrm{Rh}(\mathrm{QPN})(\mathrm{H})]^{+}[\mathrm{OTf}]$ (3).

	1-Cl	2	3
CCDC number	1858635	1858633	1858634
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{ClF}_{3} \mathrm{NO}_{3} \mathrm{PRhS}$	$\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NPR}$ h	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{PRhS}$
Formula weight	735.97	551.45	701.52
Temperature	199.99	296.15	199.99
Wavelength	1.54178	1.54178	0.71073
Crystal system	monoclinic	monoclinic	triclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{n}$	P-1
a	12.9399(2) \AA	9.0754(2) Å	10.5485(9) \AA
b	15.7672(3) \AA	17.3941(4) \AA	10.5301(9) \AA
c	15.3994(3) \AA	16.7425(4) \AA	14.8517(12) A
a	90	90	70.4770(10)
β	94.0144(6)	101.7270(10)	76.8720(10)
γ	90	90	82.9990(10)
Volume	$3134.17(10) \AA^{3}$	2587.78(10) \AA^{3}	1512.3(2) \AA^{3}
Z	4	4	2
Density (calculated)	$1.560 \mathrm{~g} / \mathrm{cm}^{3}$	$1.415 \mathrm{~g} / \mathrm{cm}^{3}$	$1.541 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$6.747 \mathrm{~mm}^{-1}$	$6.053 \mathrm{~mm}^{-1}$	$0.739 \mathrm{~mm}^{-1}$
F(000)	1496.0	1136.0	716.0
Crystal size	$\begin{gathered} 0.14 \times 0.085 \times 0.045 \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} 0.17 \times 0.085 \times 0.03 \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} 0.24 \times 0.23 \times 0.08 \\ \mathrm{~mm}^{3} \end{gathered}$
Theta range	8.036 to 140.37	7.41 to 140.456	3.97 to 61.508
Index ranges	$\begin{gathered} -14 \leq \mathrm{h} \leq 15,-18 \leq \mathrm{k} \\ \leq 18,-15 \leq 1 \leq 18 \end{gathered}$	$\begin{gathered} -10 \leq \mathrm{h} \leq 8,-20 \leq \mathrm{k} \\ \leq 21,-20 \leq 1 \leq 18 \end{gathered}$	$\begin{aligned} & -14 \leq \mathrm{h} \leq 15,-14 \leq \\ & \mathrm{k} \leq 15,-21 \leq 1 \leq 21 \end{aligned}$
Reflections collected	16617	25594	17776
Independent reflections	$\begin{gathered} 5720\left[\mathrm{R}_{\text {int }}=0.0311,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0311\right] \end{gathered}$	$\begin{gathered} 4692\left[\mathrm{R}_{\text {int }}=0.0276\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0208\right] \end{gathered}$	$\begin{gathered} 8957\left[\mathrm{R}_{\text {int }}=0.0380\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0681\right] \end{gathered}$
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Max. and min. transmission	0.7533, 0.5664	0.839, 0.426	0.943, 0.842

Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data / restraints / parameters	5720/0/393	4692/0/313	8957/0/452
Goodness-of-fit on F^{2}	1.072	1.094	0.914
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\begin{gathered} \mathrm{R}_{1}=0.0325 \\ \mathrm{wR}_{2}=0.0837 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0212 \\ \mathrm{wR}_{2}=0.0536 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0466 \\ \mathrm{wR}_{2}=0.1251 \end{gathered}$
R indices (all data)	$\begin{gathered} \mathrm{R}_{1}=0.0342 \\ \mathrm{wR}_{2}=0.0852 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0217, \\ \mathrm{wR}_{2}=0.0539 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0728, \\ \mathrm{wR}_{2}=0.1485 \end{gathered}$
Largest diff. peak and hole	1.24 and $-0.76 \mathrm{e}^{-/} \AA^{3}$	0.30 and $-0.41 \mathrm{e}^{-} / \AA^{3}$	$1.35 /-0.98 \mathrm{e}^{-} / \AA^{3}$

Table S2. Selected Bond Lengths for 1-Cl, 2 and 3.

Bond	$\mathbf{1 - C l}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{Rh}-\mathrm{Cl}$	$2.3784(9)$	-	-
$\mathrm{Rh}-\mathrm{P}$	$2.260(9)$	$2.1744(4)$	$2.2486(8)$
$\mathrm{Rh}-\mathrm{N}$	$2.140(3)$	$2.0294(13)$	$2.093(3)$
$\mathrm{Rh}-\mathrm{Cp}^{*}$	1.830	1.917	1.862
$\mathrm{Rh}-\mathrm{H} 41$	-	-	$1.48(4)$

Figure S61. Full solid-state structure of 1-Cl. Hydrogen atoms omitted for clarity. Displacement ellipsoids shown at the 50% probability level.

Figure S62. Full solid-state structure of 2. Hydrogen atoms omitted for clarity. Displacement ellipsoids shown at the 50% probability level.

Figure S63. Full solid-state structure of 3. Hydrogen atoms except for H 41 omitted for clarity. Displacement ellipsoids shown at the 50\% probability level.

References

1. APEX2, Version 2 User Manual, M86-E01078,. Bruker Analytical X-ray Systems: Madison, WI, June 2006.
2. Sheldrick, G. M. SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector Frames, University of Göttingen2008.
3. Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3-8.
4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
5. Sheldrick, G., Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3-8.
