Supporting Information

Scalable Solvothermal Synthesis of Superparamagnetic Fe₃O₄

Nanoclusters for bio-separation and theragnostic probes

Jeonghyo Kim^{1,†}, Van Tan Tran^{1,†}, Sangjin Oh^{1,†}, Chang-Seok Kim¹, Jong Chul Hong²,

SungIl Kim³, Young-Seon Joo³, Saem Mun³, Myoung-Ho Kim³, Jae-Wan Jung³, Jiyoung Lee⁴,

Yong Seok Kang⁴, Ja-Won Koo⁴, Jaebeom Lee^{5,*}

¹Departments of Cogno-Mechatronics Engineering, Pusan National University, Busan,

46241, Republic of Korea

²Department of Otolaryngology, Head and Neck Surgery, College of Medicine, Dong-A

University, Busan, 49201, Republic of Korea

³AMO LIFE SCIENCE Co., Ltd., Seoul, 06527, Republic of Korea

⁴Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University

Bundang Hospital, Seongnam, 13620, Republic of Korea

⁵Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of

Korea

[†]These authors contributed equally.

*Corresponding author

Email: nanoleelab@cnu.ac.kr

S-1

TABLE OF CONTENTS

- 1. **Table S1**. Reaction conditions for size tunability evaluation.
- 2. **Table S2**. Reaction conditions for scalability evaluation.
- 3. **Table S3**. Quantification of conjugated-antibody amount.
- 4. **Figure S1**. Representative SEM images of the fabricated Fe3O4 nanoclusters at different magnifications.
- 5. **Figure S2**. (a) The nitrogen adsorption-desorption isotherm, and (b) pore size distribution curve of MNCs.
- 6. **Figure S3**. Schematic diagram of the coercivity (H_c) behavior as a function of particle diameter (D), where D_s is the diameter at which a transition from multi-domain to single-domain occurs, and D_{SPM} is the zero-coercivity diameter.
- 7. **Figure S4.** (a) pH-dependent zeta-potential curves, and (b) Zeta-potential of MNCs in aqueous dispersions.
- 8. **Figure S5.** Optical microscopy images of magnetic nanoclusters (MNCs) in different buffer solutions: (a) deionized water (DIW), (b) MES (pH 5.5), (c) phosphate buffered saline with Tween-20 (PBST, pH 7.4), and (d) mixture of PBST and MES (pH 6.8).
- 9. **Figure S6**. Zeta-potentials of the Fe₃O₄ nanospheres synthesized with a Fe precursor concentration of 0.05 M (a), 0.1 M (b), 0.2 M (c), and 0.3 M (d).
- 10. **Figure S7**. Magnetization curves of Fe₃O₄ and Fe₃O₄@SiO₂ samples measured at 300 K.
- 11. **Figure S8**. Capture efficiency of Ab-conjugated silica-MNSs for vibrio cell samples.
- 12. **Figure S9**. SEM, TEM and size distribution histogram of (a-c) Fe₃O₄, (d-f) Fe₃O₄@SiO₂, and (g-i) Eu doped Fe₃O₄@SiO₂. Size distribution of nanoclusters obtained by measuring 100 particles from TEM images.
- 13. **Figure S10**. (a) Absorption, excitation and emission spectra of Eu(DBM)₃Phen, and (b) its FT-IR spectrum.
- 14. **Figure S11**. Bovine serum albumin (BSA) standard curve for the BCA protein assay.
- 15. **Supplementary Movie S1**. Video clip showing the RBC separation from human whole blood.

Table S1. Reaction conditions for size tunability evaluation.

	Conc. of FeCl ₃ (M)	Reaction volume (mL)	Na ₃ Cit (g)	NaAc (g)	Reaction Temp. (°C)	Reaction Time (h)
a	0.05	20	0.2	1.2	200°C	10
b	0.1	20	0.2	1.2	200°C	10
c	0.2	20	0.2	1.2	200°C	10
d	0.3	20	0.2	1.2	200°C	10

Table S2. Reaction conditions for scalability evaluation.

Reaction volume (mL)	Amount of FeCl ₃ (g)	Conc. of FeCl ₃ (M)	Na ₃ Cit (g)	NaAc (g)	Reaction Temp. (°C)	Reaction Time (h)
20	0.540	0.1	0.2	1.2	200°C	10
40	1.081	0.1	0.4	2.4	200°C	10
200	5.406	0.1	2	12	200°C	10

 $\textbf{Table S3.}\ Quantification\ of\ conjugated-antibody\ amount.$

	OD@562 nm (a.u.)	Conjugated-antibody amount/1 mg of particles (μg)
Anti-RBC antibody	0.416	30.7
Anti-CRP antibody	0.413	30.5
Anti-Vibrio antibody	0.471	35

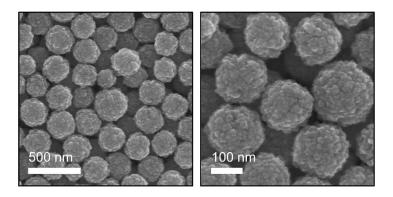
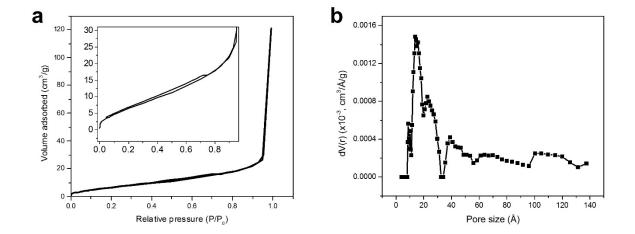



Figure S1. Representative SEM images of the fabricated Fe₃O₄ nanoclusters at different magnifications.

Figure S2. (a) The nitrogen adsorption-desorption isotherm, and (b) pore size distribution curve of MNCs.

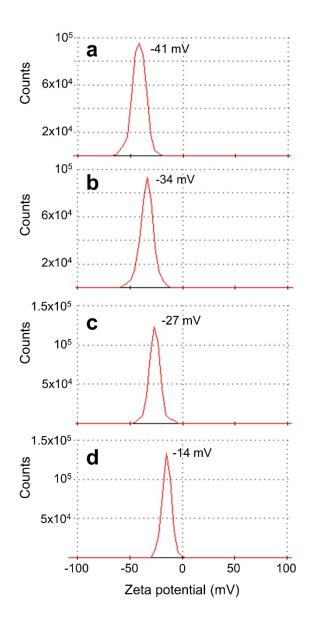

Figure S3. Schematic diagram of the coercivity (H_c) behavior as a function of particle diameter (D), where D_s is the diameter at which a transition from multi-domain to single-domain occurs, and D_{SPM} is the zero-coercivity diameter.

Figure S4. (a) pH-dependent zeta-potential curves, and (b) Zeta-potential of MNCs in aqueous dispersions.

Figure S5. Optical microscopy images of magnetic nanoclusters (MNCs) in different buffer solutions: (a) deionized water (DIW), (b) MES (pH 5.5), (c) phosphate buffered saline with Tween-20 (PBST, pH 7.4), and (d) mixture of PBST and MES (pH 6.8).

Figure S6. Zeta-potentials of the Fe_3O_4 nanospheres synthesized with a Fe precursor concentration of 0.05 M (a), 0.1 M (b), 0.2 M (c), and 0.3 M (d).

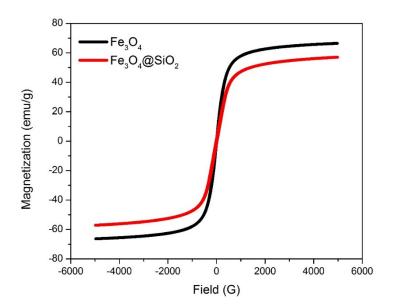


Figure S7. Magnetization curves of Fe_3O_4 and $Fe_3O_4@SiO_2$ samples measured at 300 K.

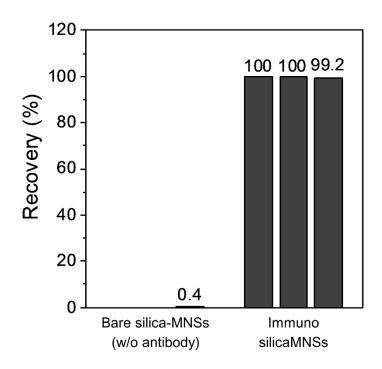
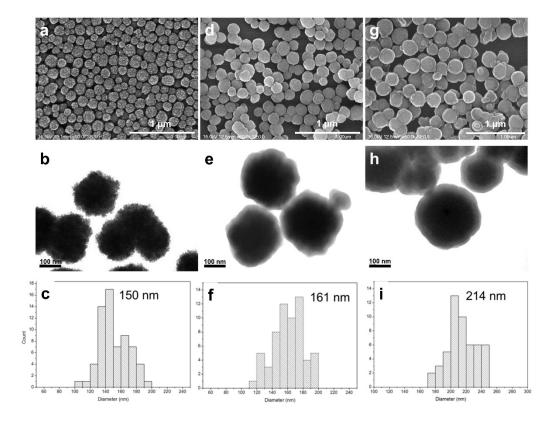
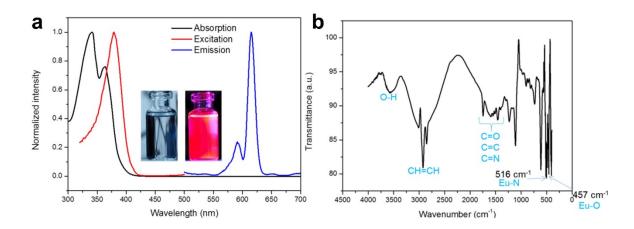




Figure S8. Capture efficiency of Ab-conjugated silica-MNSs for vibrio cell samples.

Figure S9. SEM, TEM and size distribution histogram of (a-c) Fe_3O_4 , (d-f) Fe_3O_4 @SiO₂, and (g-i) Eu doped Fe_3O_4 @SiO₂. Size distribution of nanoclusters obtained by measuring 100 particles from TEM images.

Figure S10. (a) Absorption, excitation and emission spectra of Eu(DBM)₃Phen, and (b) its FT-IR spectrum.

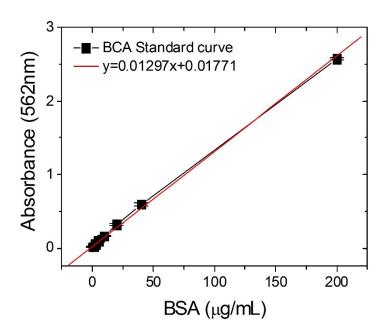
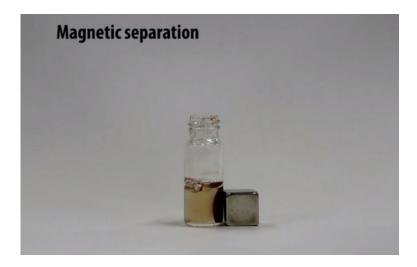



Figure S11. Bovine serum albumin (BSA) standard curve for the BCA protein assay.

Supplementary Movie S1. Video clip showing the RBC separation from human whole blood.