Supporting Information ## Kinetic Isoconversion Loop Catalysis (KILCat): A Reactor Operation Mode to Investigate Slow Catalyst Deactivation Processes, with Ni/Al₂O₃ for the Dry Reforming of Methane Patrick Littlewood, ¹ Eric Weitz, ¹ Tobin J. Marks ^{1*} and Peter C. Stair ^{1*} XPS data of spent catalysts was performed using a Thermo Scientific ESCALAB 250Xi. Figure S1: S2p region in the XPS spectrum of spot 1 on the spent catalyst after 80 h DRM. Spot size $500 \mu m$, step size 0.100 eV, averaged over 15 scans. Figure S2: Ni2p region in the XPS spectrum of spot 1 on the spent catalyst after 80 h DRM. Spot size 500 μ m, step size 0.100 eV, averaged over 15 scans. ¹ Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (USA) ^{*} t-marks@northwestern.edu, pstair@northwestern.edu Figure S3: Al2p region in the XPS spectrum of spot 1 on the spent catalyst after 80 h DRM. Spot size 500 μ m, step size 0.100 eV, averaged over 15 scans. Figure S4: S2p region in the XPS spectrum of spot 2 on the spent catalyst after 80 h DRM. Spot size 500 μ m, step size 0.100 eV, averaged over 15 scans. Figure S5: Ni2p region in the XPS spectrum of spot 2 on the spent catalyst after 80 h DRM. Spot size 500 μ m, step size 0.100 eV, averaged over 15 scans. Figure S6: Al2p region in the XPS spectrum of spot 2 on the spent catalyst after 80 h DRM. Spot size 500 μ m, step size 0.100 eV, averaged over 5 scans.